What is called an arithmetic progression. How to find an arithmetic progression? Arithmetic progression examples with solution

Many people have heard about arithmetic progression, but not everyone has a good idea of ​​what it is. In this article we will give the corresponding definition, and also consider the question of how to find the difference of an arithmetic progression, and give a number of examples.

Mathematical definition

So, if we are talking about an arithmetic or algebraic progression (these concepts define the same thing), then this means that there is a certain number series that satisfies the following law: every two adjacent numbers in the series differ by the same value. Mathematically it is written like this:

Here n means the number of element a n in the sequence, and the number d is the difference of the progression (its name follows from the presented formula).

What does knowing the difference d mean? About how “far” neighboring numbers are from each other. However, knowledge of d is a necessary but not sufficient condition for determining (restoring) the entire progression. It is necessary to know one more number, which can be absolutely any element of the series under consideration, for example, a 4, a10, but, as a rule, they use the first number, that is, a 1.

Formulas for determining progression elements

In general, the information above is already enough to move on to solving specific problems. Nevertheless, before the arithmetic progression is given, and it will be necessary to find its difference, we will present a couple of useful formulas, thereby facilitating the subsequent process of solving problems.

It is easy to show that any element of the sequence with number n can be found as follows:

a n = a 1 + (n - 1) * d

Indeed, anyone can check this formula by simple search: if you substitute n = 1, you get the first element, if you substitute n = 2, then the expression gives the sum of the first number and the difference, and so on.

The conditions of many problems are composed in such a way that, given a known pair of numbers, the numbers of which are also given in the sequence, it is necessary to reconstruct the entire number series (find the difference and the first element). Now we will solve this problem in general form.

So, let two elements with numbers n and m be given. Using the formula obtained above, you can create a system of two equations:

a n = a 1 + (n - 1) * d;

a m = a 1 + (m - 1) * d

To find unknown quantities, we will use a well-known simple technique for solving such a system: subtract the left and right sides in pairs, the equality will remain valid. We have:

a n = a 1 + (n - 1) * d;

a n - a m = (n - 1) * d - (m - 1) * d = d * (n - m)

Thus, we have excluded one unknown (a 1). Now we can write the final expression for determining d:

d = (a n - a m) / (n - m), where n > m

We received a very simple formula: in order to calculate the difference d in accordance with the conditions of the problem, it is only necessary to take the ratio of the differences between the elements themselves and their serial numbers. One important point should be paid attention to: the differences are taken between the “senior” and “junior” members, that is, n > m (“senior” means standing further from the beginning of the sequence, its absolute value can be either greater or less more "junior" element).

The expression for the difference d progression should be substituted into any of the equations at the beginning of solving the problem to obtain the value of the first term.

In our age of computer technology development, many schoolchildren try to find solutions for their assignments on the Internet, so questions of this type often arise: find the difference of an arithmetic progression online. For such a request, the search engine will return a number of web pages, by going to which you will need to enter the data known from the condition (this can be either two terms of the progression or the sum of a certain number of them) and instantly receive an answer. However, this approach to solving the problem is unproductive in terms of the student’s development and understanding of the essence of the task assigned to him.

Solution without using formulas

Let's solve the first problem without using any of the given formulas. Let the elements of the series be given: a6 = 3, a9 = 18. Find the difference of the arithmetic progression.

Known elements stand close to each other in a row. How many times must the difference d be added to the smallest to get the largest? Three times (the first time adding d, we get the 7th element, the second time - the eighth, finally, the third time - the ninth). What number must be added to three three times to get 18? This is the number five. Really:

Thus, the unknown difference d = 5.

Of course, the solution could have been carried out using the appropriate formula, but this was not done intentionally. A detailed explanation of the solution to the problem should become a clear and clear example of what an arithmetic progression is.

A task similar to the previous one

Now let's solve a similar problem, but change the input data. So, you should find if a3 = 2, a9 = 19.

Of course, you can again resort to the “head-on” solution method. But since the elements of the series are given, which are relatively far from each other, this method will not be entirely convenient. But using the resulting formula will quickly lead us to the answer:

d = (a 9 - a 3) / (9 - 3) = (19 - 2) / (6) = 17 / 6 ≈ 2.83

Here we have rounded the final number. The extent to which this rounding led to an error can be judged by checking the result:

a 9 = a 3 + 2.83 + 2.83 + 2.83 + 2.83 + 2.83 + 2.83 = 18.98

This result differs by only 0.1% from the value given in the condition. Therefore, the rounding used to the nearest hundredths can be considered a successful choice.

Problems involving applying the formula for the an term

Let's consider a classic example of a problem to determine the unknown d: find the difference of an arithmetic progression if a1 = 12, a5 = 40.

When two numbers of an unknown algebraic sequence are given, and one of them is the element a 1, then you do not need to think long, but should immediately apply the formula for the a n term. In this case we have:

a 5 = a 1 + d * (5 - 1) => d = (a 5 - a 1) / 4 = (40 - 12) / 4 = 7

We received the exact number when dividing, so there is no point in checking the accuracy of the calculated result, as was done in the previous paragraph.

Let's solve another similar problem: we need to find the difference of an arithmetic progression if a1 = 16, a8 = 37.

We use an approach similar to the previous one and get:

a 8 = a 1 + d * (8 - 1) => d = (a 8 - a 1) / 7 = (37 - 16) / 7 = 3

What else should you know about arithmetic progression?

In addition to problems of finding an unknown difference or individual elements, it is often necessary to solve problems of the sum of the first terms of a sequence. Consideration of these problems is beyond the scope of the article, however, for completeness of information, we present a general formula for the sum of n numbers in a series:

∑ n i = 1 (a i) = n * (a 1 + a n) / 2

What is the main essence of the formula?

This formula allows you to find any BY HIS NUMBER " n" .

Of course, you also need to know the first term a 1 and progression difference d, well, without these parameters you can’t write down a specific progression.

Memorizing (or cribing) this formula is not enough. You need to understand its essence and apply the formula in various problems. And also not to forget at the right moment, yes...) How not forget- I don't know. And here how to remember If necessary, I will definitely advise you. For those who complete the lesson to the end.)

So, let's look at the formula for the nth term of an arithmetic progression.

What is a formula in general? By the way, take a look if you haven’t read it. Everything is simple there. It remains to figure out what it is nth term.

Progression in general can be written as a series of numbers:

a 1, a 2, a 3, a 4, a 5, .....

a 1- denotes the first term of an arithmetic progression, a 3- third member, a 4- the fourth, and so on. If we are interested in the fifth term, let's say we are working with a 5, if one hundred and twentieth - s a 120.

How can we define it in general terms? any term of an arithmetic progression, with any number? Very simple! Like this:

a n

That's what it is nth term of an arithmetic progression. The letter n hides all the member numbers at once: 1, 2, 3, 4, and so on.

And what does such a record give us? Just think, instead of a number they wrote down a letter...

This notation gives us a powerful tool for working with arithmetic progression. Using the notation a n, we can quickly find any member any arithmetic progression. And solve a bunch of other progression problems. You'll see for yourself further.

In the formula for the nth term of an arithmetic progression:

a n = a 1 + (n-1)d

a 1- the first term of an arithmetic progression;

n- member number.

The formula connects the key parameters of any progression: a n ; a 1 ; d And n. All progression problems revolve around these parameters.

The nth term formula can also be used to write a specific progression. For example, the problem may say that the progression is specified by the condition:

a n = 5 + (n-1) 2.

Such a problem can be a dead end... There is neither a series nor a difference... But, comparing the condition with the formula, it is easy to understand that in this progression a 1 =5, and d=2.

And it can be even worse!) If we take the same condition: a n = 5 + (n-1) 2, Yes, open the parentheses and bring similar ones? We get a new formula:

a n = 3 + 2n.

This Just not general, but for a specific progression. This is where the pitfall lurks. Some people think that the first term is a three. Although in reality the first term is five... A little lower we will work with such a modified formula.

In progression problems there is another notation - a n+1. This is, as you guessed, the “n plus first” term of the progression. Its meaning is simple and harmless.) This is a member of the progression whose number is greater than number n by one. For example, if in some problem we take a n fifth term then a n+1 will be the sixth member. Etc.

Most often the designation a n+1 found in recurrence formulas. Don't be afraid of this scary word!) This is just a way of expressing a member of an arithmetic progression through the previous one. Let's say we are given an arithmetic progression in this form, using a recurrent formula:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

The fourth - through the third, the fifth - through the fourth, and so on. How can we immediately count, say, the twentieth term? a 20? But there’s no way!) Until we find out the 19th term, we can’t count the 20th. This is the fundamental difference between the recurrent formula and the formula of the nth term. Recurrent works only through previous term, and the formula of the nth term is through first and allows straightaway find any member by its number. Without calculating the entire series of numbers in order.

In an arithmetic progression, it is easy to turn a recurrent formula into a regular one. Count a pair of consecutive terms, calculate the difference d, find, if necessary, the first term a 1, write the formula in its usual form, and work with it. Such tasks are often encountered in the State Academy of Sciences.

Application of the formula for the nth term of an arithmetic progression.

First, let's look at the direct application of the formula. At the end of the previous lesson there was a problem:

An arithmetic progression (a n) is given. Find a 121 if a 1 =3 and d=1/6.

This problem can be solved without any formulas, simply based on the meaning of an arithmetic progression. Add and add... An hour or two.)

And according to the formula, the solution will take less than a minute. You can time it.) Let's decide.

The conditions provide all the data for using the formula: a 1 =3, d=1/6. It remains to figure out what is equal n. No problem! We need to find a 121. So we write:

Please pay attention! Instead of an index n a specific number appeared: 121. Which is quite logical.) We are interested in the member of the arithmetic progression number one hundred twenty one. This will be ours n. This is the meaning n= 121 we will substitute further into the formula, in brackets. We substitute all the numbers into the formula and calculate:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

That's it. Just as quickly one could find the five hundred and tenth term, and the thousand and third, any one. We put instead n the desired number in the index of the letter " a" and in brackets, and we count.

Let me remind you the point: this formula allows you to find any arithmetic progression term BY HIS NUMBER " n" .

Let's solve the problem in a more cunning way. Let us come across the following problem:

Find the first term of the arithmetic progression (a n), if a 17 =-2; d=-0.5.

If you have any difficulties, I will tell you the first step. Write down the formula for the nth term of an arithmetic progression! Yes Yes. Write down with your hands, right in your notebook:

a n = a 1 + (n-1)d

And now, looking at the letters of the formula, we understand what data we have and what is missing? Available d=-0.5, there is a seventeenth member... Is that it? If you think that’s it, then you won’t solve the problem, yes...

We still have a number n! In condition a 17 =-2 hidden two parameters. This is both the value of the seventeenth term (-2) and its number (17). Those. n=17. This “trifle” often slips past the head, and without it, (without the “trifle”, not the head!) the problem cannot be solved. Although... and without a head too.)

Now we can simply stupidly substitute our data into the formula:

a 17 = a 1 + (17-1)·(-0.5)

Oh yes, a 17 we know it's -2. Okay, let's substitute:

-2 = a 1 + (17-1)·(-0.5)

That's basically all. It remains to express the first term of the arithmetic progression from the formula and calculate it. The answer will be: a 1 = 6.

This technique - writing down a formula and simply substituting known data - is a great help in simple tasks. Well, of course, you must be able to express a variable from a formula, but what to do!? Without this skill, mathematics may not be studied at all...

Another popular puzzle:

Find the difference of the arithmetic progression (a n), if a 1 =2; a 15 =12.

What are we doing? You will be surprised, we are writing the formula!)

a n = a 1 + (n-1)d

Let's consider what we know: a 1 =2; a 15 =12; and (I’ll especially highlight!) n=15. Feel free to substitute this into the formula:

12=2 + (15-1)d

We do the arithmetic.)

12=2 + 14d

d=10/14 = 5/7

This is the correct answer.

So, the tasks for a n, a 1 And d decided. All that remains is to learn how to find the number:

The number 99 is a member of the arithmetic progression (a n), where a 1 =12; d=3. Find this member's number.

We substitute the quantities known to us into the formula of the nth term:

a n = 12 + (n-1) 3

At first glance, there are two unknown quantities here: a n and n. But a n- this is some member of the progression with a number n...And we know this member of the progression! It's 99. We don't know its number. n, So this number is what you need to find. We substitute the term of the progression 99 into the formula:

99 = 12 + (n-1) 3

We express from the formula n, we think. We get the answer: n=30.

And now a problem on the same topic, but more creative):

Determine whether the number 117 is a member of the arithmetic progression (a n):

-3,6; -2,4; -1,2 ...

Let's write the formula again. What, there are no parameters? Hm... Why are we given eyes?) Do we see the first term of the progression? We see. This is -3.6. You can safely write: a 1 = -3.6. Difference d Can you tell from the series? It’s easy if you know what the difference of an arithmetic progression is:

d = -2.4 - (-3.6) = 1.2

So, we did the simplest thing. It remains to deal with the unknown number n and the incomprehensible number 117. In the previous problem, at least it was known that it was the term of the progression that was given. But here we don’t even know... What to do!? Well, how to be, how to be... Turn on your creative abilities!)

We suppose that 117 is, after all, a member of our progression. With an unknown number n. And, just like in the previous problem, let's try to find this number. Those. we write the formula (yes, yes!)) and substitute our numbers:

117 = -3.6 + (n-1) 1.2

Again we express from the formulan, we count and get:

Oops! The number turned out fractional! One hundred and one and a half. And fractional numbers in progressions can not be. What conclusion can we draw? Yes! Number 117 is not member of our progression. It is somewhere between the one hundred and first and one hundred and second terms. If the number turned out natural, i.e. is a positive integer, then the number would be a member of the progression with the number found. And in our case, the answer to the problem will be: No.

A task based on a real version of the GIA:

An arithmetic progression is given by the condition:

a n = -4 + 6.8n

Find the first and tenth terms of the progression.

Here the progression is set in an unusual way. Some kind of formula... It happens.) However, this formula (as I wrote above) - also the formula for the nth term of an arithmetic progression! She also allows find any member of the progression by its number.

We are looking for the first member. The one who thinks. that the first term is minus four is fatally mistaken!) Because the formula in the problem is modified. The first term of the arithmetic progression in it hidden. It’s okay, we’ll find it now.)

Just as in previous problems, we substitute n=1 into this formula:

a 1 = -4 + 6.8 1 = 2.8

Here! The first term is 2.8, not -4!

We look for the tenth term in the same way:

a 10 = -4 + 6.8 10 = 64

That's it.

And now, for those who have read to these lines, the promised bonus.)

Suppose, in a difficult combat situation of the State Examination or Unified State Examination, you have forgotten the useful formula for the nth term of an arithmetic progression. I remember something, but somehow uncertainly... Or n there, or n+1, or n-1... How to be!?

Calm! This formula is easy to derive. It’s not very strict, but it’s definitely enough for confidence and the right decision!) To make a conclusion, it’s enough to remember the elementary meaning of an arithmetic progression and have a couple of minutes of time. You just need to draw a picture. For clarity.

Draw a number line and mark the first one on it. second, third, etc. members. And we note the difference d between members. Like this:

We look at the picture and think: what does the second term equal? Second one d:

a 2 =a 1 + 1 d

What is the third term? Third term equals first term plus two d.

a 3 =a 1 + 2 d

Do you get it? It’s not for nothing that I highlight some words in bold. Okay, one more step).

What is the fourth term? Fourth term equals first term plus three d.

a 4 =a 1 + 3 d

It's time to realize that the number of gaps, i.e. d, Always one less than the number of the member you are looking for n. That is, to the number n, number of spaces will n-1. Therefore, the formula will be (without variations!):

a n = a 1 + (n-1)d

In general, visual pictures are very helpful in solving many problems in mathematics. Don't neglect the pictures. But if it’s difficult to draw a picture, then... only a formula!) In addition, the formula of the nth term allows you to connect the entire powerful arsenal of mathematics to the solution - equations, inequalities, systems, etc. You can't insert a picture into the equation...

Tasks for independent solution.

To warm up:

1. In arithmetic progression (a n) a 2 =3; a 5 =5.1. Find a 3 .

Hint: according to the picture, the problem can be solved in 20 seconds... According to the formula, it turns out more difficult. But for mastering the formula, it’s more useful.) In Section 555, this problem is solved using both the picture and the formula. Feel the difference!)

And this is no longer a warm-up.)

2. In arithmetic progression (a n) a 85 =19.1; a 236 =49, 3. Find a 3 .

What, you don’t want to draw a picture?) Of course! Better according to the formula, yes...

3. The arithmetic progression is given by the condition:a 1 = -5.5; a n+1 = a n +0.5. Find the one hundred and twenty-fifth term of this progression.

In this task, the progression is specified in a recurrent manner. But counting to the one hundred and twenty-fifth term... Not everyone is capable of such a feat.) But the formula of the nth term is within the power of everyone!

4. Given an arithmetic progression (a n):

-148; -143,8; -139,6; -135,4, .....

Find the number of the smallest positive term of the progression.

5. According to the conditions of task 4, find the sum of the smallest positive and largest negative terms of the progression.

6. The product of the fifth and twelfth terms of an increasing arithmetic progression is equal to -2.5, and the sum of the third and eleventh terms is equal to zero. Find a 14 .

Not the easiest task, yes...) The “fingertip” method won’t work here. You will have to write formulas and solve equations.

Answers (in disarray):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Happened? It's nice!)

Not everything works out? Happens. By the way, there is one subtle point in the last task. Care will be required when reading the problem. And logic.

The solution to all these problems is discussed in detail in Section 555. And the element of fantasy for the fourth, and the subtle point for the sixth, and general approaches for solving any problems involving the formula of the nth term - everything is described. I recommend.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

Sum of an arithmetic progression.

The sum of an arithmetic progression is a simple thing. Both in meaning and in formula. But there are all sorts of tasks on this topic. From basic to quite solid.

First, let's understand the meaning and formula of the amount. And then we'll decide. For your own pleasure.) The meaning of the amount is as simple as a moo. To find the sum of an arithmetic progression, you just need to carefully add all its terms. If these terms are few, you can add without any formulas. But if there is a lot, or a lot... addition is annoying.) In this case, the formula comes to the rescue.

The formula for the amount is simple:

Let's figure out what kind of letters are included in the formula. This will clear things up a lot.

S n - the sum of an arithmetic progression. Addition result everyone members, with first By last. It is important. They add up exactly All members in a row, without skipping or skipping. And, precisely, starting from first. In problems like finding the sum of the third and eighth terms, or the sum of the fifth to twentieth terms, direct application of the formula will disappoint.)

a 1 - first member of the progression. Everything is clear here, it's simple first row number.

a n- last member of the progression. The last number of the series. Not a very familiar name, but when applied to the amount, it’s very suitable. Then you will see for yourself.

n - number of the last member. It is important to understand that in the formula this number coincides with the number of added terms.

Let's define the concept last member a n. Tricky question: which member will be the last one if given endless arithmetic progression?)

To answer confidently, you need to understand the elementary meaning of arithmetic progression and... read the task carefully!)

In the task of finding the sum of an arithmetic progression, the last term always appears (directly or indirectly), which should be limited. Otherwise, a final, specific amount simply doesn't exist. For the solution, it does not matter whether the progression is given: finite or infinite. It doesn’t matter how it is given: a series of numbers, or a formula for the nth term.

The most important thing is to understand that the formula works from the first term of the progression to the term with number n. Actually, the full name of the formula looks like this: the sum of the first n terms of an arithmetic progression. The number of these very first members, i.e. n, is determined solely by the task. In a task, all this valuable information is often encrypted, yes... But never mind, in the examples below we reveal these secrets.)

Examples of tasks on the sum of an arithmetic progression.

First of all, useful information:

The main difficulty in tasks involving the sum of an arithmetic progression lies in the correct determination of the elements of the formula.

The task writers encrypt these very elements with boundless imagination.) The main thing here is not to be afraid. Understanding the essence of the elements, it is enough to simply decipher them. Let's look at a few examples in detail. Let's start with a task based on a real GIA.

1. The arithmetic progression is given by the condition: a n = 2n-3.5. Find the sum of its first 10 terms.

Good job. Easy.) To determine the amount using the formula, what do we need to know? First member a 1, last term a n, yes the number of the last member n.

Where can I get the last member's number? n? Yes, right there, on condition! It says: find the sum first 10 members. Well, what number will it be with? last, tenth member?) You won’t believe it, his number is tenth!) Therefore, instead of a n We will substitute into the formula a 10, and instead n- ten. I repeat, the number of the last member coincides with the number of members.

It remains to determine a 1 And a 10. This is easily calculated using the formula for the nth term, which is given in the problem statement. Don't know how to do this? Attend the previous lesson, without this there is no way.

a 1= 2 1 - 3.5 = -1.5

a 10=2·10 - 3.5 =16.5

S n = S 10.

We have found out the meaning of all elements of the formula for the sum of an arithmetic progression. All that remains is to substitute them and count:

That's it. Answer: 75.

Another task based on the GIA. A little more complicated:

2. Given an arithmetic progression (a n), the difference of which is 3.7; a 1 =2.3. Find the sum of its first 15 terms.

We immediately write the sum formula:

This formula allows us to find the value of any term by its number. We look for a simple substitution:

a 15 = 2.3 + (15-1) 3.7 = 54.1

It remains to substitute all the elements into the formula for the sum of an arithmetic progression and calculate the answer:

Answer: 423.

By the way, if in the sum formula instead of a n We simply substitute the formula for the nth term and get:

Let us present similar ones and obtain a new formula for the sum of terms of an arithmetic progression:

As you can see, the nth term is not required here a n. In some problems this formula helps a lot, yes... You can remember this formula. Or you can simply display it at the right time, like here. After all, you always need to remember the formula for the sum and the formula for the nth term.)

Now the task in the form of a short encryption):

3. Find the sum of all positive two-digit numbers that are multiples of three.

Wow! Neither your first member, nor your last, nor progression at all... How to live!?

You will have to think with your head and pull out all the elements of the sum of the arithmetic progression from the condition. We know what two-digit numbers are. They consist of two numbers.) What two-digit number will be first? 10, presumably.) A last thing double digit number? 99, of course! The three-digit ones will follow him...

Multiples of three... Hm... These are numbers that are divisible by three, here! Ten is not divisible by three, 11 is not divisible... 12... is divisible! So, something is emerging. You can already write down a series according to the conditions of the problem:

12, 15, 18, 21, ... 96, 99.

Will this series be an arithmetic progression? Certainly! Each term differs from the previous one by strictly three. If you add 2 or 4 to a term, say, the result, i.e. the new number is no longer divisible by 3. You can immediately determine the difference of the arithmetic progression: d = 3. It will come in handy!)

So, we can safely write down some progression parameters:

What will the number be? n last member? Anyone who thinks that 99 is fatally mistaken... The numbers always go in a row, but our members jump over three. They don't match.

There are two solutions here. One way is for the super hardworking. You can write down the progression, the entire series of numbers, and count the number of members with your finger.) The second way is for the thoughtful. You need to remember the formula for the nth term. If we apply the formula to our problem, we find that 99 is the thirtieth term of the progression. Those. n = 30.

Let's look at the formula for the sum of an arithmetic progression:

We look and rejoice.) We pulled out from the problem statement everything necessary to calculate the amount:

a 1= 12.

a 30= 99.

S n = S 30.

All that remains is elementary arithmetic. We substitute the numbers into the formula and calculate:

Answer: 1665

Another type of popular puzzle:

4. Given an arithmetic progression:

-21,5; -20; -18,5; -17; ...

Find the sum of terms from twentieth to thirty-four.

We look at the formula for the amount and... we get upset.) The formula, let me remind you, calculates the amount from the first member. And in the problem you need to calculate the sum since the twentieth... The formula won't work.

You can, of course, write out the entire progression in a series, and add terms from 20 to 34. But... it’s somehow stupid and takes a long time, right?)

There is a more elegant solution. Let's divide our series into two parts. The first part will be from the first term to the nineteenth. Second part - from twenty to thirty-four. It is clear that if we calculate the sum of the terms of the first part S 1-19, let's add it with the sum of the terms of the second part S 20-34, we get the sum of the progression from the first term to the thirty-fourth S 1-34. Like this:

S 1-19 + S 20-34 = S 1-34

From this we can see that find the sum S 20-34 can be done by simple subtraction

S 20-34 = S 1-34 - S 1-19

Both amounts on the right side are considered from the first member, i.e. the standard sum formula is quite applicable to them. Let's get started?

We extract the progression parameters from the problem statement:

d = 1.5.

a 1= -21,5.

To calculate the sums of the first 19 and first 34 terms, we will need the 19th and 34th terms. We calculate them using the formula for the nth term, as in problem 2:

a 19= -21.5 +(19-1) 1.5 = 5.5

a 34= -21.5 +(34-1) 1.5 = 28

There's nothing left. From the sum of 34 terms subtract the sum of 19 terms:

S 20-34 = S 1-34 - S 1-19 = 110.5 - (-152) = 262.5

Answer: 262.5

One important note! There is a very useful trick in solving this problem. Instead of direct calculation what you need (S 20-34), we counted something that would seem not to be needed - S 1-19. And then they determined S 20-34, discarding the unnecessary from the complete result. This kind of “feint with your ears” often saves you in wicked problems.)

In this lesson we looked at problems for which it is enough to understand the meaning of the sum of an arithmetic progression. Well, you need to know a couple of formulas.)

Practical advice:

When solving any problem involving the sum of an arithmetic progression, I recommend immediately writing out the two main formulas from this topic.

Formula for the nth term:

These formulas will immediately tell you what to look for and in what direction to think in order to solve the problem. Helps.

And now the tasks for independent solution.

5. Find the sum of all two-digit numbers that are not divisible by three.

Cool?) The hint is hidden in the note to problem 4. Well, problem 3 will help.

6. The arithmetic progression is given by the condition: a 1 = -5.5; a n+1 = a n +0.5. Find the sum of its first 24 terms.

Unusual?) This is a recurrent formula. You can read about it in the previous lesson. Don’t ignore the link, such problems are often found in the State Academy of Sciences.

7. Vasya saved up money for the holiday. As much as 4550 rubles! And I decided to give my favorite person (myself) a few days of happiness). Live beautifully without denying yourself anything. Spend 500 rubles on the first day, and on each subsequent day spend 50 rubles more than the previous one! Until the money runs out. How many days of happiness did Vasya have?

Is it difficult?) The additional formula from problem 2 will help.

Answers (in disarray): 7, 3240, 6.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

If for every natural number n match a real number a n , then they say that it is given number sequence :

a 1 , a 2 , a 3 , . . . , a n , . . . .

So, the number sequence is a function of the natural argument.

Number a 1 called first term of the sequence , number a 2 second term of the sequence , number a 3 third and so on. Number a n called nth member of the sequence , and a natural number nhis number .

From two adjacent members a n And a n +1 sequence member a n +1 called subsequent (towards a n ), A a n previous (towards a n +1 ).

To define a sequence, you need to specify a method that allows you to find a member of the sequence with any number.

Often the sequence is specified using nth term formulas , that is, a formula that allows you to determine a member of a sequence by its number.

For example,

a sequence of positive odd numbers can be given by the formula

a n= 2n- 1,

and the sequence of alternating 1 And -1 - formula

b n = (-1)n +1 .

The sequence can be determined recurrent formula, that is, a formula that expresses any member of the sequence, starting with some, through the previous (one or more) members.

For example,

If a 1 = 1 , A a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

If a 1= 1, a 2 = 1, a n +2 = a n + a n +1 , then the first seven terms of the numerical sequence are established as follows:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Sequences can be final And endless .

The sequence is called ultimate , if it has a finite number of members. The sequence is called endless , if it has infinitely many members.

For example,

sequence of two-digit natural numbers:

10, 11, 12, 13, . . . , 98, 99

final.

Sequence of prime numbers:

2, 3, 5, 7, 11, 13, . . .

endless.

The sequence is called increasing , if each of its members, starting from the second, is greater than the previous one.

The sequence is called decreasing , if each of its members, starting from the second, is less than the previous one.

For example,

2, 4, 6, 8, . . . , 2n, . . . — increasing sequence;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . — decreasing sequence.

A sequence whose elements do not decrease as the number increases, or, conversely, do not increase, is called monotonous sequence .

Monotonic sequences, in particular, are increasing sequences and decreasing sequences.

Arithmetic progression

Arithmetic progression is a sequence in which each member, starting from the second, is equal to the previous one, to which the same number is added.

a 1 , a 2 , a 3 , . . . , a n, . . .

is an arithmetic progression if for any natural number n the condition is met:

a n +1 = a n + d,

Where d - a certain number.

Thus, the difference between the subsequent and previous terms of a given arithmetic progression is always constant:

a 2 - a 1 = a 3 - a 2 = . . . = a n +1 - a n = d.

Number d called difference of arithmetic progression.

To define an arithmetic progression, it is enough to indicate its first term and difference.

For example,

If a 1 = 3, d = 4 , then we find the first five terms of the sequence as follows:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

For an arithmetic progression with the first term a 1 and the difference d her n

a n = a 1 + (n- 1)d.

For example,

find the thirtieth term of the arithmetic progression

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n- 2)d,

a n= a 1 + (n- 1)d,

a n +1 = a 1 + nd,

then obviously

a n=
a n-1 + a n+1
2

Each member of an arithmetic progression, starting from the second, is equal to the arithmetic mean of the preceding and subsequent members.

the numbers a, b and c are successive terms of some arithmetic progression if and only if one of them is equal to the arithmetic mean of the other two.

For example,

a n = 2n- 7 , is an arithmetic progression.

Let's use the above statement. We have:

a n = 2n- 7,

a n-1 = 2(n- 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

Hence,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Note that n The th term of an arithmetic progression can be found not only through a 1 , but also any previous a k

a n = a k + (n- k)d.

For example,

For a 5 can be written down

a 5 = a 1 + 4d,

a 5 = a 2 + 3d,

a 5 = a 3 + 2d,

a 5 = a 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

then obviously

a n=
a n-k + a n+k
2

any member of an arithmetic progression, starting from the second, is equal to half the sum of the equally spaced members of this arithmetic progression.

In addition, for any arithmetic progression the following equality holds:

a m + a n = a k + a l,

m + n = k + l.

For example,

in arithmetic progression

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) a 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, because

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ a n,

first n terms of an arithmetic progression is equal to the product of half the sum of the extreme terms and the number of terms:

From here, in particular, it follows that if you need to sum the terms

a k, a k +1 , . . . , a n,

then the previous formula retains its structure:

For example,

in arithmetic progression 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

If an arithmetic progression is given, then the quantities a 1 , a n, d, n AndS n connected by two formulas:

Therefore, if the values ​​of three of these quantities are given, then the corresponding values ​​of the other two quantities are determined from these formulas, combined into a system of two equations with two unknowns.

An arithmetic progression is a monotonic sequence. Wherein:

  • If d > 0 , then it is increasing;
  • If d < 0 , then it is decreasing;
  • If d = 0 , then the sequence will be stationary.

Geometric progression

Geometric progression is a sequence in which each member, starting from the second, is equal to the previous one multiplied by the same number.

b 1 , b 2 , b 3 , . . . , b n, . . .

is a geometric progression if for any natural number n the condition is met:

b n +1 = b n · q,

Where q ≠ 0 - a certain number.

Thus, the ratio of the subsequent term of a given geometric progression to the previous one is a constant number:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Number q called denominator of geometric progression.

To define a geometric progression, it is enough to indicate its first term and denominator.

For example,

If b 1 = 1, q = -3 , then we find the first five terms of the sequence as follows:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 and denominator q her n The th term can be found using the formula:

b n = b 1 · qn -1 .

For example,

find the seventh term of the geometric progression 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

b n = b 1 · qn -1 ,

b n +1 = b 1 · qn,

then obviously

b n 2 = b n -1 · b n +1 ,

each member of the geometric progression, starting from the second, is equal to the geometric mean (proportional) of the preceding and subsequent members.

Since the converse is also true, the following statement holds:

the numbers a, b and c are successive terms of some geometric progression if and only if the square of one of them is equal to the product of the other two, that is, one of the numbers is the geometric mean of the other two.

For example,

Let us prove that the sequence given by the formula b n= -3 2 n , is a geometric progression. Let's use the above statement. We have:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

Hence,

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

which proves the desired statement.

Note that n The th term of a geometric progression can be found not only through b 1 , but also any previous member b k , for which it is enough to use the formula

b n = b k · qn - k.

For example,

For b 5 can be written down

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · q.

b n = b k · qn - k,

b n = b n - k · q k,

then obviously

b n 2 = b n - k· b n + k

the square of any term of a geometric progression, starting from the second, is equal to the product of the terms of this progression equidistant from it.

In addition, for any geometric progression the equality is true:

b m· b n= b k· b l,

m+ n= k+ l.

For example,

in geometric progression

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , because

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

first n members of a geometric progression with denominator q 0 calculated by the formula:

And when q = 1 - according to the formula

S n= nb 1

Note that if you need to sum the terms

b k, b k +1 , . . . , b n,

then the formula is used:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - qn - k +1
.
1 - q

For example,

in geometric progression 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

If a geometric progression is given, then the quantities b 1 , b n, q, n And S n connected by two formulas:

Therefore, if the values ​​of any three of these quantities are given, then the corresponding values ​​of the other two quantities are determined from these formulas, combined into a system of two equations with two unknowns.

For a geometric progression with the first term b 1 and denominator q the following take place properties of monotonicity :

  • progression is increasing if one of the following conditions is met:

b 1 > 0 And q> 1;

b 1 < 0 And 0 < q< 1;

  • The progression is decreasing if one of the following conditions is met:

b 1 > 0 And 0 < q< 1;

b 1 < 0 And q> 1.

If q< 0 , then the geometric progression is alternating: its terms with odd numbers have the same sign as its first term, and terms with even numbers have the opposite sign. It is clear that an alternating geometric progression is not monotonic.

Product of the first n terms of a geometric progression can be calculated using the formula:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

For example,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Infinitely decreasing geometric progression

Infinitely decreasing geometric progression called an infinite geometric progression whose denominator modulus is less 1 , that is

|q| < 1 .

Note that an infinitely decreasing geometric progression may not be a decreasing sequence. It fits the occasion

1 < q< 0 .

With such a denominator, the sequence is alternating. For example,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

The sum of an infinitely decreasing geometric progression name the number to which the sum of the first ones approaches without limit n members of a progression with an unlimited increase in the number n . This number is always finite and is expressed by the formula

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

For example,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Relationship between arithmetic and geometric progressions

Arithmetic and geometric progressions are closely related. Let's look at just two examples.

a 1 , a 2 , a 3 , . . . d , That

b a 1 , b a 2 , b a 3 , . . . b d .

For example,

1, 3, 5, . . . - arithmetic progression with difference 2 And

7 1 , 7 3 , 7 5 , . . . - geometric progression with denominator 7 2 .

b 1 , b 2 , b 3 , . . . - geometric progression with denominator q , That

log a b 1, log a b 2, log a b 3, . . . - arithmetic progression with difference log aq .

For example,

2, 12, 72, . . . - geometric progression with denominator 6 And

lg 2, lg 12, lg 72, . . . - arithmetic progression with difference lg 6 .

Mathematics has its own beauty, just like painting and poetry.

Russian scientist, mechanic N.E. Zhukovsky

Very common problems in entrance examinations in mathematics are problems related to the concept of arithmetic progression. To successfully solve such problems, you must have a good knowledge of the properties of arithmetic progression and have certain skills in their application.

Let us first recall the basic properties of an arithmetic progression and present the most important formulas, associated with this concept.

Definition. Number sequence, in which each subsequent term differs from the previous one by the same number, called an arithmetic progression. In this case the numbercalled the progression difference.

For an arithmetic progression, the following formulas are valid:

, (1)

Where . Formula (1) is called the formula of the general term of an arithmetic progression, and formula (2) represents the main property of an arithmetic progression: each term of the progression coincides with the arithmetic mean of its neighboring terms and .

Note that it is precisely because of this property that the progression under consideration is called “arithmetic”.

The above formulas (1) and (2) are generalized as follows:

(3)

To calculate the amount first terms of an arithmetic progressionthe formula is usually used

(5) where and .

If we take into account the formula (1), then from formula (5) it follows

If we denote , then

Where . Since , formulas (7) and (8) are a generalization of the corresponding formulas (5) and (6).

In particular , from formula (5) it follows, What

Little known to most students is the property of arithmetic progression, formulated through the following theorem.

Theorem. If , then

Proof. If , then

The theorem has been proven.

For example , using the theorem, it can be shown that

Let's move on to consider typical examples of solving problems on the topic “Arithmetic progression”.

Example 1. Let it be. Find .

Solution. Applying formula (6), we obtain . Since and , then or .

Example 2. Let it be three times greater, and when divided by the quotient, the result is 2 and the remainder is 8. Determine and .

Solution. From the conditions of the example, the system of equations follows

Since , , and , then from the system of equations (10) we obtain

The solution to this system of equations is and .

Example 3. Find if and .

Solution. According to formula (5) we have or . However, using property (9), we obtain .

Since and , then from the equality the equation follows or .

Example 4. Find if .

Solution.According to formula (5) we have

However, using the theorem, we can write

From here and from formula (11) we obtain .

Example 5. Given: . Find .

Solution. Since, then. However, therefore.

Example 6. Let , and . Find .

Solution. Using formula (9), we obtain . Therefore, if , then or .

Since and then here we have a system of equations

Solving which, we get and .

Natural root of the equation is .

Example 7. Find if and .

Solution. Since according to formula (3) we have that , then the system of equations follows from the problem conditions

If we substitute the expressioninto the second equation of the system, then we get or .

The roots of a quadratic equation are And .

Let's consider two cases.

1. Let , then . Since and , then .

In this case, according to formula (6), we have

2. If , then , and

Answer: and.

Example 8. It is known that and. Find .

Solution. Taking into account formula (5) and the condition of the example, we write and .

This implies the system of equations

If we multiply the first equation of the system by 2 and then add it to the second equation, we get

According to formula (9) we have. In this regard, it follows from (12) or .

Since and , then .

Answer: .

Example 9. Find if and .

Solution. Since , and by condition , then or .

From formula (5) it is known, What . Since, then.

Hence , here we have a system of linear equations

From here we get and . Taking into account formula (8), we write .

Example 10. Solve the equation.

Solution. From the given equation it follows that . Let us assume that , , and . In this case .

According to formula (1), we can write or .

Since , then equation (13) has the only suitable root .

Example 11. Find the maximum value provided that and .

Solution. Since , then the arithmetic progression under consideration is decreasing. In this regard, the expression takes on its maximum value when it is the number of the minimum positive term of the progression.

Let us use formula (1) and the fact, that and . Then we get that or .

Since , then or . However, in this inequalitylargest natural number, That's why .

If the values ​​of , and are substituted into formula (6), we get .

Answer: .

Example 12. Determine the sum of all two-digit natural numbers that, when divided by the number 6, leave a remainder of 5.

Solution. Let us denote by the set of all two-digit natural numbers, i.e. . Next, we will construct a subset consisting of those elements (numbers) of the set that, when divided by the number 6, give a remainder of 5.

Easy to install, What . Obviously , that the elements of the setform an arithmetic progression, in which and .

To establish the cardinality (number of elements) of the set, we assume that . Since and , it follows from formula (1) or . Taking into account formula (5), we obtain .

The above examples of problem solving can by no means claim to be exhaustive. This article is written based on an analysis of modern methods for solving typical problems on a given topic. For a more in-depth study of methods for solving problems related to arithmetic progression, it is advisable to refer to the list of recommended literature.

1. Collection of problems in mathematics for applicants to colleges / Ed. M.I. Scanavi. – M.: Peace and Education, 2013. – 608 p.

2. Suprun V.P. Mathematics for high school students: additional sections of the school curriculum. – M.: Lenand / URSS, 2014. – 216 p.

3. Medynsky M.M. A complete course of elementary mathematics in problems and exercises. Book 2: Number Sequences and Progressions. – M.: Editus, 2015. – 208 p.

Still have questions?

To get help from a tutor, register.

website, when copying material in full or in part, a link to the source is required.

Latest materials in the section:

Sofa troops of slow reaction Troops of slow reaction
Sofa troops of slow reaction Troops of slow reaction

Vanya is lying on the sofa, Drinking beer after the bath. Our Ivan loves his sagging sofa very much. Outside the window there is sadness and melancholy, There is a hole looking out of his sock, But Ivan does not...

Who are they
Who are the "Grammar Nazis"

Translation of Grammar Nazi is carried out from two languages. In English the first word means "grammar", and the second in German is "Nazi". It's about...

Comma before “and”: when is it used and when is it not?
Comma before “and”: when is it used and when is it not?

A coordinating conjunction can connect: homogeneous members of a sentence; simple sentences as part of a complex sentence; homogeneous...