Свет огибает препятствие. Краткая теория дифракция света

Наряду с интерференцией другим примером общего для всех волновых процессов явления может служить дифракция - огибание волнами препятствий. Для световых волн дифракция проявляется в отклонении от прямолинейного распространения и загибании света в область геометрической тени.

Характерной особенностью дифракционных явлений в оптике оказывается то, что здесь, как правило, длина волны света почти всегда много меньше размеров преград на пути световых волн. Поэтому наблюдать дифракцию света можно только на достаточно больших расстояниях от преграды. Проявление дифракции состоит в том, что распределение освещенности отличается от простой картины, предсказываемой геометрической оптикой на основе прямолинейного распространения света.

Принцип Гюйгенса-Френеля. Строгий расчет дифракционной картины представляет собой очень сложную математическую задачу. Но в некоторых практически важных случаях достаточно

Рис. 199. К расчету дифракции на основе принципа Гюйгенса-Френеля

хорошее приближение дает упрощенный подход, основанный на использовании принципа Гюйгенса-Френеля.

Пусть поверхность представляет собой положение волновой поверхности в некоторый момент времени (рис. 199).

Для того чтобы определить вызванные волной колебания в некоторой точке Р, нужно, по Френелю, определить колебания, вызываемые в этой точке отдельными вторичными волнами, приходящими в нее от отдельных элементов поверхности и затем сложить эти колебания с учетом их амплитуд и фаз. При этом следует считать, что в точке Р сказывается влияние только той части волновой поверхности которая не загораживается каким-либо препятствием.

Зоны Френеля. Проиллюстрируем применение принципа Гюйгенса-Френеля на следующем примере. Пусть на непрозрачную преграду с круглым отверстием падает слева плоская монохроматическая волна (рис. 200). Такую волну можно получить, например, от точечного источника монохроматического света, удаленного на бесконечность или помещенного в фокус собирающей линзы большого диаметра.

Рис. 200. Падение плоской монохроматической волны на преграду с круглым отверстием

Рис. 201. Построение зон Френеля

Будем интересоваться освещенностью экрана в точке Р, находящейся на оси симметрии.

Для учета интерференции вторичных волн Френель предложил мысленно разбить волновую поверхность падающей волны в месте расположения преграды на кольцевые зоны (зоны Френеля) по следующему правилу: расстояния от краев соседних зон до точки Р (рис. 201) должны отличаться на половину длины волны, т. е.

Если смотреть на волновую поверхность из точки Р, то зоны Френеля будут выглядеть так, как показано на рис. 202. Из рис. 201 легко найти радиусы зон Френеля:

Видно, что радиус зоны пропорционален если При выполнении этого условия площади зон Френеля можно считать одинаковыми. Результат интерференции вторичных волн в точке Р, как мы увидим ниже, определяется тем, сколько зон Френеля открывает круглое отверстие на волновой поверхности.

Рис. 202. Зоны Френеля

Дифракция Френеля на круглом отверстии. Предположим, что отверстие в преграде представляет собой диафрагму, диаметр которой можно изменять. Пусть сначала радиус отверстия много меньше радиуса первой зоны Френеля. Тогда можно считать, что колебания от всех точек волновой поверхности в этом маленьком отверстии приходят в точку Р практически в одинаковой фазе. Изобразим колебание поля в точке Р, вызванное этой вторичной волной, с помощью векторной диаграммы (рис. 203а). Этому колебанию на ней сопоставляется вектор который вращается с угловой скоростью , равной циклической частоте падающей волны, в направлении против часовой стрелки. Увеличим отверстие диафрагмы еще немного, так чтобы площадь его удвоилась. Колебания, приходящие в точку Р от вновь открытого участка волновой поверхности, несколько отстают по фазе и изображаются на диаграмме вектором Длина этого вектора равна длине вектора так как равны между собой площади соответствующих им участков волновой поверхности. Продолжая увеличивать отверстие диафрагмы, будем откладывать на диаграмме векторы, соответствующие приходящим в точку Р колебаниям от вновь открываемых участков волновой поверхности. Колебаниям, приходящим в Я от участка, прилегающего к границе первой зоны Френеля, будет соответствовать вектор повернутый относительно на так как, согласно определению зон Френеля, разность хода соответствующих им вторичных волн равна

Рис. 203. Расчет амплитуды результирующего колебания в точке Р с помощью векторных диаграмм: а - в отверстии укладывается одна зона Френеля; - две зоны Френеля

Результирующее колебание в точке Р, создаваемое волной, которая прошла через круглое отверстие, совпадающее с первой зоной Френеля, изображается вектором (рис. 203а). Будем увеличивать отверстие диафрагмы дальше. Когда на нем будут умещаться две первые зоны Френеля, векторная диаграмма колебаний в точке Р примет вид, изображенный на рис. 2036. При строгом равенстве амплитуд складываемых колебаний амплитуда результирующего колебания должна была бы равняться нулю, т. е. вторичные волны при двух открытых зонах Френеля полностью гасили бы друг друга в точке Р. Однако действие даже одинаковых по площади участков волновой поверхности в точке Р несколько убывает по мере увеличения угла между направлением на точку Р и нормалью к волновой поверхности (см. рис. 199). Поэтому в действительности амплитуда имеет конечное, хотя и очень малое значение.

Таким образом, освещенность экрана в точке Р, пропорциональная квадрату амплитуды результирующего колебания, будет по мере увеличения отверстия круглой диафрагмы меняться немонотонно. Пока открывается первая зона Френеля, освещенность в Р увеличивается и становится максимальной при полностью открытой первой зоне. По мере открывания второй зоны Френеля освещенность убывает и при полностью открытой второй зоне уменьшается почти до нуля. Затем освещенность будет увеличиваться снова, и т. д.

Эти на первый взгляд парадоксальные результаты, предсказываемые на основе принципа Гюйгенса-Френеля, хорошо согласуются с экспериментом. Подчеркнем, что они находятся в вопиющем противоречии с предсказаниями геометрической оптики, согласно которой при падении плоской волны освещенность в точке Р, лежащей на оси круглого отверстия, не зависит от диаметра отверстия.

Дифракция Френеля на круглом диске. Пятно Араго-Пуассона. Наиболее неожиданным в полученных выше результатах является, пожалуй, то, что при двух открытых зонах Френеля (и вообще при небольшом четном числе открытых зон) освещенность в точке Р близка к нулю. Не менее неожиданным является то, что в точке Р позади непрозрачного круглого экрана, расположенного на месте преграды с отверстием, освещенность не будет равна нулю, как это следовало бы из геометрической оптики. Если при этом непрозрачный круглый экран перекрывает лишь несколько первых зон Френеля, то в точке Р освещенность будет почти такой же, как и без экрана.

В этом можно убедиться, если рассматривать вектор А, изображающий колебания напряженности поля в точке Р при полностью открытой волновой поверхности, как сумму двух векторов, один из которых изображает колебания от открытого участка волновой поверхности, а другой - от тех зон Френеля, которые перекрыты экраном. В центре геометрической тени оказывается свет - так называемое пятно Араго-Пуассона.

Это предсказание теории Френеля произвело сильное впечатление на его современников. В 1818 г. член конкурсного комитета Французской академии С. Пуассон, рассматривавший представленный на премию мемуар Френеля, пришел к выводу о том, что в центре тени маленького диска должно находиться светлое пятно, но счел этот вывод столь абсурдным, что выдвинул его как возражение против волновой теории света, развивавшейся Френелем. Однако другой член того же комитета Араго выполнил эксперимент, показавший, что это удивительное предсказание правильно.

Расстояния, на которых сказывается дифракция. Теперь не представляет труда оценить те условия наблюдения, при которых дифракционные явления становятся существенными и картина распределения освещенности на экране заметно отличается от предсказываемой геометрической оптикой. По геометрической оптике распределение освещенности на экране должно соответствовать форме отверстия, так что освещенность экрана равна нулю в области геометрической тени, а в точке Р такая же, как и в отсутствие преграды. Но мы видели, что в случае, когда на отверстии укладывается лишь несколько зон Френеля, освещенность в точке Р совсем иная. Это дает возможность оценить то расстояние от отверстия до точки наблюдения, на котором именно дифракционные явления определяют наблюдаемую картину. Для этого в формуле (2) следует считать к положить равным размеру отверстия (или преграды) В результате находим

Дифракция Фраунгофера. Но можно осуществить такие условия наблюдения дифракции света, при которых возможен полный расчет распределения освещенности в дифракционной картине на экране.

Пусть плоская монохроматическая волна от бесконечно удаленного точечного источника падает на экран с отверстием, а дифракционная картина наблюдается на экране в фокальной плоскости линзы (рис. 204). Так как в каждой точке фокальной плоскости линзы, например Р на рис. 204, сходятся лучи, которые до линзы были параллельны между собой, то наблюдаемая здесь картина называется дифракцией в параллельных лучах. Как мы увидим в дальнейшем, линза не вносит дополнительной разности хода между параллельными до линзы лучами. Поэтому

Рис. 204. Наблюдение дифракции в параллельных лучах

складывающиеся в точке Р колебания имеют такую же разность фаз, как и до линзы на плоскости, перпендикулярной к этим лучам. Такая схема наблюдения дифракции была предложена И. Фраунгофером.

Пусть отверстие в экране представляет собой щель шириной (рис. 205), которую считаем бесконечно протяженной в направлении оси у.

Рис. 205. Наблюдение дифракции от щели с параллельными краями

Построенные по принципу Гюйгенса волновые поверхности позади щели представляют собой цилиндрические поверхности с образующей, параллельной краям щели (рис. 206). Так как волновая поверхность в направлении оси у не ограничена, то дифракционных эффектов в этом направлении быть не может.

Поэтому весь прошедший через линзу и попадающий на экран дифрагированный свет будет сосредоточен вдоль линии лежащей в плоскости Вместо изображения точечного источника в фокальной плоскости линзы, которое было бы в отсутствие щели, получается дифракционная картина, вытянутая вдоль линии

Рис. 206. Волновые поверхности, построенные по принципу Гюйгенса

Если создающий падающую волну точечный источник сместить вдоль оси у так, чтобы падающие на щель параллельные лучи образовали некоторый угол с осью то дифракционная картина на экране, не изменяя своего вида, сместится из положения на такой же угол. Поэтому при замене точечного источника света на тонкую светящуюся линию, параллельную оси у, каждый ее точечный элемент будет создавать свою дифракционную картину, параллельную а вся дифракционная картина на экране будет состоять из параллельных светлых и темных полос, как показано на рис. 205. Для ее нахождения достаточно рассмотреть только плоскость

Согласно принципу Гюйгенса-Френеля волновую поверхность падающей волны в щели на оси х следует разбить на столь малые участки, чтобы колебания в точке наблюдения Р, вызываемые вторичными волнами от всех точек одного участка, имели почти одинаковую фазу. Колебания в точке Р, вызываемые вторичными волнами, распространяющимися под углом от разных участков (рис. 207), следует просуммировать с учетом сдвигов по фазе. Это удобно сделать с помощью векторной диаграммы, построенной на рис. 208.

Рис. 207. К расчету суммарного колебания в точке Р

Вектор изображает колебания, приходящие в точку Р от участка лежащего вблизи нижнего края щели. Вектор изображающий колебания от соседнего участка повернут относительно на некоторый небольшой угол. Вектор изображающий колебания от последнего участка лежащего у верхнего края щели, повернут относительно вектора на угол соответствующий разности хода (рис. 207) между лучами, приходящими от краев щели. Чтобы найти сдвиг по фазе между колебаниями в точке Р, вызванными волнами с разностью хода следует учесть, что сдвиг по фазе равен при разности хода X:

Рис. 208. Сложение колебаний с помощью векторной диаграммы

Освещенность экрана в точке Р, пропорциональная квадрату амплитуды колебаний, связана с освещенностью в точке О, согласно (5), следующим соотношением:

где дается формулой (4). Распределение освещенности на экране при дифракции плоской волны на длинной щели показано на рис. 209. Вместо бесконечно узкой линии, которая получалась бы в фокальной плоскости линзы согласно законам геометрической оптики, на экране получаются дифракционные полосы, параллельные щели. Рядом с яркой центральной полосой будут слабые побочные полосы, отделенные друг от друга полной темнотой, причем ширина побочных полос вдвое меньше ширины центральной.

Рис. 209. Распределение освещенности на экране при дифракции плоской волны на щели

Освещенность в центре первой побочной полосы, как видно из формулы (6), почти в 25 раз меньше освещенности в центре картины. Освещенность обращается в нуль тогда, когда аргумент синуса в (6) кратен Это соответствует углам дифракции 0, При которых, как видно из (4),

Отметим, что положение минимумов освещенности легко найти и без помощи формулы (6). Для этого достаточно только сообразить, что минимумам соответствует разность хода I между крайними лучами (рис. 207), равная целому числу длин волн X. Действительно, если разность хода I равна, например, X, то всю щель можно разбить на пары одинаковых участков, отстоящих друг от друга на Разность хода вторичных волн от каждой такой пары равна и эти волны в точке наблюдения гасят друг друга.

Чем уже щель, тем шире дифракционные полосы. Из формулы (7) видно, что при уменьшении ширины щели до размеров порядка длины волны X центральная полоса расплывается на весь экран.

В чем заключаются особенности дифракционных явлений в оптике?

Сформулируйте принцип Гюйгенса-Френеля. Как рассчитать колебания в некоторой точке, вызываемые проходящей через отверстие в экране световой волной?

Что такое зоны Френеля? Как осуществляется их построение?

Докажите, опираясь на формулу (2), что площади зон Френеля одинаковы.

Как объяснить периодические изменения освещенности в центре дифракционной картины от круглого отверстия при монотонном изменении диаметра отверстия или расстояния от отверстия до экрана?

Как оценить расстояние от препятствия (экрана или отверстия в нем) до точки наблюдения, - при котором становятся заметными дифракционные явления?

Чем отличаются условия наблюдения дифракции Фраунгофера и дифракции Френеля?

Покажите, что дифракция Френеля и дифракция Фраунгофера не представляют собой разные физические явления, а соответствуют разным условиям наблюдения одного и того же явления. Сравните дифракцию Френеля при с дифракцией Фраунгофера.

Как изменятся ширина центральной полосы при дифракции Фраунгофера на щели и освещенность в ее середине, если ширину щели увеличить вдвое? Изменится ли при этом отношение освещенностей в побочных и центральной дифракционных полосах?

Темы кодификатора ЕГЭ: дифракция света, дифракционная решётка.

Если на пути волны возникает препятствие, то происходит дифракция - отклонение волны от прямолинейного распространения. Это отклонение не сводится к отражению или преломлению, а также искривлению хода лучей вследствие изменения показателя преломления среды.Дифракция состоит в том, что волна огибает край препятствия и заходит в область геометрической тени.

Пусть, например, плоская волна падает на экран с достаточно узкой щелью (рис. 1 ). На выходе из щели возникает расходящаяся волна, и эта расходимость усиливается с уменьшением ширины щели.

Вообще, дифракционные явления выражены тем отчётливей, чем мельче препятствие. Наиболее существенна дифракция в тех случаях, когда размер препятствия меньше или порядка длины волны. Именно такому условию должна удовлетворять ширина щели на рис. 1.

Дифракция, как и интерференция, свойственна всем видам волн - механическим и электромагнитным. Видимый свет есть частный случай электромагнитных волн; неудивительно поэтому, что можно наблюдать
дифракцию света.

Так, на рис. 2 изображена дифракционная картина, полученная в результате прохождения лазерного луча сквозь небольшое отверстие диаметром 0,2мм.

Мы видим, как и полагается, центральное яркое пятно; совсем далеко от пятна расположена тёмная область - геометрическая тень. Но вокруг центрального пятна - вместо чёткой границы света и тени! - идут чередующиеся светлые и тёмные кольца. Чем дальше от центра, тем менее яркими становятся светлые кольца; они постепенно исчезают в области тени.

Напоминает интерференцию, не правда ли? Это она и есть; данные кольца являются интерференционными максимумами и минимумами. Какие же волны тут интерферируют? Скоро мы разберёмся с этим вопросом, а заодно и выясним, почему вообще наблюдается дифракция.

Но прежде нельзя не упомянуть самый первый классический эксперимент по интерференции света - опыт Юнга, в котором существенно использовалось явление дифракции.

Опыт Юнга.

Всякий эксперимент с интерференцией света содержит некоторый способ получения двух когерентных световых волн. В опыте с зеркалами Френеля, как вы помните, когерентными источниками являлись два изображения одного и того же источника, полученные в обоих зеркалах.

Самая простая идея, которая возникла прежде всего, состояла в следующем. Давайте проколем в куске картона два отверстия и подставим под солнечные лучи. Эти отверстия будут когерентными вторичными источниками света, поскольку первичный источник один - Солнце. Следовательно, на экране в области перекрытия пучков, расходящихся от отверстий, мы должны увидеть интерференционную картину.

Такой опыт был поставлен задолго до Юнга итальянским учёным Франческо Гримальди (который открыл дифракцию света). Интерференции, однако, не наблюдалось. Почему же? Вопрос это не очень простой, и причина заключается в том, что Солнце - не точечный, а протяжённый источник света (угловой размер Солнца равен 30 угловым минутам). Солнечный диск состоит из множества точечных источников, каждый из которых даёт на экране свою интерференционную картину. Накладываясь, эти отдельные картины "смазывают" друг друга, и в результате на экране получается равномерная освещённость области перекрытия пучков.

Но если Солнце является чрезмерно "большим", то нужно искусственно создать точечный первичный источник. С этой целью в опыте Юнга использовано маленькое предварительное отверстие (рис. 3 ).


Рис. 3. Схема опыта Юнга

Плоская волна падает на первое отверстие, и за отверстием возникает световой конус, расширяющийся вследствие дифракции. Он достигает следующих двух отверстий, которые становятся источниками двух когерентных световых конусов. Вот теперь - благодаря точечности первичного источника - в области перекрытия конусов будет наблюдаться интерференционная картина!

Томас Юнг осуществил этот эксперимент, измерил ширину интерференционных полос, вывел формулу и с помощью этой формулы впервые вычислил длины волн видимого света. Вот почему этот опыт вошёл в число самых знаменитых в истории физики.

Принцип Гюйгенса–Френеля.

Напомним формулировку принципа Гюйгенса: каждая точка, вовлечённая в волновой процесс, является источником вторичных сферических волн; эти волны распространяются от данной точки, как из центра, во все стороны и накладываются друг на друга.

Но возникает естественный вопрос: а что значит "накладываются"?

Гюйгенс свёл свой принцип к чисто геометрическому способу построения новой волновой поверхности как огибающей семейства сфер, расширяющихся от каждой точки исходной волновой поверхности. Вторичные волны Гюйгенса - это математические сферы, а не реальные волны; их суммарное действие проявляется только на огибающей, т. е. на новом положении волновой поверхности.

В таком виде принцип Гюйгенса не давал ответа на вопрос, почему в процессе распространения волны не возникает волна, идущая в обратном направлении. Не объяснёнными оставались и дифракционные явления.

Модификация принципа Гюйгенса состоялась лишь спустя 137 лет. Огюстен Френель заменил вспомогательные геометрические сферы Гюйгенса на реальные волны и предположил, что эти волны интерферируют друг с другом.

Принцип Гюйгенса–Френеля. Каждая точка волновой поверхности служит источником вторичных сферических волн. Все эти вторичные волны являются когерентными ввиду общности их происхождения от первичного источника (и, стало быть, могут интерферировать друг с другом); волновой процесс в окружающем пространстве есть результат интерференции вторичных волн.

Идея Френеля наполнила принцип Гюйгенса физическим смыслом. Вторичные волны, интерферируя, усиливают друг друга на огибающей своих волновых поверхностей в направлении "вперёд", обеспечивая дальнейшее распространение волны. А в направлении "назад" происходит их интерференция с исходной волной, наблюдается взаимное гашение, и обратная волна не возникает.

В частности, свет распространяется там, где вторичные волны взаимно усиливаются. А в местах ослабления вторичных волн мы будем видеть тёмные участки пространства.

Принцип Гюйгенса–Френеля выражает важную физическую идею: волна, удалившись от своего источника, в дальнейшем "живёт своей жизнью" и уже никак от этого источника не зависит. Захватывая новые участки пространства, волна распространяется всё дальше и дальше вследствие интерференции вторичных волн, возбуждённых в различных точках пространства по мере прохождения волны.

Как принцип Гюйгенса–Френеля объясняет явление дифракции? Почему, например, происходит дифракция на отверстии? Дело в том, что из бесконечной плоской волновой поверхности падающей волны экранное отверстие вырезает лишь маленький светящийся диск, и последующее световое поле получается в результате интерференции волн вторичных источников, расположенных уже не на всей плоскости, а лишь на этом диске. Естественно, новые волновые поверхности теперь не будут плоскими; ход лучей искривляется, и волна начинает распространяться в разных направлениях, не совпадающих с первоначальным. Волна огибает края отверстия и проникает в область геометрической тени.

Вторичные волны, испущенные различными точками вырезанного светлого диска, интерферируют друг с другом. Результат интерференции определяется разностью фаз вторичных волн и зависит от угла отклонения лучей. В результате возникает чередование интерференционных максимумов и минимумов - что мы и видели на рис. 2 .

Френель не только дополнил принцип Гюйгенса важной идеей когерентности и интерференции вторичных волн, но и придумал свой знаменитый метод решения дифракционных задач, основанный на построении так называемых зон Френеля . Изучение зон Френеля не входит в школьную программу - о них вы узнаете уже в вузовском курсе физики. Здесь мы упомянем лишь, что Френелю в рамках своей теории удалось дать объяснение нашего самого первого закона геометрической оптики - закона прямолинейного распространения света.

Дифракционная решётка.

Дифракционная решётка - это оптический прибор, позволяющий получать разложение света на спектральные составляющие и измерять длины волн. Дифракционные решётки бывают прозрачными и отражательными.

Мы рассмотрим прозрачную дифракционную решётку. Она состоит из большого числа щелей ширины , разделённых промежутками ширины (рис. 4 ). Свет проходит только сквозь щели; промежутки свет не пропускают. Величина называется периодом решётки.


Рис. 4. Дифракционная решётка

Дифракционная решётка изготавливается с помощью так называемой делительной машины, которая наносит штрихи на поверхность стекла или прозрачной плёнки. При этом штрихи оказываются непрозрачными промежутками, а нетронутые места служат щелями. Если, например, дифракционная решётка содержит 100 штрихов на миллиметр, то период такой решётки будет равен: d= 0,01 мм= 10 мкм.

Сперва мы посмотрим, как проходит сквозь решётку монохроматический свет, т. е. свет со строго определённой длиной волны. Отличным примером монохроматического света служит луч лазерной указки длина волны около 0,65 мкм).

На рис. 5 мы видим такой луч, падающий на одну из дифракционных решёток стандартного набора. Щели решётки расположены вертикально, и на экране за решёткой наблюдаются периодически расположенные вертикальные полосы.

Как вы уже поняли, это интерференционная картина. Дифракционная решётка расщепляет падающую волну на множество когерентных пучков, которые распространяются по всем направлениям и интерферируют друг с другом. Поэтому на экране мы видим чередование максимумов и минимумов интерференции - светлых и тёмных полос.

Теория дифракционной решётки весьма сложна и во всей своей полноте оказывается далеко за рамками школьной программы. Вам следует знать лишь самые элементарные вещи, связанные с одной-единственной формулой; эта формула описывает положения максимумов освещённости экрана за дифракционной решёткой.

Итак, пусть на дифракционную решётку с периодом падает плоская монохроматическая волна (рис. 6 ). Длина волны равна .


Рис. 6. Дифракция на решётке

Для большей чёткости интерференционной картины можно поставить линзу между решёткой и экраном, а экран поместить в фокальной плоскости линзы. Тогда вторичные волны, идущие параллельно от различных щелей, соберутся в одной точке экрана (побочном фокусе линзы). Если же экран расположен достаточно далеко, то особой необходимости в линзе нет - лучи, приходящие в данную точку экрана от различных щелей, будут и так почти параллельны друг другу.

Рассмотрим вторичные волны, отклоняющиеся на угол .Разность хода между двумя волнами, идущими от соседних щелей, равна маленькому катету прямоугольного треугольника с гипотенузой ; или, что то же самое, эта разность хода равна катету треугольника . Но угол равен углу , поскольку это острые углы со взаимно перпендикулярными сторонами. Следовательно, наша разность хода равна .

Интерференционные максимумы наблюдаются в тех случаях, когда разность хода равна целому числу длин волн:

(1)

При выполнении этого условия все волны, приходящие в точку от различных щелей, будут складываться в фазе и усиливать друг друга. Линза при этом не вносит дополнительной разности хода - несмотря на то, что разные лучи проходят через линзу разными путями. Почему так получается? Мы не будем вдаваться в этот вопрос, поскольку его обсуждение выходит за рамки ЕГЭ по физике.

Формула (1) позволяет найти углы, задающие направления на максимумы:

. (2)

При получаем Это центральный максимум , или максимум нулевого порядка .Разность хода всех вторичных волн, идущих без отклонения, равна нулю, и в центральном максимуме они складываются с нулевым сдвигом фаз. Центральный максимум - это центр дифракционной картины, самый яркий из максимумов. Дифракционная картина на экране симметрична относительно центрального максимума.

При получаем угол:

Этот угол задаёт направления на максимумы первого порядка . Их два, и расположены они симметрично относительно центрального максимума. Яркость в максимумах первого порядка несколько меньше, чем в центральном максимуме.

Аналогично, при имеем угол:

Он задаёт направления на максимумы второго порядка . Их тоже два, и они также расположены симметрично относительно центрального максимума. Яркость в максимумах второго порядка несколько меньше, чем в максимумах первого порядка.

Примерная картина направлений на максимумы первых двух порядков показана на рис. 7 .


Рис. 7. Максимумы первых двух порядков

Вообще, два симметричных максимума k -го порядка определяются углом:

. (3)

При небольших соответствующие углы обычно невелики. Например, при мкм и мкм максимумы первого порядка расположены под углом .Яркость максимумов k -го порядка постепенно убывает с ростом k . Сколько всего максимумов можно увидеть? На этот вопрос легко ответить с помощью формулы (2) . Ведь синус не может быть больше единицы, поэтому:

Используя те же числовые данные, что и выше, получим: . Следовательно, наибольший возможный порядок максимума для данной решётки равен 15.

Посмотрите ещё раз на рис. 5 . На экране мы видны 11 максимумов. Это центральный максимум, а также по два максимума первого, второго, третьего, четвёртого и пятого порядков.

С помощью дифракционной решётки можно измерить неизвестную длину волны. Направляем пучок света на решётку (период которой мы знаем), измеряем угол на максимум первого
порядка, пользуемся формулой (1) и получаем:

Дифракционная решётка как спектральный прибор.

Выше мы рассматривали дифракцию монохроматического света, каковым является лазерный луч. Часто приходится иметь дело с немонохроматическим излучением. Оно является смесью различных монохроматических волн, которые составляют спектр данного излучения. Например, белый свет - это смесь волн всего видимого диапазона, от красного до фиолетового.

Оптический прибор называется спектральным , если он позволяет раскладывать свет на монохроматические компоненты и тем самым исследовать спектральный состав излучения. Простейший спектральный прибор вам хорошо известен - это стеклянная призма. К числу спектральных приборов относится также и дифракционная решётка.

Предположим, что на дифракционную решётку падает белый свет. Давайте вернёмся к формуле (2) и подумаем, какие выводы из неё можно сделать.

Положение центрального максимума () не зависит от длины волны. В центре дифракционной картины сойдутся с нулевой разностью хода все монохроматические составляющие белого света. Поэтому в центральном максимуме мы увидим яркую белую полосу.

А вот положения максимумов порядка определяются длиной волны. Чем меньше , тем меньше угол для данного . Поэтому в максимуме k -го порядка монохроматические волны разделяются в пространстве: самой близкой к к центральному максимуму окажется фиолетовая полоса, самой далёкой - красная.

Следовательно, в каждом порядке белый свет раскладывается решёткой в спектр.
Максимумы первого порядка всех монохроматических компонент образуют спектр первого порядка; затем идут спектры второго, третьего и так далее порядков. Спектр каждого порядка имеет вид цветной полосы, в которой присутствуют все цвета радуги - от фиолетового до красного.

Дифракция белого света показана на рис. 8 . Мы видим белую полосу в центральном максимуме, а по бокам - два спектра первого порядка. По мере возрастания угла отклонения цвет полос меняется от фиолетового к красному.

Но дифракционная решётка не только позволяет наблюдать спектры, т. е. проводить качественный анализ спектрального состава излучения. Важнейшим достоинством дифракционной решётки является возможность количественного анализа - как уже говорилось выше, мы с её помощью можем измерять длины волн. При этом измерительная процедура весьма проста: фактически она сводится к измерению угла направления на максимум.

Естественными примерами дифракционных решёток, встречающихся в природе, являются перья птиц, крылья бабочек, перламутровая поверхность морской раковины. Если, прищурившись, посмотреть на солнечный свет, то можно увидеть радужную окраску вокруг ресниц.Наши ресницы действуют в данном случае как прозрачная дифракционная решётка на рис. 6 , а в качестве линзы выступает оптическая система роговицы и хрусталика.

Спектральное разложение белого света, даваемое дифракционной решёткой, проще всего наблюдать, глядя на обычный компакт-диск (рис. 9 ). Оказывается, дорожки на поверхности диска образуют отражательную дифракционную решётку!


Дифракция

Изначально явление дифракции трактовалось как огибание волной препятствия , то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.

Дифракция волн может проявляться:

  • в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях - как расширение угла распространения волновых пучков или их отклонение в определённом направлении;
  • в разложении волн по их частотному спектру ;
  • в преобразовании поляризации волн;
  • в изменении фазовой структуры волн.

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно-капиллярных волн (волны на поверхности жидкости).

Тонкости в толковании термина «дифракция»

В явлении дифракции важную роль играют исходные размеры области волнового поля и исходная структура волнового поля, которая подвержена существенной трансформации в случае, если элементы структуры волнового поля сравнимы с длиной волны или меньше её.

Например, ограниченный в пространстве волновой пучок имеет свойство «расходиться» («расплываться») в пространстве по мере распространения даже в однородной среде. Данное явление не описывается законами геометрической оптики и относится к дифракционным явлениям (дифракционная расходимость, дифракционное расплывание волнового пучка).

Исходное ограничение волнового поля в пространстве и его определённая структура могут возникнуть не только за счёт присутствия поглощающих или отражающих элементов, но и, например, при порождении (генерации, излучении) данного волнового поля.

Следует заметить, что в средах, в которых скорость волны плавно (по сравнению с длиной волны) меняется от точки к точке, распространение волнового пучка является криволинейным (см. градиентная оптика , градиентные волноводы, мираж). При этом волна также может огибать препятствие. Однако такое криволинейное распространение волны может быть описано с помощью уравнений геометрической оптики, и это явление не относится к дифракции.

Вместе с тем, во многих случаях дифракция может быть и не связана с огибанием препятствия (но всегда обусловлена его наличием). Такова, например, дифракция на непоглощающих (прозрачных), так называемых фазовых, структурах.

Поскольку, с одной стороны, явление дифракции света оказалось невозможным объяснить с точки зрения лучевой модели, то есть с точки зрения геометрической оптики, а с другой стороны, дифракция получила исчерпывающее объяснение в рамках волновой теории, то наблюдается тенденция понимать её проявление как любое отступление от законов геометрической оптики .

При этом следует заметить, что некоторые волновые явления не описываются законами геометрической оптики и, в то же время, не относятся к дифракции. К таким типично волновым явлениям относится, например, вращение плоскости поляризации световой волны в оптически активной среде, которое дифракцией не является.

Вместе с тем, единственным результатом так называемой коллинеарной дифракции с преобразованием оптических мод может быть именно поворот плоскости поляризации, в то время как дифрагированный волновой пучок сохраняет исходное направление распространения. Такой тип дифракции может быть реализован, например, как дифракция света на ультразвуке в двулучепреломляющих кристаллах, при которой волновые векторы оптической и акустической волн параллельны друг другу.

Ещё один пример: с точки зрения геометрической оптики невозможно объяснить явления, имеющие место в так называемых связанных волноводах, хотя эти явления также не относят к дифракции (волновые явления, связанные с «вытекающими» полями).

Раздел оптики «Оптика кристаллов», имеющей дело с оптической анизотропией среды, также имеет лишь косвенное отношение к проблеме дифракции. В то же самое время он нуждается в корректировке используемых представлений геометрической оптики. Это связано с различием в понятии луча (как направления распространения света) и распространения волнового фронта (то есть направления нормали к нему)

Отступление от прямолинейности распространения света наблюдается также в сильных полях тяготения. Экспериментально подтверждено, что свет, проходящий вблизи массивного объекта, например, вблизи звезды, отклоняется в её поле тяготения в сторону звезды. Таким образом, и в данном случае можно говорить об «огибании» световой волной препятствия. Однако, это явление также не относится к дифракции.

Частные случаи дифракции

Исторически в проблеме дифракции сначала рассматривались два крайних случая, связанных с ограничением препятствием (экраном с дыркой) сферической волны и это была дифракция Френеля , либо плоской волны на щели или системе отверстий - дифракция Фраунгофера

Дифракция на щели

Распределение интенсивности света при дифракции на щели

В качестве примера рассмотрим дифракционную картину возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае. Для написания исходного уравнения используем принцип Гюйгенса .

Рассмотрим монохроматическую плоскую волну с амплитудой с длиной волны λ, падающую на экран с щелью ширины a .

пусть (x′,y′,0) - точка внутри разреза, по которому мы интегрируем. Мы хотим узнать интенсивность в точке (x,0,z). Щель имеет конечный размер в x направлении (от до ), и бесконечна в y направлении ([, ]).

Расстояние r от щели определяется как:

Дифракция на отверстии

Дифракция звука и ультразвуковая локация

Дифракция радиоволн и радиолокация

Исследованием дифракции радиоволн занимается геометрическая теория дифракции

Дифракционная решётка

Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори , который использовал в качестве решётки птичьи перья.

Дифракция рентгеновских лучей в кристаллах и рентгеноструктурный анализ

Дифракция света на ультразвуке

Одним из наглядных примеров дифракции света на ультразвуке является дифракция света на ультразвуке в жидкости. В одной из постановок такого эксперимента в оптически-прозрачной ванночке в форме прямоугольного параллелепипеда с оптически-прозрачной жидкостью с помощью пластинки из пьезоматериала на частоте ультразвука возбуждается стоячая волна . В её узлах плотность воды ниже, и как следствие ниже её оптическая плотность , в пучностях - выше. Таким образом, при этих условиях ванночка с водой становится для световой волны фазовой дифракционной решёткой, на которой осуществляется дифракция в виде изменения фазовой структуры волн, что можно наблюдать в оптический микроскоп методом фазового контраста или методом тёмного поля .

Дифракция электронов

Дифракция электронов - процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет свойства, аналогичные свойствам волны. При выполнении некоторых условий, пропуская пучок электронов через материал можно зафиксировать дифракционную картину, соответствующую структуре материала. Процесс дифракции электронов получил широкое применение в аналитических исследованиях кристаллических структур металлов, сплавов, полупроводниковых материалов.

Брегговская дифракция

Дифракция от трехмерной периодической структуры, такой как атомы в кристалле называется дифракцией Брегга. Это похоже на то, что происходит, когда волны рассеиваются на дифракционной решётке. Брегговская дифракция является следствием интерференции между волнами, отражёнными от кристаллических плоскостей. Условие возникновения интерференции определяется законом Вульфа-Брегга:

,

D - расстояние между кристаллическими плоскостями, θ угол скольжения - дополнительный угол к углу падения, λ - длина волны , n (n = 1,2…) - целое число называемое порядком дифракции .

Брегговская дифракция может осуществляться при использовании света с очень маленькой длиной волны, такого как рентгеновское излучение, либо волны материи, такие как нейтроны и электроны , длины волн которых сравнимы или много меньше, чем межатомное расстояние. Получаемые данные дают информацию о межплоскостных расстояния, что позволяет вывести кристаллическую структуру. Дифракционный контраст, в электронных микроскопах и рентгеновских топографических устройствах, в частности, также является мощным инструментом для изучения отдельных дефектов и локальных полей деформации в кристаллах.

Дифракция частиц (нейтронов, атомов, молекул)

История исследований

Основы теории дифракции были заложены при изучении дифракции света в первой половине XIX века в трудах Юнга и Френеля . Среди других учёных, которые внесли значительный вклад в изучение дифракции: Гримальди , Гюйгенс , Араго , Пуассон , Гаусс , Фраунгофер , Бабине, Кирхгоф , Аббе , У. Г. Брэгг и У. Л. Брэгг , фон Лауэ , Роуланд, Зоммерфельд, Леонтович , Фок , Ван-Циттерт, Цернике (см. История оптики).

Обнаружение дифракции частиц (электронов) в 1927 году (опыт Дэвиссона и Джермера) сыграло большую роль в подтверждении существования волн де Бройля и в подтверждении концепции корпускулярно-волнового дуализма (идеи двойственной природы волн и частиц). В и XXI веках продолжились исследования дифракции волн на сложных структурах.

Дифракция в фотографии

Дифракцию можно наблюдать в фотографии : чрезмерное закрытие диафрагмы (относительного отверстия) приводит к падению резкости. Поэтому для сохранения оптимально резкого изображения на фотографии не рекомендуется полностью закрывать диафрагму. Нужно отметить, что для каждого объектива существует свои границы до которых стоит закрывать диафрагму, в большинстве случаев они равны f/11.

См. также

  • Рассеяние волн
  • История оптики

Примечания

Литература

  • Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 7-е, исправленное. - М .: Наука , 1988. - 512 с. - («Теоретическая физика» , том II). - ISBN 5-02-014420-7
  • Сивухин Д. В. Общий курс физики. - М .. - Т. IV. Оптика.
  • И. Г. Кондратьев, Г. Д. Малюжинец Дифракция волн // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин , А. М. Бонч-Бруевич , А. С. Боровик-Романов , Б. К. Вайнштейн , С. В. Вонсовский , А. В. Гапонов-Грехов , С. С. Герштейн , И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич , М. Е. Жаботинский, Д. Н. Зубарев , Б. Б. Кадомцев , И. С. Шапиро, Д. В. Ширков ; под общ. ред. А. М. Прохорова . - М .: Советская энциклопедия, 1988-1998.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Расчеты, сделанные Френелем, полностью были подтверждены экспериментом. Из-за того что длина световой волны очень мала, угол отклонения света от направления прямолинейного распространения невелик. Поэтому для отчетливого наблюдения дифракции нужно либо использовать очень маленькие препятствия, либо не располагать экран далеко от препятствий. При расстоянии между препятствием и экраном порядка метра размеры препятствия не должны превышать сотых долей миллиметра. Если же расстояние до экрана достигает сотен метров или нескольких километров, то дифракцию можно наблюдать на препятствиях размерами в несколько сантиметров и даже метров.

На рисунке 8.57, а-в схематично показаны дифракционные картины от различных препятствий: а - от тонкой проволочки; б - от круглого отверстия; в - от круглого экрана.

Вместо тени от проволочки видны светлые и темные полосы; в центре дифракционной картины от отверстия появляется темное пятно, окруженное светлыми и темными кольцами 1 ; в центре тени, образованной круглым экраном, видно светлое пятнышко, а сама тень окружена темными концентрическими кольцами.
Любопытный случай произошел на заседании Французской академии наук в 1818 г. Один из ученых, присутствовавших на заседании, обратил внимание на то, что из теории Френеля вытекают факты, явно противоречащие здравому смыслу. Так, при определенных размерах отверстия и определенных расстояниях от отверстия до источника света и экрана в центре светлого пятна должно находиться темное пятнышко. А за маленьким непрозрачным диском, наоборот, должно находиться светлое пятно в центре тени. Каково же было удивление ученых, когда поставленные эксперименты доказали, что так и есть на самом деле!

Д ифракция световых волн может легко наблюдаться, например, при освещении лезвия монохроматическим светом (см. Рис. 5). Тогда в области тени видно чередование темных и светлых полос (см. Рис. 6).

Рис. 5. Дифракция света на лезвии

Рис. 6. Дифракция света на лезвии

Также при освещении непрозрачного диска ровно в центре за ним может образоваться светлое пятно. Данный опыт был проделан в 1818 году математиком Пуассоном (см. Рис. 7). Он теоретически получил этот результат и хотел провести опыт, чтобы доказать его абсурдность.

И Пуассон был очень удивлен, когда эксперимент подтвердил теорию.

Рис. 7. Симон Дени Пуассон

Границы применимости геометрической оптики. Все физические теории отражают происходящие в природе процессы лишь приближенно. Для любой теории могут быть указаны определенные границы ее применимости. Можно ли применять в конкретном случае данную теорию или нет, зависит не только от той точности, которую обеспечивает эта теория, но и от того, какая точность требуется при решении той или иной практической задачи. Границы применимости теории можно установить лишь после того, как разработана более общая теория, охватывающая те же явления.

Все эти общие положения относятся и к геометрической оптике. Эта теория является приближенной. Она неспособна объяснить, например, явления интерференции и дифракции света. Более общей и более точной теорией является волновая оптика. Согласно ей, закон прямолинейного распространения света и другие законы геометрической оптики выполняются достаточно точно липхь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны. Но совершенно точно они не выполняются никогда.

1 Изменяя диаметр отверстия, можно в центре дифракционной картины получить и светлое пятно, окруженное темными и светлыми кольцами.

Действие оптических приборов описывается законами геометрической оптики. Согласно этим законам можно различать с помощью микроскопа сколь угодно малые детали объекта; с помощью телескопа можно установить существование двух звезд при любых малых угловых расстояниях между ними. Однако в действительности это не так, и лишь волновая теория света позволяет разобраться в причинах предела разрешающей способности оптических приборов.

Разрешающая способность микроскопа и телескопа . Волновая природа света налагает предел на возможность различать детали предмета или очень мелкие предметы при их наблюдении с помощью микроскопа. Дифракция не позволяет получить отчетливые изображения мелких предметов, так как свет распространяется не строго прямолинейно, а огибает предметы. Из-за этого изображения получаются размытыми. Это происходит, когда линейные размеры предметов меньше длины световой волны.

Дифракция также налагает предел на разрешающую способность телескопа. Вследствие дифракции волн у края оправы объектива изображением звезды будет не точка, а система светлых и темных колец. Если две звезды находятся на малом угловом расстоянии друг от друга, то эти кольца налагаются друг на друга, и глаз не может различить, имеются ли две светящиеся точки или одна. Предельное угловое расстояние между светящимися точками, при котором их можно различать, определяется отношением длины волны к диаметру объектива.

Этот пример показывает, что с дифракцией приходится считаться всегда, при любых препятствиях. Ею при очень тщательных наблюдениях нельзя пренебрегать и в случае препятствий, размеры которых значительно больше, чем длина волны.

Дифракция света определяет границы применимости геометрической оптики. Огибание светом препятствий налагает предел на разрешающую способность важнейших оптических инструментов - телескопа и микроскопа.

Дифракционная решетка
На явлении дифракции основано устройство оптического прибора - дифракционной решетки.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разде.пенных непрозрачными промежутками (рис. 8.58). Хорошую решетку изготовляют с помощью специальной делительной машины, наносящей на стеклянную пластину параллельные штрихи.

Число штрихов доходит до нескольких тысяч на 1 мм; общее число штрихов превышает 100 000. Просты в изготовлении желатиновые отпечатки с такой решетки, зажатые между двумя стеклянными пластинами. Наилучшими качествами обладают так называемые отражательные решетки. Они представляют собой чередующиеся участки, отражающие свет и рассеивающие его. Рассеивающие свет штрихи наносятся резцом на отшлифованную металлическую пластину.

Если ширина прозрачных щелей (или отражающих свет полос) равна а, и ширина непрозрачных промежутков (или рассеивающих свет полос) равна b, то величина d = а + b называется периодом решетки. Обычно период дифракционной решетки порядка 10 мкм.

Рис. 8. Дифракционные решетки

Рассмотрим элементарную теорию дифракционной решетки. Пусть на решетку (рис. 8.59) падает плоская монохроматическая волна длиной волны . Вторичные источники, расположенные в щелях, создают световые волны, распространяющиеся по всем направлениям. Найдем условие, при котором идущие от щелей волны усиливают друг друга. Рассмотрим, например, волны, распространяющиеся в направлении, определяемом углом . Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладывается целое число длин волн, то волны от всех щелей, складываясь, будут усиливать друг друга.

Периодом дифракционной решетки называется сумма ширины прозрачной и непрозрачной полос (см. Рис. 9).

Рис. 9. Дифракционная решетка



Из треугольника ABC можно найти длину катета АС: АС = АВ sin = d sin . Максимумы будут наблюдаться под углом , в соответствии с условием

где величина k = 0, 1, 2, ... определяет порядок спектра.

Нужно иметь в виду, что при выполнении условия (см. формулу (8.17)) усиливают друг друга не только волны, идущие от нижних (см. рис. 8.60) краев щелей, но и волны, идущие от всех других точек щелей.

Каждой точке в первой щели соответствует точка во второй щели, находящаяся на расстоянии d от первой точки. Поэтому разность хода испущенных этими точками вторичных волн равна k , и эти волны взаимно усиливаются.

За решеткой помещают собирающую линзу и за ней - экран на фокусном расстоянии от линзы. Линза фокусирует лучи, идущие параллельно, в одной точке. В этой точке происходит сложение волн и их взаимное усиление. Углы , удовлетворяющие условию (8.17), определяют положение так называемых главных максимумов на экране. Наряду скартиной

Получаемой в результате дифракции света, в случае дифракционной решетки наблюдается дифракционная картина и от отдельных щелей. Интенсивности максимумов в ней меньше интенсивности главных максимумов.

Так как положение максимумов (кроме центрального, соответствующего k = 0) зависит от длины волны, то решетка разлагает белый свет в спектр (см. рис. IV, 1 на цветной вклейке; спектры второго и третьего порядков перекрываются). Чем больше , тем дальше от центрального максимума располагается тот или иной максимум, соответствующий данной длине волны (см. рис. IV, 2, 3 на цветной вклейке). Каждому значению k соответствует свой порядок спектра.

Между максимумами расположены минимумы освещенности. Чем больше число щелей, тем более резко очерчены максимумы и тем более широкими минимумами они разделены. Световая энергия, падающая на решетку, перераспределяется ею так, что большая ее часть приходится на максимумы, а в область минимумов попадает незначительная часть энергии.

С помощью дифракционной решетки можно проводить очень точные измерения длины волны. Если период решетки известен, то определение длины волны сводится к измерению угла , соответствующего направлению на максимум.

Haши ресницы вместе с промежутками между ними представляют собой грубую дифракционную решетку. Поэтому, если посмотреть, прищурившись, на яркий источник света , то можно обнаружить радужные цвета. Белый свет разлагается в спектр при дифракции вокруг ресниц. Лазерный диск с бороздками, проходящими близко друг от друга, подобен отражательной дифракционной решетке. Если вы посмотрите на отраженный им свет от электрической лампочки , то обнаружите разложение света в спектр. Можно наблюдать несколько спектров, соответствующих разным значениям k.Картина будет очень четкой, если свет от лампочки падает на пластинку под большим углом.

Основное применение дифракционной решетки – это спектральный анализ .

Максимумы для разных длин волн будут наблюдаться под разными углами, то есть белый свет будет разложен в спектр.

Преимущество дифракционных решеток перед другими спектральными приборами заключается в том, что спектр получается более ярким. Интенсивность в главном максимуме пропорциональна квадрату полного числа щелей дифракционной решетки.

Любой кристалл также является дифракционной решеткой. На этом построен такой метод кристаллографии, как рентгеноструктурный анализ. Кристалл облучается рентгеновскими волнами, и по дифракционной картине этих волн можно определить тип кристаллической решетки и рассчитать ее период.

Дифракция света - эффект, возникающий при распространении волн. Проявляется он в отклонении от законов геометрической оптики. При разных волновых явлениях можно проследить одинаковый характер принципов, в соответствии с которыми они проистекают.

Интерференция и дифракция света

Необходимо отметить, что два этих понятия считаются неразрывными. Как правило, дифракция рассматривается как частный случай. Рассматриваются волны, ограниченные в пространстве. Интерференция света - явление сложения колебаний. В определённых точках пространства амплитуда возрастает за счет наложения волн. При этом в других точках происходит уменьшение амплитуды. Максимумы и минимумы чередуются, образуя интерференционную картину. Постоянство наблюдается только в случае когерентности складываемых колебаний, то есть, когда их разность постоянна. Когерентные колебания - волнения одинаковой частоты. Именно поэтому на практике чаще изучается интерференция монохроматических колебаний. Следует отметить, что общее свойство всех эффектов дифракции - чёткая зависимость от соотношения величины λ к d, где λ - длина волны, а d - размер ширины волнового фронта.

Значение явления

В большей части практических случаев ширина волнового фронта ограничена. Это значит, что явление отклонения от оптических законов сопровождает практически любой волновой процесс. Дифракция света задаёт разрешающую способность любого, даже самого простого оптического прибора. При проектировании более сложных систем данная характеристика ограничивается чаще аберрациями. Они возрастают с увеличением диаметра объектива фотоаппарата. Фотографам известно явление улучшения качества картинки при диафрагмировании объектива.

Случаи пренебрежения

Явление дифракции света может влиять на ход вычислений в процессе изучения, только если неоднородности оптической среды по размерам сравнимы с длиной волны. Тогда проявляется эффект рассеивания волн. Но как только неоднородности становятся на 3 - 4 порядка больше длины волны, дифракцией часто пренебрегают. В этом случае распространение волны очень точно описывается системой законов геометрической оптики.

Различные трактовки эффекта

В разные времена дифракция света понималась и объяснялась по-разному. Одна из самых первых трактовок предполагала, что волна как бы огибает препятствие. Другими словами, она проникает в область геометрической тени. Но по современным меркам эта трактовка слишком узкая. По мнению исследователей, она недостаточно описывает происходящие эффекты. В современной науке с дифракцией связан большой спектр явлений. Они происходят при распространении волн в неоднородных оптических средах.

Как проявляется эффект?

Дифракция света может обнаруживаться в пространственной трансформации волновых структур. Это можно считать в некотором роде "огибанием" волной существующего ибо возникшего препятствия. В иных ситуациях причиной может стать расширение сектора распространения пучков, или их отклонение на определённую сторону. Также дифракция света может проявиться в спектральном разложении волн по частоте. Кроме того, обнаруживаться рассматриваемый эффект может в преобразовании волновой поляризации либо в изменении фазовой структуры. На сегодняшний день самыми изученными являются эффекты акустических и электромагнитных волн (оптических в частности). Исследованиям подверглись и достаточно объяснены гравитационно-капиллярные волны на поверхности жидкости.

Некоторые особенности

Такие характеристики волнового поля, как его исходные размеры и структура играют важную роль в явлении дифракции. В случае, когда неоднородности оптической системы сравнимы с длиной волны или меньше её, отмечаются существенные изменения параметров. Для лучшего понимания можно рассмотреть простой пример. Имеем ограниченный в пространстве пучок волн. Даже если оптическая среда однородна, он будет иметь свойство "расплываться". Подобный эффект невозможно описать с помощью аппарата геометрической оптики. Но современная наука уже богата таким понятием, как дифракционная расходимость. Именно благодаря ему появляется возможность описать проявление подобного эффекта в самой полной мере. Заметим, что исходное ограничение и структура волнового поля в пространстве часто возникают не только вследствие наличия элементов поглощения или отражения. Зачастую они появляются уже при изначальном порождении рассматриваемой среды.

Особые случаи

Допустим, имеем оптическую среду, в которой от точки к точке отмечается плавная смена скорости волны. Плавность будем "исчислять" относительно изменения длины объекта. В такой среде распространение пучка будет криволинейным. С этим фактом связано такое явление, как мираж (кстати говоря, оно изучается в градиентной оптике). В этом случае препятствие может огибаться волной. Что примечательно, такой эффект может быть описан при помощи уравнений аппарата геометрической оптики. Это явление криволинейного волнового распространения нельзя отнести к дифракционным. Отметим, что довольно часто эффект отклонения может быть вообще никак не связан с так называемым "огибанием" возникшего либо существующего препятствия. В то же время наличие объекта "на пути" обуславливает дифракцию. В качестве примера можно привести эффект отклонения на фазовых структурах, то есть непоглощающего или прозрачного типа.

Окончательные расхождения с геометрической оптикой

Как мы выяснили, дифракцию нельзя объяснить в терминах лучевой модели, то есть в рамках определений геометрической оптики. С другой стороны, исчерпывающей оказалась трактовка с точки зрения теории волновых процессов. Однако некоторые явления не могут быть объяснены с помощью геометрической оптики, но при этом одновременно не относятся и к дифракции. Например, явление вращения поляризационной плоскости в оптически активной среде не считается эффектом отклонения. В то же время поворот плоскости поляризации является результатом так называемой коллинеарной дифракции. Подверженный отклонению пучок волн не меняет направления. Этот тип эффекта реализуется, к примеру, как ультразвуковая дифракция в двулучепреломляющих кристаллах. В этом случае параллельными будут векторы акустической и оптической волн. Следует отметить, что в терминах лучевой модели нельзя истолковать и явления связанных волноводов, хотя их также не относят к дифракциям. Ещё один пример подобных расхождений - раздел "Оптика кристаллов". В нём рассматривается анизотропия среды. Этот раздел имеет мало общего с проблемой дифракции.

Однако уместными бы были корректировки используемых в нём представлений лучевой модели. Ведь имеются явные различия в понятии луча как направления распространения света и понятия волнового фронта как нормали к лучу. В сильных полях тяготения также можно наблюдать криволинейное распространение пучков. Учёными доказано, что свет, проходящий рядом с массивным объектом, например, звездой, меняет направление в сторону поля тяготения объекта. И здесь в итоге видим "огибание" препятствия. Хотя это явление и не относится к дифракции.

Последние материалы раздела:

Слои атмосферы по порядку от поверхности земли
Слои атмосферы по порядку от поверхности земли

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность....

Берестяная трубочка — Михаил Пришвин
Берестяная трубочка — Михаил Пришвин

Жанр: рассказГлавные герои: рассказчик - авторЛюди все меньше времени и внимания уделяют природе, а краткое содержание рассказа «Берестяная...

Кто такой Клод Шеннон и чем он знаменит?
Кто такой Клод Шеннон и чем он знаменит?

Клод Элвуд Шеннон – ведущий американский учёный в сфере математики, инженерии, криптоаналитики. Он приобрёл мировую известность, благодаря своим...