Интерференционные методы определения длины световой волны. Определение длины световой волны с помощью дифракционной решетки

Размер: px

Начинать показ со страницы:

Транскрипт

1 Лабораторная работа 3 Определение длины световой волны при помощи дифракционной решетки ЦЕЛЬ РАБОТЫ Ознакомление с прозрачной дифракционной решеткой, определение длин волн спектра источника света (лампы накаливания). ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ 1. Дифракционная решетка 2. Лампа накаливания 3. Линейная установка для определения длины волны света. КРАТКАЯ ТЕОРИЯ Дифракция света явление, состоящее в отклонении от законов геометрической оптики и возникающее при прохождении световых волн вблизи непрозрачных препятствий, соизмеримых с длиной световых волн. Различают два вида дифракции: 1. При дифракции Френеля дифракционная картина образована расходящимся пучком лучей, имеющих сферический волновой фронт. 2. При дифракции Фраунгофера дифракционная картина образована системами параллельных лучей, имеющих плоский волновой фронт. В этом случае дифракционная картина в виде темных и светлых полос наблюдается только с помощью линзы, собирающей лучи в фокальной плоскости. Рассмотрим дифракцию Фраунгофера на дифракционной решетке. Дифракционная решетка представляет собой плоскую прозрачную пластину, на которой нанесены чередующиеся прозрачные и непрозрачные полосы. 1 из 8

2 Сумму ширины прозрачной и непрозрачной полос называют постоянной решетки d, или ее периодом. d a b период решетки Рис. 1. Дифракционная решетка Рассмотрим элементарную теорию дифракционной решетки. Направим перпендикулярно плоскости решетки монохроматический пучок света, т.е. плоскую монохроматическую волну длиной. В соответствии с принципом Гюйгенса-Френеля каждая точка волнового фронта может рассматриваться как самостоятельный источник вторичных волн. Эти источники когерентны. Каждая щель решетки ведет себя как точечный источник вторичных волн при условии, что ширина щели меньше длины волны. В этом случае дифракционная решетка представляет собой набор точечных когерентных источников S 1, S 2, S 3, S n (рис. 1), расположенных в щелях решетки и испускающих световые колебания во всех направлениях. Падающий на дифракционную решетку параллельный пучок лучей в результате дифракции изменит свою структуру. После решетки угол отклонения лучей от первоначального направления составляет от 0 до 90 вправо и влево (рис. 2). 2 из 8

3 Если за дифракционный решеткой поместить собирающую линзу, то в фокальной плоскости линзы можно наблюдать дифракционную картину, являющуюся результатом двух процессов: дифракции света от каждой щели решетки и многолучевой интерференции от всех щелей. Основные черты этой картины определяются вторым процессом. Рис. 2 Так как на решетку падает плоская волна, то лучи одного и того же направления, выходящие из различных щелей, имеют одинаковые начальные фазы. Линза не вносит разности фаз. Следовательно, разность фаз может создаваться только за счет разности хода лучей до линзы, согласно рис.2. AB d sin В случае когда, разность хода лучей, выходящих из соответственно расположенных точек двух соседних щелей, равна целому числу длин волн света, волны будут усиливать друг друга (максимум интенсивности). k, (k = 0, 1, 2, 3,) 3 из 8

4 Таким образом, разность хода любых лучей, идущих в этом направлении: Nd sin Nk, где N равно разности номеров щелей. Следовательно, все лучи, выходящие из двух соседних щелей под углом (N 1), удовлетворяют условию d sin k (1) При интерференции, они будут усиливать друг друга, и на экране будет наблюдаться максимум интенсивности света. Уравнение (1) является основным при практическом использовании дифракционных решеток. Измерив углы, соответствующие положениям дифракционных максимумов, и зная длину волны света, можно найти постоянную решетки d, или наоборот, зная d, определить длину волны света. В центральной световой полосе, изображение которой создается пучком, параллельным падающему суммируется действия всех лучей, независимо от длины волны (центральный максимум). k 0, sin 0 Справа и слева от центрального максимума располагаются световые полосы, для которых k = 1, 2, 3, 4,... Они называются дифракционными максимумами 1-го, 2-го... и k-го порядка. Согласно уравнению (1) различным значениям соответствуют различные углы (в дифракционных максимумах одного порядка). Поэтому при 4 из 8

5 освещении решетки белым светом в фокальной плоскости линзы образуется ряд дифракционных спектров, перекрывающих друг друга (рис. 3). Решая уравнение (1) относительно, получим: d sin k (2) Это выражение является основной расчетной формулой для вычисления длин световых волн. В данной лабораторной работе определение длины волны света приводят с помощью гониометра и линейной установки. Рис. 3. Дифракционная картина решетки в зеленом (верхний ряд) и белом свете ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА Экспериментальная установка состоит из деревянного бруска прямоугольного сечения, на верхней стороне которого нанесена миллиметровая шкала. В пазах бруска перемещается подвижный экран Э, на который наклеена миллиметровая шкала. Оптическая схема представлена на рис из 8

6 Нуль шкалы расположен посередине экрана, где имеется щель. Глаз видит дифракционные спектры, которые проецируются на экран Э. Рис. 4 Угол дифракции, под которым виден дифракционный максимум, мал, поэтому можно принять, что: b sin tg, l (3) где b l расстояние до дифракционного максимума на экране; расстояние от дифракционной решетки до экрана. Подставляя (3) в (2), получаем: d b, k l (4) где d период решетки; k порядок спектра. 6 из 8

7 ХОД РАБОТЫ 1. Зажгите электрическую лампочку. Укрепите прибор так, чтобы горизонтальная рейка была на уровне глаз. 2. Установите в рамку дифракционную решетку. Определите период дифракционной решетки d (указана на самой решетке). 3. На расстоянии l1 20см поместите подвижный экран. 4. Приблизив глаз к дифракционной решетке, направьте прибор на источник света так, чтобы сквозь узкую щель на экране была видна нить накала лампы. На черном фоне по обе стороны щели будут видны симметричные спектры. 5. Определите по шкале экрана расстояние b кр до красных, а также до фиолетовых лучей b фиол в спектре первого (k 1) и второго порядка (k 2) сначала по одну сторону от центрального максимума, затем по другую. 6. Аналогичные измерения проведите для расстояния l2 30см. 7. Пользуясь формулой (4), вычислите длину волны кр красного света и фиолетового света. фиол 8. Данные занесите в таблицу. 9. Определите средние значения длин волн кр и фиол. 10. Сравните полученные данные с табличными. 11. Сделайте выводы. 7 из 8

8 Таблица Положение k d, м b кр, м b фиол, м l, м кр, нм фиол, нм слева 1 0,2 справа 1 0,2 слева 2 0,2 справа 2 0,2 слева 1 0,3 справа 1 0,3 слева 2 0,3 справа 2 0,3 Среднее значение КОНТРОЛЬНЫЕ ВОПРОСЫ 1. Сформулируйте принцип Гюйгенса-Френеля. 2. Какие волны называются когерентными? 3. В чем заключается явление дифракции? 4. При каких условиях наблюдается дифракция? 5. Какова роль линзы в получения дифракционной картины? 6. Условие максимумов для дифракционной решетки. 7. Каков порядок следования цветов в дифракционных спектрах? 8. Чем будут отличаться дифракционные картины, полученные от решеток с различными постоянными, но и одинаковым числом штрихов? 9. Что такое длина волны? 8 из 8


Лабораторная работа 5а Определение длины световой волны с помощью дифракционной решетки. Цель работы: изучение явления дифракции света и использование, этого явления для определения длины световой волны.

Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики ОТЧЁТ по лабораторной работе 84 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЁТКИ

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Кафедра физики ЛАБОРАТОРНАЯ РАБОТА.7 ИЗУЧЕНИЕ ДИФРАКЦИИ ФРАУНГОФЕРА

Расчетно-графическое задание посвящено разделу волновой оптики дифракции. Цель работы изучение дифракции на дифракционной решетке. Краткая теория явления дифракции. Дифракция это явление, которое присуще

Лабораторная работа 3 ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ Цели работы: Изучение дифракционной решетки как спектрального прибора. В процессе работы необходимо: 1) найти длины волн спектральных

Лабораторная работа 6 ИЗУЧЕНИЕ ДИФРАКЩОННОЙ РЕШЕТКИ Дифракцией света называется явление, состоящее в отклонении направления распространения световых волн от направлений, определяемых геометрической оптикой.

ЛАБОРАТОРНАЯ РАБОТА 272 ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ МОНОХРОМАТИЧЕСКОГО СВЕТА С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ 1. Цель работы: определение длины волны лазерного света с помощью дифракционной решетки. 2. Теоретические

Работа 5. ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА НА ОДИНОЧНОЙ ЩЕЛИ И ДИФРАКЦИОННОЙ РЕШЕТКЕ Цель работы: 1) наблюдение картины дифракции Фраунгофера от одиночной щели и дифракционной решетки в монохроматическом свете;

Специализированный учебно-научный центр - факультет МГУ им. М.В. Ломоносова, Школа имени А.Н. Колмогорова Кафедра физики Общий физический практикум Лабораторная работа Измерение длин световых волн в сплошном

ЛАБОРАТОРНАЯ РАБОТА 48 ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА НА ДИФРАКЦИОННОЙ РЕШЕТКЕ Цель работы изучение дифракции света на одномерной дифракционной решетке, определение длины волны излучения полупроводникового лазера.

Работа 25а ИЗУЧЕНИЕ ЯВЛЕНИЙ, ОБУСЛОВЛЕННЫХ ДИФРАКЦИЕЙ Цель работы: наблюдение дифракции света на дифракционной решетке, определение периода дифракционной решетки и области пропускания светофильтров Оборудование:

Лабораторная работа 0 ИЗУЧЕНИЕ ДИФРАЦИОННОЙ РЕШЕТКИ Приборы и принадлежности: Спектрометр, осветитель, дифракционная решетка с периодом 0,0 мм. Введение Дифракцией называется совокупность явлений, наблюдаемых

ЛАБОРАТОРНАЯ РАБОТА 8- ИЗУЧЕНИЕ ДИФРАКЦИОННОЙ РЕШЕТКИ Цель работы: изучение дифракции света на одномерной дифракционной решетке и определение ее характеристик: периода дифракционной решетки, угловой дисперсии.

ЛАБОРАТОРНАЯ РАБОТА 3.3 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ 1. Цель работы Целью данной работы является изучение явления дифракции света на примере дифракционной решетки и

Дифракция света Лекция 4.2. Дифракция света Дифракция - совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями (края экранов, малые отверстия) и связанных с отклонениями

Ярославский государственный педагогический университет им. К.Д. Ушинского Лабораторная работа 8 Определение параметров дифракционной решетки Роуланда Ярославль 010 Оглавление 1. Вопросы для подготовки

ЛАБОРАТОРНАЯ РАБОТА 47 ИЗУЧЕНИЕ ДИФРАКЦИИ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ (ДИФРАКЦИЯ ФРАУНГОФЕРА) Цель работы наблюдение дифракционной картины при дифракции в параллельных лучах на одной и двух щелях; определение

Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики «УТВЕРЖДАЮ» Декан ЕНМФ И.П. Чернов 00 г. ДИФРАКЦИЯ Методические указания

РАБОТА 6 Исследование дифракции Френеля на круглом отверстии и круглом диске Цель работы: изучение явления дифракции света на простейших объектах и измерение их основных параметров. Введение Дифракцией

ЛАБОРАТОРНАЯ РАБОТА 6 (8) ИЗУЧЕНИЕ ПРОЗРАЧНОЙ ДИФРАКЦИОННОЙ РЕШЁТКИ Цель работы: Ознакомление с прозрачной дифракционной решёткой определение длин волн красного и зелёного цветов определение дисперсии

Лабораторная работа 20 Определение длин волн линий спектра излучения с помощью дифракционной решетки Цель работы: ознакомление с прозрачной дифракционной решеткой; определение длин волн спектра источника

КАЗАНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ Кафедра физики МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для студентов специальностей 2903, 2906, 2907, 2908, 2910 Лабораторная

Тема 2. Дифракция света Задачи для самостоятельного решения. Задача 1. Между точечным источником света и экраном поместили диафрагму с круглым отверстием, радиус которого r можно менять. Расстояния от

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Cаратовский государственный технический университет Измерение длины световой волны с помощью дифракционной решетки

Лабораторная работа 43 б Изучение дифракции света на дифракционной решётке Лабораторная работа разработана следующими преподавателями кафедры физики МГУЛ: - аспирант Усатов И.И., доц. ЦарьгородцевЮ.П.

Министерство образования и науки РФ Федеральное агентство по образованию Российский государственный университет нефти и газа им. И.М. Губкина Кафедра физики http://physics.gubkin.ru ЛАБОРАТОРНАЯ РАБОТА

1 Тема: Волновые свойства света: дифракция Дифракцией называется явление огибания волнами препятствий, встречающихся на их пути, или в более широком смысле любое отклонение распространения волн вблизи

Дифракция света Дифракция отклонение распространения волн от законов геометрической оптики вблизи препятствий (огибание волнами препятствий). О б л а с т ь г е о м е т р и ч е с к о й т е н и Дифракция

4.. Волновая оптика Основные законы и формулы Абсолютный показатель преломления однородной прозрачной среды n = c / υ, где c скорость света в вакууме, а υ скорость света в среде, значение которой зависит

3 Цель работы: изучение влияния ширины узкой щели на вид дифракционной картины при наблюдении в свете лазера. Задача: проградуировать щель регулируемой ширины, используя положение минимумов дифракционной

Лабораторная работа 3.05 ДИФРАКЦИЯ ФРАУНГОФЕРА НА ЩЕЛЯХ И ДИФРАКЦИОННЫХ РЕШЕТКАХ М.В. Козинцева, Т.Ю. Любезнова, А.М. Бишаев Цель работы: исследование особенностей дифракции Фраунгофера световых волн на

Методические указания к выполнению лабораторной работы 3..3 ИЗУЧЕНИЕ ДИФРАКЦИИ ОТ ЩЕЛИ В ЛУЧАХ ЛАЗЕРА Степанова Л.Ф. Волновая оптика: Методические указания к выполнению лабораторных работ по физике / Л.Ф.

Восточно-Сибирский государственный университет технологий и управления Кафедра «Физика» Дифракция света Лекция 4.2 Дифракция света совокупность явлений, наблюдаемых при распространении света в среде с

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ДИЗАЙНА И ТЕХНОЛОГИИ НОВОСИБИРСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Министерство образования и науки Российской Федерации Томский государственный университет систем управления и радиоэлектроники (ТУСУР) Кафедра физики ИЗУЧЕНИЕ ДИФРАКЦИИ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА ДВУМЕРНОЙ

ЛАБОРАТОРНАЯ РАБОТА 42 ИЗУЧЕНИЕ ИНТЕРФЕРЕНЦИИ В ОПЫТЕ С БИПРИЗМОЙ ФРЕНЕЛЯ Цель работы изучение интерференции света в опыте с бипризмой Френеля. Оценка длины волны лазерного излучения и преломляющего угла

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра физики ЛАБОРАТОРНАЯ РАБОТА 3.05 Изучение дифракции Фраунгофера от одной щели Москва 2008 г. 1 ЛАБОРАТОРНАЯ РАБОТА 3.05 Изучение дифракции

Оптика Волновая оптика Спектральные приборы. Дифракционная решетка В состав видимого света входят монохроматические волны с различными значениями длин. В излучении нагретых тел (нить лампы накаливания)

3 Цель работы: ознакомиться с отражательной дифракционной решеткой. Задача: определить с помощью дифракционной решетки и гониометра длины волн линий спектра ртутной лампы и угловую дисперсию решеткит Приборы

ДИФРАКЦИЯ СВЕТА 1. Вычислить радиус r шестой зоны Френеля для плоской монохроматической волны (λ = 546 нм), если точка наблюдения находится на расстоянии b = 4,4 м от фронта волны. 2. Вычислить радиус

Исследование дифракции света Липовская М.Ю., Яшин Ю.П. Введение. Свет может проявлять себя либо как волна, либо как поток частиц, что носит название корпускулярно - волнового дуализма. Интерференция и

Индивидуальное задание N 6 «Волновая оптика» 1.1. Экран освещается двумя когерентными источниками света, находящимися на расстоянии 1 мм друг от друга. Расстояние от плоскости источников света до экрана

Лабораторная работа 3.21 ДИФРАКЦИЯ ЛАЗЕРНОГО СВЕТА НА ЩЕЛИ. ДИФРАК- ЦИЯ ФРЕНЕЛЯ. Г.Э. Бугров, А.М. Бишаев Цель работы: Изучение явления дифракции света на щели. По картине, получаемой на экране, определить

Лабораторная работа 5.4 ДИФРАКЦИОННАЯ РЕШЕТКА 5.4.1. Цель работы Целью работы является знакомство с моделированием процесса сложения когерентных электромагнитных волн и экспериментальное исследование закономерностей

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Занятие 24 Волновая оптика https://www.youtube.com/watch?v=0u4jaasz9f4 учебное видео Задача 1 Разложение пучка солнечного света в спектр при прохождении его через призму объясняется тем, что свет состоит

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Проректор-директор

Лабораторная работа 6, Евгений Павлов, РЭ- Цель работы: изучение дифракции Френеля на круглом отверстии, щели и перехода к дифракции Фраунгофера; определение параметров отверстий различной формы при изучении

Примеры решения задач Пример Свет с длиной волны падает нормально на длинную прямоугольную щель ширины b Найдите угловое распределение интенсивности света при фраунгоферовой дифракции а также угловое положение

1 Лабораторная работа 3 04 ИЗМЕРЕНИЕ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ ЛАЗЕРА ИЗ ОПЫТОВ ПО ИНТЕРФЕРЕНЦИИ Часть 1. Исследование интерференции света с помощью бипризмы Френеля Цель работы: сформулировать гипотезу исследования,

ЛАБОРАТОРНАЯ РАБОТА 3.04 ИЗУЧЕНИЕ СПЕКТРА ДИФРАКЦИОННОЙ РЕШЕТКИ С ПОМОЩЬЮ ГОНИОМЕТРА 1. Цель работы Целью работы является изучение явления дифракции и ознакомление с методом определения длины волны света

Работа ИНТЕРФЕРЕНЦИЯ СВЕТА В ОПТИЧЕСКОЙ СХЕМЕ С БИПРИЗМОЙ ФРЕНЕЛЯ Цель работы: наблюдение явления интерференции света и определение длины волны света в оптической схеме с бипризмой Френеля. Введение Интерференцией

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для студентов

Лабораторная работа 43 a Изучение дифракции Фраунгофера Лабораторная работа разработана следующими преподавателями кафедры физики МГУЛ: - аспирант Усатов И.И., доц. Царьгородцев Ю.П. проф. Полуэктов Н.П.

Интерференция Дифракция Волновая оптика Основные законы оптики Закон прямолинейного распространения света Свет в оптически однородной среде распространяется прямолинейно Закон независимости световых пучков

И.О. Заплатина Ю.Л. Чепелев ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ ЛАЗЕРНОЙ УКАЗКИ ДИФРАКЦИОННЫМ МЕТОДОМ Екатеринбург 2013 МИНОБРНАУКИ РОССИИ ФГБОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Специализированный учебно-научный центр - факультет МГУ им. М.В. Ломоносова, Школа имени А.Н. Колмогорова Кафедра физики Общий физический практикум Лабораторная работа 4.6 Опыт Юнга. Изучение волновых

ИЗУЧЕНИЕ ЯВЛЕНИЯ ИНТЕРФЕРЕНЦИИ: ОПЫТ ЮНГА Цель работы - изучение явления интерференции света на примере опыта Юнга, изучение интерференционной картины, получаемой в опыте Юнга, исследование зависимости

0050. Дифракция лазерного излучения Цель работы: Определение ширины щели и постоянной дифракционных решеток по дифракционным картинам на экране наблюдения Требуемое оборудование: Модульный учебный комплекс

Ярославский государственный педагогический университет им. К. Д. Ушинского Лабораторная работа 3 Определение длины световой волны при помощи бипризмы Френеля Ярославль 2009 Оглавление 1. Вопросы для подготовки

ДИФРАКЦИЯ ФРАУНГОФЕРА. Насрединов Ф.С., Хрущева Т.А., Штельмах К.Ф. Цель работы: ознакомление на опыте с особенностями дифракции света на узкой щели и периодических объектах - дифракционной решетке и сетке.

Лабораторная работа 4. Исследование дифракции Фраунгофера на дифракционной решётке Методическое руководство Москва 04 г. Исследование дифракции Фраунгофера на дифракционной решетке. Цель работы Изучение

КАЗАНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ Кафедра физики Лабораторная работа 53 ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА НА ЗОННОЙ ПЛАСТИНКЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для

Лабораторная работа 3.07 ДИФРАКЦИОННАЯ РЕШЕТКА КАК СПЕКТРАЛЬНЫЙ ПРИБОР Н.А. Экономов, А.М. Попов. Цель работы: экспериментальное определение угловой дисперсии дифракционной решетки и расчёт её максимальной

Лабораторная работа 3.15. ДИФРАКЦИОННАЯ РЕШЕТКА КАК СПЕКТРАЛЬНЫЙ ПРИБОР А.И. Бугрова Цель работы: Экспериментальное определение периода и угловой дисперсии дифракционной решетки как спектрального прибора.

Вариант 1. 1. Монохроматический свет длиной волны 0,6мкм падает нормально на диафрагму с отверстием диаметром 6мм. Сколько зон Френеля укладывается в отверстии, если экран расположен в 3м за диафрагмой

РАБОТА 3.0 ДИФРАКЦИЯ СВЕТА Задача 1. Исследовать дифракцию света в параллельных лучах на щели.. По известной длине волны источника света определить ширину щели, длину волны неизвестного источника света.

ЛАБОРАТОРНАЯ РАБОТА 46 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ ПРИ ПОМОЩИ ДИФРАКЦИОННОЙ РЕШЕТКИ И ГОНИОМЕТРА. Цель работы: определение длины световой волны видимой части спектра паров ртути. Теоретические основы

Лабораторная работа 7 Исследование дифракции Фраунгофера в сходящейся волне Теория При дифракции плоской световой волны на достаточно больших предметах (1 мм) дифракционная картина, согласно /24/, возникает

Цель работы : Определить длину световой волны, используя дифракционную решетку .

Оборудование:

1. Прибор для определения длины световой волны, состоящий из линейки, пластины с дифракционной решеткой и движка со щелью.

2. Штатив.

3. Электрическая лампочка на напряжение 42 В в патроне.

Краткая теория

Как известно, свет представляет собой электромагнитные волны , которые характеризуются длиной световой волны. Дифракционная решетка служит для выделения из света с разными длинами волн света с определенной длиной волны или, как говорят, разложения света на его спектральные компоненты . Основой работы дифракционной решетки служат явления дифракции и интерференции света, и именно волновая природа света приводит к возникновению указанных выше двух явлений.

Дифракцией называется отклонение распространения света от прямолинейного в область, где при прямолинейном распространении света должна бы была быть тень.

Интерференцией называется сложение световых пучков, ведущее к образованию светлых и темных полос.

Дифракция. Дифракция наблюдается в случаях, когда свет проходит сквозь прозрачный материал, в котором есть непрозрачные небольшие препятствия, либо через небольшие отверстия в непрозрачном материале.

Различают два типа дифракции: дифракция в параллельных пучках света или дифракция Фраунгофера и дифракция в расходящемся пучке света – дифракция Френеля . В первом случае для наблюдения дифракционной картины используют либо солнечные лучи, которые являются параллельными, либо создают параллельный пучок света, используя простейшую оптическую систему – выпуклую линзу. Во втором случае используется точечный источник света, например, лампа с малыми размерами спирали.

Схема наблюдения дифракции Фраунгофера приведена на рис. 1.

Рис.1. Дифракция Фраунгофера.

В случае прямолинейного распространения света параллельный пучок лучей, сформированный линзой 1, пройдя через круглое отверстие в непрозрачном экране 1 и через фокусирующую линзу 2, должен был бы собраться в точку. Однако, из-за дифракции на экране 2 получается сложная дифракционная картина, состоящая из чередования светлых и темных колец.

Интерференция. При интерференции волны света с одинаковыми длинами волн максимально усиливают друг друга, когда приходят в точку наблюдения в одинаковой фазе , и ослабляют друг друга, когда приходят в противофазе . Суть явления интерференции поясняет рис.2.

Рис. 2. Интерференция от 2-х источников.

Точечные источники света В 1 и В 2 расположены друг от друга на расстоянии t. Колебания электромагнитного поля совершаются в этих точках в одной и той же фазе. Интерференция (т.е. сложение или вычитание колебаний) наблюдается в точках А и С на экране, находящемся на большом расстоянии L по сравнению t и l. В оптике установлено, что для максимального усиления волн разность хода (т.е. разность расстояний от источников до точки наблюдения) должно выполняться условие:

,

а для максимального ослабления волн:

, где n – целое число.

Из Рис. 2 можно определить разность хода . Тогда, используя предыдущие равенства, можно получить, что светлые полосы располагаются на расстоянии от точки А, расстояние между светлыми полосами , а темные полосы располагаются между светлыми. Очевидно, что в точке А разность хода равна нулю и в этой точке наблюдается сложение колебаний от источников света В 1 и В 2

Дифракционная решетка . Ряд прозрачных щелей, разделенных непрозрачными полосами, называется дифракционной решеткой . Дифракционная картина, которая имела место на одной щели при использовании дифракционной решетки, усложняется, так как кроме дифракции на каждой щели происходит еще и интерференция световых волн от щелей, которые можно рассматривать как источники света. На экране возникают максимумы и минимумы света, причем главные максимумы возникают при значении угла j , удовлетворяющих соотношению , где - период решетки равный сумме ширины щели и полосы. Положение 1-го максимума при определяется выражением

Из (1) видно, что для данной дифракционной решетки положения 1-го максимума для различных длин волн разное: чем больше длина волны света, тем больше угол отклонения наблюдаемого максимума от направления падающего пучка света.

Программа работы

Схема прибора приведена на рис.3.


Рис.3. Прибор для определения длины волны.

1. Включить электрическую лампочку.

2. Глядя через дифракционную решетку, направить прибор на лампочку так, чтобы через щель в движке была видна нить накала лампы. На черном фоне движка по обе стороны от нуля должны быть видны дифракционные спектры, состоящие из полос разного цвета. Если полосы располагаются не параллельно шкале, то это означает, что нить накала не параллельна штрихам на решетке. В этом случае надо повернуть немного либо дифракционную решетку, либо лампочку. Закрепить прибор.

3. Определить расстояние от щели на движке (нуля) до красной полосы слева на шкале.

4. Определить расстояние от щели на движке (нуля) до красной полосы справа на шкале. Записать это значение в таблицу.

5. Определить среднее значение расстояния до красной полосы по формуле:

Записать это значение в таблицу.

6. Определить расстояние от щели на движке (нуля) до фиолетовой полосы слева на шкале. Записать это значение в таблицу.

7. Определить расстояние от щели на движке (нуля) до фиолетовой полосы справа на шкале. Записать это значение в таблицу.

8. Определить среднее значение расстояния до фиолетовой полосы по формуле:

Записать это значение в таблицу.

9. Определить расстояние от дифракционной решетки до движка. Записать это значение в таблицу.

Цель работы . Изучить явления дифракции и интерференции световых волн, использование этих явлений в медицинских и биологических исследованиях. Научить определять длину световой волны с помощью дифракционной решетки.

Актуальность. Интерферометры, в основе работы которых лежит явление интерференции света, широко используются в медицине, в частности, с помощью интерферометра можно определять показатели преломления с точностью до шестого знака после запятой. Интерференционные методы применяют для определения коэффициентов линейного и объемного расширения, показателей преломления газов и паров с очень высокой степенью точности. Основанные на этом принципе приборы применяются для контроля за составом воздуха в шахтах, рудниках, производственных помещениях. Этот же метод используется в медицине для исследования изменений в составе крови при некоторых трудно распознаваемых заболеваниях. С помощью интерферометров с высокой степенью точности определяют длину волн, небольшие расстояния, определяют качество оптических поверхностей.

Применение дифракционной решетки в оптических приборах позволяет увеличить их разрешающую способность. Дифракция монохроматических рентгеновских лучей в поликристаллических телах позволяет произвести рентгеноструктурный качественный и количественный анализы. Этим методом Дж. Уотсон и Ф. Крик установили структуру ДНК (1962 г.).

Так как условия отражения и поглощения электромагнитных волн телами зависят, в частности, от длины волны, то эта особенность голографии позволяет использовать её в качестве метода внутривидения (интроскопия).

Приборы и принадлежности: дифракционная решетка, экран, линейка.

Теоретическая часть

Интерференция света. Интерференцией света называется явление, возникающее при наложении световых волн и сопровождаемое их усилением или ослаблением. Устойчивая интерференционная картина возникает при наложении когерентных волн. Когерентными волнами называются волны с равными частотами и одинаковыми фазами или имеющими постоянный сдвиг фаз. Усиление световых волн при интерференции (условие максимума) происходит в том случае, Δ укладывается четное число длин полуволн:

где k – порядок максимума, k=0,±1,±2,±,…±n;

λ – длина световой волны.

Ослабление световых волн при интерференции (условие минимума) наблюдается в том случае, если в оптической разности хода Δ укладывается нечетное число длин полуволн:

где k – порядок минимума.

Оптической разностью хода двух лучей называется разность расстояний от источников до точки наблюдения интерференционной картины.


Интерференция в тонких пленках. Интерференцию в тонких пленках можно наблюдать в мыльных пузырях, в пятне керосина на поверхности воды при освещении их солнечным светом.

Пусть на поверхность тонкой пленки падает луч 1 (см рис.2). Луч, преломившись на границе воздух - пленка, проходит через пленку, отражается от её внутренней поверхности, подходит к внешней поверхности пленки, преломляется на границе пленка – воздух и выходит луч . В точку выхода луча направляем луч 2, который проходит параллельно лучу 1. Луч 2 отражается от поверхности пленки , накладывается на луч , и оба луча интерферируют.

При освещении пленки полихроматическим светом получаем радужную картину. Это объясняется тем, что пленка неоднородна по толщине. Следовательно, возникают различные по величине разности хода, которым соответствуют разные длины волн (окрашенные мыльные пленки, переливчатые цвета крыльев некоторых насомых и птиц, пленки нефти или масел на поверхности воды и т.д.).

Интерференция света используется в приборах – интерферометрах. Интерферометрами называются оптические устройства, при помощи которых можно пространственно разделить два луча и создать между ними определенную разность хода. Применяются интерферометры для определения длины волн с высокой степенью точности небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.

В санитарно–гигиенических целях интерферометр применяется для определения содержания вредных газов.

Сочетание интерферометра и микроскопа (интерференционный микроскоп) используется в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов.

Принцип Гюйгенса – Френеля. Согласно Гюйгенсу, каждая точка среды, до которой доходит первичная волна в данной момент, является источником вторичных волн. Френель уточнил это положение Гюйгенса, добавив, что вторичные волны являются когерентными, т.е. при наложении они будут давать устойчивую интерференционную картину.

Дифракция света. Дифракцией света называются явления отклонения света от прямолинейного распространения.

Дифракция в параллельных лучах от одной щели. Пусть на цель шириной в падает параллельный пучок монохроматического света (см. рис. 3):

На пути лучей установлена линза L , в фокальной плоскости которой находится экран Э . Большинство лучей не дифрагируют, т.е. не меняют своего направления, и они фокусируются линзой L в центре экрана, образуя центральный максимум или максимум нулевого порядка. Лучи, дифрагирующие под равными углами дифракции φ , будут на экране образовывать максимумы 1,2,3,…, n – порядков.

Таким образом, дифракционная картина, полученная от одной щели в параллельных лучах при освещении монохроматическим светом, представляет собой светлую полосу с максимальной освещенностью в центре экрана, затем идет темная полоса (минимум I – го порядка), потом идет светлая полоса (максимум 1 – го порядка), темная полоса (минимум 2 – го порядка), максимум 2 – го порядка и т.д. Дифракционная картина симметрична относительно центрального максимума. При освещении щели белым светом на экране образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света.

Условия max и min дифракции. Если в оптической разности хода Δ укладывается нечетное число отрезков, равных , то наблюдается усиление интенсивности света (max дифракции):

где k – порядок максимума; k =±1,±2,±…,±n;

λ – длина волны.

Если в оптической разности хода Δ укладывается четное число отрезков, равных , то наблюдается ослабление интенсивности света (min дифракции):

где k – порядок минимума.

Дифракционная решетка. Дифракционная решетка представляет собой чередующиеся непрозрачные для прохождения света полосы с прозрачными для света полосами (щелями) равной ширины.



Основной характеристикой дифракционной решетки является её период d . периодом дифракционной решетки называется суммарная ширина прозрачной и непрозрачной полосы:

Дифракционная решетка используется в оптических приборах для усиления разрешающей способности прибора. Разрешающая способность дифракционной решетки зависит от порядка спектра k и от числа штрихов N :

где R – разрешающая способность.

Вывод формулы дифракционной решетки. Направим на дифракционную решетку два параллельных луча: 1 и 2 так, чтобы расстояние между ними было равно периоду решетки d .


В точках А и В лучи 1 и 2 дифрагируют, отклоняясь от прямолинейного направления на угол φ – угол дифракции.

Лучи и фокусируются линзой L на экран, расположенный в фокальной плоскости линзы (рис. 5). Каждую щель решетки можно рассматривать как источник вторичных волн (принцип Гюйгенса – Френеля). На экране в точке Д наблюдаем максимум интерференционной картины.

Из точки А на ход луча опускаем перпендикуляр и получаем точку С. рассмотрим треугольник АВС : треугольник прямоугольный, ÐВАС=Ðφ как углы с взаимно перпендикулярными сторонам. Из Δ АВС:

где АВ=d (по построению),

СВ = Δ – оптическая разность хода.

Так как в точке Д наблюдаем max интерференции, то

Дифракция света заключается в отклонении световых лучей от прямолинейного пути в случае прохождения их через малые отверстия или мимо малого непрозрачного экрана.

Дифракция обычно наблюдается, если размеры отверстия или препятствия одного порядка с длиной волны.

При расчетах дифракционных явлений пользуются особым приемом, который предложил Френель, называемый принципом Гюйгенса – Френеля и являющийся развитием принципа Гюйгенса.

Принцип Гюйгенса формулируется так: каждая точка волновой поверхности световых волн является источником вторичных волн. Огибающая поверхность вторичных волн будет новым положением волновой поверхности.

Принцип Гюйгенса решает задачу о распространении волнового фронта, но не решает задачу об интенсивности волн, которые идут в различных направлениях от источника.

Принцип Гюйгенса-Френеля рассматривает интенсивность результирующей волны как результат интерференции вторичных волн, являющихся когерентными, поскольку зарождаются на одном и том же фронте волны.

α 1
α 2
R

Рис . 3.5.2.

Интерференция вторичных волн, по Френелю, происходит следующим образом: пусть из точки S распространяется сферическая волна радиуса R . Выберем на этой поверхности элементарные площадки dS одинакового размера. Все они являются когерентными источниками и нормаль к каждой из них образует различные углы a с лучом, идущим в точку B перед фронтом волны.

Рис . 3.5.3.

Для упрощения расчета интенсивности света в точке B Френель предложил метод, получивший название метода зон Френеля.

Разобьем весь фронт волны на зоны, расстояние от которых до точки B отличается на . Опишем их из точки B , как из центра, окружностями с радиусами

.

Рис . 3.5.4.

Площади зон можно считать одинаковыми, а значения амплитуд световой волны, приходящей в точку B от каждой последующей зоны, постепенно убывают. Ясно, что от двух соседних зон волны приходят в точку B в противофазе.

Метод зон Френеля позволяет объяснить различные случаи дифракции. Рассмотрим некоторые из них, а именно:

дифракцию Френеля или дифракцию в сходящихся лучах, когда на отверстие или препятствие падает сферический фронт волны, и

дифракцию Фраунгофера , или дифракцию в параллельных лучах – на отверстие падает плоский фронт волны.



Примером первого вида дифракции (дифракции Френеля) может быть дифракция на круглом отверстии.

Если в отверстии умещается четное число зон Френеля, то волны приходящие в точку B от соседних зон гасят друг друга, и в точке B будет наблюдаться минимум освещенности. Если в отверстии умещается нечетное число зон, то одна из зон останется нескомпенсированной и в точке B наблюдается максимум интенсивности света. При смещении на экране в различных направлениях от точки B отверстие будет вырезать то четное, то нечетное число зон Френеля. Благодаря этому на экране мы увидим дифракционную картину от круглого отверстия в виде светлых и темных колец.

Примером второго вида дифракции (дифракции Фраунгофера) является дифракция параллельных лучей на одной щели. Щелью называют длинное и узкое отверстие в непрозрачном экране со строго параллельными краями, ширина которого значительно меньше длины.

Рис. 3.5.5.

Свет падает параллельным пучком перпендикулярно ще­ли, так что колебания всех точек щели совершаются в одинаковой фазе. Лучи, дифрагирующие под углом j, будут собраны линзой в точке B экрана и интерферируют.

При j = 0 все волны придут в точку О в одинаковой фазе и усилят друг друга; на экране появится светлая полоса – центральный максимум .

Чтобы определить результат интерференции в точке B при j ¹ 0 , разобьем открытый участок волновой поверхности (ширину щели) на ряд зон Френеля. В данном случае они представляют собой узкие полоски, параллельные краям щели. Проведем через точку А плоскость АD , перпендикулярную пучку дифрагирующих лучей. Оптические пути лучей от АD до точки B одинаковы, поэтому разность хода СD крайних лучей равна:

D = а sin j. (3.5.1)

Зоны Френеля делят D на соответствующее число участков. Каждой точке в нечетной зоне Френеля соответствует точка в четной зоне, колебания которой приходят в точку B в противофазе. Следовательно, в точке B , для которой в ширине щели укладывается четное число зон Френеля, волны гасят друг друга и на экране в этом месте будет темная полоса.



Т.о., условием минимума для одной щели будет:

, , (3.5.2)

В тех направлениях, для которых на ширине щели умещается нечетное число зон, будет наблюдаться наибольшая интенсивность света. Т.е., дифракционные максимумы наблюдаются в направлениях, определяемых условием:

, ,… (3.5.3)

k – порядок дифракционного максимума.

Распределение интенсивности света при дифракции на одной щели показано на рис. 3.5.5.

Итак, при освещении щели монохроматическим светом дифракционная картина представляет собой систему максимумов, симметричных относительно середины центрального максимума с быстрым убыванием интенсивности.

В случае освещения щели белым светом центральный максимум будет общим для всех длин волны, поэтому центр дифракционной картины – белая полоса.

Максимумы остальных порядков для разных длин волн уже не совпадают. Благодаря этому максимумы настолько расплывчаты, что сколько-нибудь отчетливого разделения длин волн (спектрального разложения) при помощи одной щели получить нельзя.

Рассмотрим более сложную дифракцию от двух щелей. В точке О по-прежнему будет светлая полоса (лучи от всех щелей приходят в одинаковой фазе).

В точке B на дифракционную картину от одной щели будет накладываться интерференция лучей, идущих от соответственных точек двух щелей. Минимумы будут на прежних местах, ибо те направления, по которым ни одна щель не посылает света, не получает его и при двух щелях.

Рис. 3.5.6.

Кроме этих минимумов возникают дополнительные минимумы в тех направлениях, в которых свет, посылаемый каждой из щелей, взаимно уничтожается. Из рис. 3.5.6 видно, что разность хода лучей D, идущих от соответствующих точек щелей, равна

. (3.5.4)

Дополнительные минимумы поэтому определяются условием:

; (3.5.5)

Наоборот, в направлениях, где

, (3.5.6)

наблюдаются максимумы.

Из рис. 3.5.6 видно, что между двумя главными максимумами располагается один дополнительный минимум.

Итак, рассмотрение дифракции на двух щелях показывает, что в этом случае максимумы становятся более узкими и интенсивными.

Увеличение числа щелей делает это явление еще более отчетливым; интенсивность главных максимумов растет, а интенсивность побочных – падает.

К= -2
К= -1
К= 0
К= 1
Систему большого числа параллельных щелей называют дифракционной решеткой .

Рис. 3.5.7.

Простейшая дифракционная решетка – это стеклянная пластинка, на которой с помощью делительной машины нанесены параллельные штрихи, непрозрачные для света.

Дифракционная картина от монохроматического света, прошедшего дифракционную решетку, наблюдается в фокальной плоскости линзы и представляет собой ряд светлых узких полос убывающей интенсивности, расположенных по обе стороны от центрального максимума k = 0 и разделенных широкими темными промежутками.

В случае если решетка освещена белым светом, лучи с различной длиной волны собираются в разных местах экрана. Поэтому центральный максимум имеет вид белой полосы, а остальные представляют собой окрашенные полоски, называемые дифракционными максимумами.

Рис. 3.5.8.

В пределах каждого спектра окраска меняется от фиолетовой до красной. По мере увеличения порядка спектра последний становится шире, но интенсивность его уменьшается.

Соотношение, определяющее положения главных максимумов

, (3.5.7)

где d – постоянная решетки, – порядок максимума (спектра), называется формулой дифракционной решетки .

Эта формула позволяет определить длину световой волны по известному периоду решетки d , порядку спектра и экспериментальному углу j . Следовательно, с помощью дифракционной решетки можно разлагать свет на составные части и определять состав исследуемого излучения (определять длину волны и интенсивность всех его компонентов). Применяемые для этого приборы называются дифракционными спектрографами.

Описание оборудования

Приборы и принадлежности : осветитель, дифракционная решетка, экран с миллиметровым масштабом, измерительная линейка.

Рис. 3.5.9.

Для определения длины волны света с помощью дифракционной решетки на специальной рейке укрепляется решетка P и щель; штрихи решетки и щель располагаются параллельно. Щель освещается источником S . Перпендикулярно к оси рейки укрепляется миллиметровая линейка AB с подвижным указателем. Щель рассматривается через решетку глазом. На линейку проектируется изображение главных максимумов. На рис. 8 L – расстояние от дифракционной решетки до экрана, х расстояние между серединами полос одного и того же цвета для спектров первого и второго порядка.

Порядок работы

1. Включить осветитель в сеть.

2. Установить экран на заданном расстоянии L от дифракционной решетки.

3. Замерить расстояние x между полосами заданного цвета в спектре первого порядка x 1 и второго порядка x 2 . Проделать аналогичные измерения и вычисления для другого заданного цвета.

Обработка результатов

Для определения длины волны l по формуле (3.5.7)

необходимо учесть, что поскольку L >> х , то и тогда

и , (3.5.8)

где k – порядок спектра, а постоянная решетки d = 0,01 мм. Вычислить среднее значение длины волны каждого цвета из двух значений, полученных из спектров первого и второго порядков. Сравнить полученные результаты с табличными значениями.

Контрольные вопросы

1. Что такое дифракция света?

2. В чем состоит метод Гюйгенса – Френеля и что такое зоны Френеля?

3. Как происходит дифракция в сходящихся лучах?

4. Как происходит дифракция в параллельных лучах (на одной щели)?

5. Почему нулевой максимум имеет наибольшую яркость? Почему он белый (при освещении белым светом)?

6. Как происходит дифракция в параллельных лучах на двух щелях?

7. Что такое дифракционная решетка и постоянная дифракционной решетки?

8. Какова причина возникновения дисперсии (спектра) света при использовании дифракционной решетки?

9. Выведите рабочую формулу.

Литература

1. Савельев И.В. Курс общей физики. Т.2.Учеб. пособие для студентов втузов. – М.: КНОРУС, 2009, 576 с.

2. Трофимова Т.И. Курс физики. Учеб. пособ. для вузов.- 15-е изд., стереотип. – М.: Издательский центр «Академия», 2007. – 560 с.

3. Детлаф А.А., Яворский Б.М. Курс физики. Учеб пособие для втузов. – М: Высш. Шк., 1989. – 608 с.

ЛАБОРАТОРНАЯ РАБОТА № 3.6

ИЗУЧЕНИЕ ПОЛЯРИЗАЦИИ СВЕТА

Цель работы: экспериментальная проверка закона Малюса.

Теоретические положения

Поляризация света

Как известно, свет представляет собой электромагнитные волны. Векторы напряженности электрического и магнитного поля ( и ) в каждый момент времени взаимно перпендикулярны и лежат в плоскости, перпендикулярной к направлению распространения волны (рис. 3.6.1).

Рис. 3.6.1.

Обычные источники света являются совокупностью огромного числа быстро высвечивающихся, за время около 10 -7 – 10 -8 секунд, элементарных источников (атомов и молекул), каждый из которых испускает волны с определенной ориентацией векторов и . Но элементарные источники испускают свет совершенно независимо друг от друга с разными фазами и с разной ориентацией векторов и .

Световая волна с различной ориентацией , а, следовательно, и , называетсяестественным светом .

Векторы и в каждой точке волны пропорциональны по величине друг другу, поэтому состояние световой волны можно характеризовать значением одного из этих векторов, а именно .

Последнее целесообразно, поскольку именно вектор определяет фотоэлектрическое, фотографическое, зрительное и т. д. действия света.

Рис. 3.6.2.

В естественном луче колебания вектора беспорядочно меняют направления, оставаясь в плоскости, перпендикулярной лучу (рис. 3.6.2 а ).

Если какое – либо направление колебаний является преимущественным, то свет называется частично-поляризованным (рис. 3.6.2 б ).

Если колебания вектора могут совершаться лишь в одном определенном направлении в пространстве, то свет называется плоскополяризованным (рис. 3.6.2 в ).

Если же в плоскополяризованном луче колебания вектора совершаются так, что его конец описывает круг, то свет называется поляризованным по кругу (рис. 3.6.2 г ).

В плоскополяризованном луче плоскость колебаний вектора называется плоскостью колебаний.

Плоскость, проходящая через луч и вектор , называется плоскостью поляризации.

Цель работы: Определение длин волн красного, зеленого и фиолетового лучей для четко видимых спектров 1-го и 2-го порядков.

Приборы и принадлежности: Дифракционная решетка, экран, лампа для подсвечивания.

Теоретическое введение

Если пучок параллельных лучей света встречает на своем пути непрозрачное круглое тело или его пропускают через достаточно малое круглое отверстие, то на экране будет замечено светлое или темное пятно в центре чередующихся темных и светлых колец.

Это явление распространения света в область геометрической тени, указывающее на отступление от закона прямолинейности распространения света получило название дифракции света .

Для получения ярких дифракционных спектров применяются дифракционные решет ки. Дифракционная решетка представляет собой плоскую стеклянную пластинку, на которой с помощью делительной машины нанесен ряд параллельных штрихов (в хороших решетках - до 1000 штрихов на миллиметр). Штрихи являются практически непрозрачными для света, т.к. из-за своей шероховатости они в основном рассеивают свет. Промежутки между штрихами свободно пропускают свет и называются щелями.

Совокупность ширины штриха и прозрачного промежутка называется периодом или постоянной решетки . Если обозначить ширину штриха через b , а ширину щели а , то период решетки

Пусть на решетку падают лучи света перпендикулярно плоскости. Свет, проходя через каждую щель, испытывает дифракцию, т.е. отклоняется от прямолинейного направления. Если на пути лучей, распространяющихся от щелей решетки, поместить линзу, а в фокальной плоскости линзы экран, то на экране в одну точку соберутся все параллельные лучи, идущие под одним и тем же углом к нормали (рисунок 1). Лучи идущие под другим углом, соберутся в другой точке. Освещенность каждой точки экрана будет зависеть как от интенсивности света, даваемой каждой щелью в отдельности, так и от результата интерференции лучей, прошедших через разные щели Как видно из рисунка 1 разность хода лучей для двух соседних щелей

где d -период решетки, φ - угол отклонения лучей.

Рисунок 1

Если эта разность будет равна четному числу полуволн, в направлении угла φ будет наблюдаться максимум освещенности:

d sinφ = 2kλ/2 = kλ, (1)

а при условии

d sinφ = (2k+1)λ/2 (2)

наблюдается минимум.

Легко видеть, что при разности хода ∆=kλ все остальные щели будут по направлению угла φ также давать максимум, т.к. во всех случаях разности хода будут кратны. Эти максимумы называются основными.

Итак, при нормальном падении лучей на решетку для основных максимумов, полученных на экране от дифракционной решетки, имеем соотношение:

d sinφ = kλ, (3)

где k - 1,2,3 ,…целое число, называемое порядком спектра . Понятие порядок спектра связано с тем, что на экране наблюдается ряд максимумов, симметрично расположенных относительно белой полосы (спектр нулевого порядка), образованной светом, прошедшим через решетку без отклонения.

Из формулы (3) видно, что чем больше длина волны, тем большему углу дифракции соответствует положение максимума (рисунок 2). При падении на решетку монохроматического света на экране возникают одноцветные полосы. Формула (3) позволяет определить длину световой волны:

λ =d sinφ/k. (4)

Определение длины волны сводится к измерению угла φ. Для измерения углов служит специальный прибор гониометр (рисунок 3). Где К - каллиматор со щелью (для получения узкого пучка параллельных лучей); Т - зрительная труба; ОК – окуляр с нитью для наведения трубы на определенную линию спектра; С - круговая шкала с нониусом;

Рисунок 2

Др - дифракционная решетка.

Последние материалы раздела:

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...

Третичное образование Третичное образование
Третичное образование Третичное образование

Чешская система образования развивалась на протяжении длительного периода. Обязательное образование было введено с 1774 года. На сегодняшний день в...

Презентация земля, ее развитие как планеты Презентация на тему возникновения земли
Презентация земля, ее развитие как планеты Презентация на тему возникновения земли

Слайд 2 В одной галактике насчитывается около 100 миллиардов звезд, а всего в нашей Вселенной, предполагают учёные, существует 100 млрд...