Структура и принцип работы лазера. Лазерные активные среды


Лазер - это источник света со свойствами, резко отличающимися от всех других источников (ламп накаливания, люминесцентных ламп, пламени, естественных светил и так далее). Лазерный луч обладает рядом замечательных свойств. Он распространяется на большие расстояния и имеет строго прямолинейное направление. Луч движется очень узким пучком с малой степенью расходимости (он достигает луны с фокусировкой в сотни метров). Лазерный луч обладает большой теплотой и может пробивать отверстие в любом материале. Световая интенсивность луча больше, чем интенсивность самых сильных источников света.
Название лазер - это аббревиатура английской фразы: Light Amplification by Stimulated Emission of Radiation (LASER) . усиление света с помощью вынужденного излучения.
Все лазерные системы можно разделить на группы в зависимости от типа используемой активной среды. Важнейшими типами лазеров являются:

  • твердотельные
  • полупроводниковые
  • жидкостные
  • газовые
    Активная среда представляет собой совокупность атомов, молекул, ионов или кристалл (полупроводниковый лазер), которая под действием света может приобретать усиливающие свойства.

    Итак, каждый атом обладает дискретным набором энергетических уровней. Электроны атома, находящегося в основном состоянии (состояние с минимальной энергией), при поглощении квантов света переходят на болеее высокий энергетический уровень - атом возбуждается; при излучении кванта света все происходит наоборот. Причем излучение света, т.е переход на более низкий энергетический уровень (рис. 1б) может происходить самопроизвольно (спонтанно) или под действием внешнего излучения (вынужденно) (рис.1в). Причем, если кванты спонтанного излучения испускаются в случайных направлениях, то квант вынужденного излучения испускается в том же направлении, что и квант вызвавший это излучение, то есть оба кванта полностью тождественны.

    Рис.1 Виды лазерного излучения

    Для того чтобы преобладали переходы, при которых происходит излучение энергии (переходы с верхнего энергетического уровня на нижний), необходимо создать повышенную концентрацию возбужденных атомов или молекул (создать инверсную населенность). Это приведет к усилению падающего на вещество света. Состояние вещества, в котором создана инверсная населенность энергетических уровней, называется активным, а среда, состоящая из такого вещества - активной средой.

    Процесс создания инверсной населенности уровней называется накачкой. И еще одна классификация лазеров производится по способу накачки (оптический, тепловой, химический, электрический и т.д.). Методы накачки зависят от типа лазера (твердотельного, жидкостного, газового, полупроводникового и т.п.).
    Основная задача процесса накачки может быть рассмотрена на примере трехуровневого лазера (рис. 2)


    Рис.2 схема трехуровневого лазера

    Нижний лазерный уровень I с энергией E1, является основным уровнем энергии системы, на котором первоначально находятся все активные атомы. Накачка возбуждает атомы и соответственно переводит с основного уровня I, на уровень III,с энергией E3. Атомы, оказавшиеся на уровне III, излучают кванты света и переходят на уровень I, либо на быстро переходят на верхний лазерный уровень II. Чтобы происходило накапливание возбужденных атомов на верхнем лазерном уровне II,с энергией E2 , нужно иметь быструю релаксацию атомов с уровня III на II, которая должна превышать скорость распада верхнего лазерного уровня II. Созданная таким образом инверсная населенность обеспечит условия для усиления излучения.

    Однако что бы возникла генерация, необходимо еще обеспечить обратную связь, то есть что бы вынужденное излучение, раз возникнув, вызывало новые акты вынужденного излучения. Для создания такого процесса активную среду помещают в оптический резонатор.

    Оптический резонатор представляет собой систему двух зеркал, между которыми располагается активная среда (рис. 3). Он обеспечивает многократное происхождение световых волн, распространяющихся вдоль его оси по усиливающей среде, вследствие чего достигается высокая мощность излучения.


    Рис.3 Схема лазера

    При достижении определенной мощности излучение выходит через полупрозрачное зеркало. Из-за участия в развитии генерации только той части квантов, которые параллельны оси резонатора, К.П.Д. лазеров обычно не превышает 1%. В некоторых случаях, жертвуя теми или иными характеристиками, К.П.Д. можно довести до 30%.

  • Лазер (от англ. « light amplification by stimulated emission of radiation » - «усиление света путем стимулирования излучения») или оптический квантовый генератор - это специальный тип источника излучения с обратной связью, излучающим телом в котором является инверсно-населенная среда. Принципы работы лазера основаны на свойствах лазерного излучения : монохроматичности и высокой когерентности (пространственной и временной). Т акже к числу особенностей излучения часто относят малую угловую расходимость (иногда можно встретить термин «высокая направленность излучения»), что, в свою очередь, позволяет говорить о высокой интенсивности лазерного излучения. Таким образом, чтобы понять принципы работы лазера, необходимо поговорить о характерных свойствах лазерного излучения и инверсно-населенной среды – одного из трех основных компонент лазера.

    Спектр лазерного излучения. Монохроматичность.

    Одной из характеристик излучения любого источника является его спектр. Солнце, бытовые осветительные приборы обладают широким спектром излучения, в котором присутствуют компоненты с разными длинами волн. Наш глаз воспринимает такое излучение как белый свет, если в нем интенсивность разных компонент примерно одинакова, или как свет с каким-либо оттенком (например, в свете нашего Солнца доминируют зеленая и желтая компоненты).

    Лазерные источники излучения, напротив, имеют очень узкий спектр. В некотором приближении можно сказать, что все фотоны лазерного излучения имеют одну и ту же (или близкие) длины волн. Так, излучение рубинового лазера, например, имеет длину волны 694.3 нм, что соответствует свету красного оттенка. Относительно близкую длину волны (632.8 нм) имеет и первый газовый лазер – гелий-неоновый. Аргон-ионный газовый лазер, напротив, имеет длину волны 488.0 нм, что воспринимается нашим глазом как бирюзовый цвет (промежуточный между зеленым и голубым). Лазеры на основе сапфира, легированного ионами титана, имеет длину волны, лежащую в инфракрасной области (обычно вблизи длины волны 800 нм), поэтому его излучение невидимо для человека. Некоторые лазеры (например, полупроводниковые с вращающейся дифракционной решеткой в качестве выходного зеркала) могут перестраивать длину волны своего излучения. Общим для всех лазеров, однако, является то, что основная доля энергии их излучения сосредоточена в узкой спектральной области. Это свойство лазерного излучения и называется монохроматичностью (от греч. «один цвет»). На рис. 1 для иллюстрации данного свойства приведены спектры излучения Солнца (на уровне внешних слоев атмосферы и на уровне моря) и полупроводникового лазера производства компании Thorlabs .

    Рис. 1. Спектры излучения Солнца и полупроводникового лазера.

    Степень монохроматичности лазерного излучения можно охарактеризовать спектральной шириной лазерной линии (ширина может быть задана как отстройка по длине волны или частоте от максимума интенсивности). Обычно спектральная ширина задается по уровню 1/2 (FWHM ), 1/ e или 1/10 от максимума интенсивности. В некоторых современных лазерных установках достигнута ширина пика излучения в несколько кГц, что соответствует ширине лазерной линии менее чем в одну миллиардную нанометра. Для специалистов отметим, что ширина лазерной линии может быть на порядки уже ширины линии спонтанного излучения, что также является одной из отличительных характеристик лазера (по сравнению, например, с люминесцентными и суперлюминесцентными источниками).

    Когерентность лазерного излучения

    Монохроматичность – важное, но не единственное свойство лазерного излучения. Другим определяющим свойством излучения лазера является его когерентность. Обычно говорят о пространственной и временной когерентности.

    Представим себе, что лазерный пучок разделен пополам полупрозрачным зеркалом: половина энергии пучка прошла через зеркало, другая половина отразилась и ушла в систему направляющих зеркал (рис. 2). После этого второй пучок вновь сводится с первым, но с некоторой временной задержкой. Максимальное время задержки, при котором пучки могут интерферировать (т.е. взаимодействовать с учетом фазы излучения, а не только его интенсивности) и называется временем когерентности лазерного излучения, а длина добавочного пути, который второй пучок прошел из-за своего отклонения – длиной продольной когерентности. Длина продольной когерентности современных лазеров может превышать километр, хотя для большинства приложений (напр., для лазеров промышленной обработки материалов) столь высокой пространственной когерентности лазерного пучка не требуется.

    Можно разделить лазерный пучок и по-другому: вместо полупрозрачного зеркала поставить полностью отражающую поверхность, но перекрыть ей не весь пучок, а только часть его (рис. 2). Тогда будет наблюдаться взаимодействие излучения, которое распространялось в разных частях пучка. Максимальное расстояние между точками пучка, излучение в которых будет интерферировать, называется длиной поперечной когерентности лазерного пучка. Конечно, для многих лазеров длина поперечной когерентности просто равна диаметру пучка лазерного излучения.



    Рис. 2. К объяснению понятий временной и пространственной когерентности

    Угловая расходимость лазерного излучения. Параметр M 2 .

    Как бы мы ни стремились сделать пучок лазерного излучения параллельным, он всегда будет иметь ненулевую угловую расходимость. Минимальный возможный угол расходимости лазерного излучения α d («дифракционный предел») по порядку величины определяется выражением:

    α d ~ λ /D, (1)

    где λ - длина волны лазерного излучения, а D – ширина пучка, вышедшего из лазера. Легко подсчитать, что при длине волны 0.5 мкм (зеленое излучение) и ширине лазерного луча 5 мм угол расходимости составит ~10 -4 рад, или 1/200 градуса. Несмотря на стольмалое значение, угловая расходимость может оказаться критичным для некоторых приложений (например, для использования лазеров в боевых спутниковых системах), поскольку оно задает верхний предел достижимой плотности мощности лазерного излучения.

    В целом качество лазерного пучка можно задать параметром M 2 . Пусть минимально достижимая площадь пятна, создаваемого идеальной линзой при фокусировке гауссова пучка, равна S . Тогда если та же линза фокусирует пучок от данного лазера в пятно площади S 1 > S , параметр M 2 лазерного излучения равен:

    M 2 = S 1 / S (2)

    Для наиболее качественных лазерных систем параметр M 2 близок к единице (в частности, в продаже имеются лазеры с параметром M 2 , равным 1.05). Надо, однако, иметь в виду, что далеко не для всех классов лазеров на сегодняшний день достижимо низкое значение этого параметра, что надо учитывать при выборе класса лазера для конкретной задачи.

    Мы вкратце привели основные свойства лазерного излучения. Опишем теперь на основные компоненты лазера: среду с инверсной населенностью, лазерный резонатор, накачку лазера, а также схему лазерных уровней.

    Среда с инверсной населенностью. Схема лазерных уровней. Квантовый выход.

    Основным элементом, преобразующим энергию внешнего источника (электрическую, энергию нелазерного излучения, энергию дополнительного лазера накачки) в световую, является среда, в которой создана инверсная населенность пары уровней. Термин «инверсная населенность» означает, что определенная доля структурных частиц среды (молекул, атомов или ионов) переведена в возбужденное состояние, причем для некоторой пары энергетических уровней этих частиц (верхний и нижний лазерный уровни) на верхнем по энергии уровне находится больше частиц, чем на нижнем.

    При проходе через среду с инверсной населенностью излучение, кванты которого имеют энергию, равную разнице энергий двух лазерных уровней, может усиливаться, при этом снимая возбуждение части активных центров (атомов/молекул/ионов). Усиление происходит за счет образования новых квантов электромагнитного излучения, имеющих ту же длину волны, направление распространения, фазу и состояние поляризации, что и исходный квант. Таким образом, в лазере происходит генерация пакетов одинаковых (равных по энергии, когерентных и движущихся в одном направлении) фотонов (рис. 3), что и определяет основные свойства лазерного излучения.


    Рис. 3. Генерация когерентных фотонов при вынужденном излучении.

    Создать инверсно населенную среду в системе, состоящей всего из двух уровней, однако, в классическом приближении невозможно . Современные лазеры обычно имеют трехуровневую или четырехуровневую систему уровней, участвующих в лазерной генерации. При этом возбуждение переводит структурную единицу среды на самый верхний уровень, с которого частицы за короткое время релаксируют к более низкому значению энергии - верхнему лазерному уровню. В лазерную генерацию вовлекается также один из нижележащих уровней - основное состояние атома в трехуровневой схеме или промежуточное - в четырехуровневой (рис. 4). Четырехуровневая схема оказывается более предпочтительной в силу того, что промежуточный уровень обычно населен гораздо меньшим количеством частиц, чем основное состояние, соответственно создать инверсную населенность (превышение числа возбужденных частиц над числом атомов на нижнем лазерном уровне) оказывается гораздо проще (для начала лазерной генерации нужно сообщить среде меньшее количество энергии).


    Рис. 4. Трехуровневая и четырехуровневая системы уровней.

    Таким образом, при лазерной генерации минимальное значение сообщаемой рабочей среде энергии равно энергии возбуждения самого верхнего уровня системы, а генерация происходит между двумя нижележащими уровнями. Это обуславливает тот факт, что КПД лазера изначально ограничивается отношением энергии возбуждения к энергии лазерного перехода. Данное отношение называется квантовым выходом лазера. Стоит отметить, что обычно КПД лазера от электросети в несколько раз (и в некоторых случаях даже в несколько десятков раз) ниже его квантового выхода.

    Особой структурой энергетических уровней обладают полупроводниковые лазеры. В процесс генерации излучения в полупроводниковых лазерах вовлечены электроны двух зон полупроводника, однако благодаря примесям, формирующим светоизлучающий p - n переход, границы этих зон в разных участках диода оказываются сдвинутыми друг относительно друга. Инверсная населенность в области p - n перехода в таких лазерах создается за счет перетекания электронов в область перехода из зоны проводимости n ‑участка и дырок из валентной зоны p ‑участка. Подробнее о полупроводниковых лазерах можно прочитать в специальной литературе.

    В современных лазерах применяются различные методы создания инверсной населенности, или накачки лазера.

    Накачка лазера. Способы накачки.

    Чтобы лазер начал генерировать излучение, необходимо подвести энергию к его активной среде, чтобы создать в ней инверсную населенность. Данный процесс называется накачкой лазера. Существует несколько основных методов накачки, применимость которых в конкретном лазере зависит от рода активной среды. Так, для эксимерных и некоторых газовых лазеров, работающих в импульсном режиме (например, CO 2 - лазера) возможно возбуждение молекул лазерной среды электрическим разрядом. В непрерывных газовых лазерах для накачки можно использовать тлеющий разряд. Накачка полупроводниковых лазеров осуществляется за счет приложения напряжения к p ‑ n переходу лазера. Для твердотельных лазеров можно использовать некогерентный источник излучения (лампу-вспышку, линейку или массив светоизлучающих диодов) или другой лазер, длина волны которого соответствует разности энергий основного и возбужденного состояний примесного атома (в твердотельных лазерах, как правило, лазерная генерация возникает на атомах или ионах примеси, растворенных в сетке матрицы - например, для рубинового лазера активной примесью являются ионы хрома).

    Обобщая, можно сказать, что метод накачки лазера определяется его типом и особенностями активного центра генерирующей среды. Как правило, для каждого конкретного типа лазеров имеется наиболее эффективный метод накачки, который и определяет тип и конструкцию системы подвода энергии к активной среде.

    Резонатор лазера. Условие лазерной генерации. Устойчивые и неустойчивые резонаторы.

    Активной среды и системы доставки к ней энергии еще недостаточно для возникновения лазерной генерации, хотя на их основе уже можно построить некоторые устройства (например, усилитель или суперлюминесцентный источник излучения). Лазерная генерация, т.е. испускание монохроматического когерентного света, возникает только при наличии обратной связи, или лазерного резонатора.

    В наиболее простом случае резонатор представляет собой пару зеркал, одно из которых (выходное зеркало лазера) является полупрозрачным. В качестве другого зеркала, как правило, ставят отражатель с коэффициентом отражения на длине волны генерации, близким к 100% («глухое зеркало»), чтобы избежать генерации лазера «в две стороны» и лишней потери энергии.

    Резонатор лазера обеспечивает возвращение части излучения назад в активную среду. Это условие важно для возникновения когерентного и монохроматичного излучения, поскольку возвращенные в среду фотоны будут вызывать излучение одинаковых с собой по частоте и фазе фотонов. Соответственно, вновь возникающие в активной среде кванты излучения будут когерентны с уже вышедшими за пределы резонатора. Таким образом, характерные свойства лазерного излучения обеспечиваются во многом именно конструкцией и качеством лазерного резонатора.

    Коэффициент отражения выходного полупрозрачного зеркала лазерного резонатора подбирается таким образом, чтобы обеспечить максимальную выходную мощность лазера, либо исходя из технологической простоты изготовления. Так, в некоторых волоконных лазерах в качестве выходного зеркала может использоваться ровно сколотый торец волоконного световода.

    Очевидным условием устойчивой лазерной генерации является условие равенства оптических потерь в лазерном резонаторе (включая потери на выход излучения через зеркала резонатора) и коэффициента усиления излучения в активной среде:

    exp(a × 2L) = R 1 × R 2 × exp(g × 2L) × X,(3)

    где L = длина активной среды, a - коэффициент усиления в активной среде, R 1 и R 2 - коэффициенты отражения зеркал резонатора и g - «серые» потери в активной среде (т.е. потери излучения, связанные с флуктуациями плотности, дефектами лазерной среды, рассеяние излучения и прочие виды оптических потерь, обуславливающих ослабление излучения при прохождении через среду, кроме непосредственно поглощения квантов излучения атомами среды). Последний множитель « X » обозначает все прочие потери, присутствующие в лазере (например, в лазер может быть введен специальный поглощающий элемент, чтобы лазер генерировал импульсы малой длительности), при их отсутствии он равен 1. Чтобы получить условие развития лазерной генерации из спонтанно излученных фотонов, очевидно, равенство надо заменить знаком «>».

    Из равенства (3) вытекает следующее правило для выбора выходного лазерного зеркала: если коэффициент усиления излучения активной средой с учетом серых потерь (a - g ) × L мал, коэффициент отражения выходного зеркала R 1 должен быть выбран большим, чтобы лазерная генерация не затухала из-за выхода излучения из резонатора. Если же коэффициент усиления достаточно велик, обычно имеет смысл выбрать меньшее значение R 1 , поскольку высокий коэффициент отражения будет приводить к повышению интенсивности излучения внутри резонатора, что может сказаться на времени жизни лазера.

    Однако резонатор лазера нуждается в юстировке. Предположим, что резонатор составлен из двух параллельных, но не отъюстированных зеркал (например, расположенных под углом друг к другу). В таком резонаторе излучение, пройдя через активную среду несколько раз, выходит за пределы лазера (рис. 5). Резонаторы, в которых излучение за конечное время выходит за его пределы, называются неустойчивыми. Такие резонаторы используются в некоторых системах (например, в мощных импульсных лазерах специальной конструкции), однако, как правило, неустойчивости резонатора в практических приложениях стараются избежать.


    Рис. 5. Неустойчивый резонатор с разъюстированными зеркалами; устойчивый резонатор и

    стационарный пучок излучения в нем.

    Чтобы повысить устойчивость резонатора, в качестве зеркал используют изогнутые отражающие поверхности. При определенных значениях радиусов отражающих поверхностей данный резонатор оказывается нечувствительным к малым нарушениям юстировки, что позволяет существенно упростить работу с лазером.

    Мы кратко описали минимальный необходимый набор элементов для создания лазера и основные особенности лазерного излучения.

    Квантовые генератор, излучающие в диапазоне видимого и инфракрасного излучения, получили название лазеров. Слово «лазер» является аббревиатурой выражения: Light Amplification by Stimulated Emission of Radiation, что означает усиление света в результате индуцированного или, как иногда называют, вынужденного излучения квантов.

    Устройство лазера

    Обобщенный лазер состоит из лазерной активной среды, системы «накачки» - источника напряжения и оптического резонатора.

    Система накачки передает энергию атомам или молекулам лазерной среды, давая им возможность перейти в возбужденное «метастабильное состояние» создавая инверсию населенности.

    · При оптической накачке используются фотоны, обеспечиваемые источником, таким как ксеноновая газонаполненная импульсная лампа или другой лазер, для передачи энергии лазерному веществу. Оптический источник должен обеспечивать фотоны, которые соответствуют допустимым уровням перехода в лазерном веществе.

    · Накачка при помощи столкновений основана на передаче энергии лазерному веществу в результате столкновения с атомами (или молекулами) лазерного вещества. При этом также должна быть обеспечена энергия, соответствующая допустимым переходам. Обычно это выполняется при помощи электрического разряда в чистом газе или в смеси газов в трубке.

    · Химические системы накачки используют энергию связи, высвобождаемую в результате химических реакций для перехода лазерного вещества в метастабильное состояние.

    Оптический резонатор требуется для обеспечения нужного усилия в лазере и для отбора фотонов, которые перемещаются в нужном направлении. Когда первый атом или молекула в метастабильном состоянии инверсной населенности разряжается, за счет вынужденного излучения, он инициирует разряд других атомов или молекул, находящихся в метастабильном состоянии. Если фотоны перемещаются в направлении стенок лазерного вещества, обычно представляющего собой стержень или трубу, они теряются, а процесс усиления прерывается. Хотя они могут отразиться от стенок стержня или трубы, но рано или поздно они потеряются из системы, и не будут способствовать созданию луча.

    С другой стороны, если один из разрушенных атомов или молекул высвободит фотон, параллельный оси лазерного вещества, он может инициировать выделение другого фотона, и они оба отразятся зеркалом на конце генерирующего стержня или трубы. Затем, отраженные фотоны проходят обратно через вещество, инициируя дальнейшее излучение в точности по тому же пути, которое снова отразится зеркалами на концах лазерного вещества. Пока этот процесс усиления продолжается, часть усиления всегда будет выходить через частично отражающее зеркало. По мере того, как коэффициент усиления или прирост этого процесса превысит потери из резонатора, начинается лазерная генерация. Таким образом, формируется узкий концентрированный луч когерентного света. Зеркала в лазерном оптическом резонаторе должны быть точно настроены для того, чтобы световые лучи были параллельны оси. Сам оптический резонатор, т.е. вещество среды, не должен сильно поглощать световую энергию.

    Лазерная среда (генерирующий материал) – обычно лазеры обозначаются по типу используемого лазерного вещества. Существуют четыре таких типа:

    Твердое вещество,

    Краситель,

    Полупроводник.

    Твердотельные лазеры используют лазерное вещество, распределенное в твердой матрице. Твердотельные лазеры занимают уникальное место в развитии лазеров. Первой рабочей лазерной средой был кристалл розового рубина (сапфировый кристалл, легированный хромом); с тех пор термин «твердотельный лазер» обычно используется для описания лазера, у которого активной средой является кристалл, легированный примесями ионов. Твердотельные лазеры – это большие, простые в обслуживании устройства, способные генерировать энергию высокой мощности. Наиболее замечательной стороной твердотельных лазеров является то, что выходная мощность обычно не постоянна, а состоит из большого числа отдельных пиков мощности.

    Одним из примеров является Неодим – YAG лазер. Термин YAG является сокращением для кристалла: алюмоиттриевый гранат, который служит как носитель для ионов неодима. Этот лазер излучает инфракрасный луч с длиной волны 1 064 микрометра. Кроме того, могут использоваться и другие элементы для легирования,например эрбий (лазеры Er:YAG).

    В газовых лазерах используется газ или смесь газов в трубе. В большинстве газовых лазеров используется смесь гелия и неона (HeNe), с первичным выходным сигналом в 6 328 нм (нм = 10-9 метра)видимого красного цвета. Впервые такой лазер был разработан в 1961 году и стал предвестником целого семейства газовых лазеров.

    Все газовые лазеры довольно схожи по конструкции и свойствам. Например, СО2 газовый лазер излучает длину волны 10,6 микрометров в дальней инфракрасной области спектра. Аргоновый и криптоновый газовые лазеры работают с кратной частотой, излучая преимущественно в видимой части спектра. Основные длины волн излучения аргонового лазера – это 488 и 514 нм.

    В лазерах на красителе используется лазерная среда, являющаяся сложным органическим красителем в жидком растворе или суспензии.

    Наиболее значительная особенность этих лазеров – их «приспособляемость». Правильный выбор красителя и его концентрации позволяет генерировать лазерный свет в широком диапазоне длин волн в видимом спектре или около него. В лазерах на красителе обычно применяется система оптического возбуждения, хотя в некоторых типах таких лазеров используется возбуждение при помощи химических реакций.


    Полупроводниковые (диодные) лазеры – состоят из двух слоев полупроводникового материала, сложенных вместе. Лазерный диод является диодом, излучающим свет, с оптической емкостью для усиления излучаемого света от люфта в стержне полупроводника, как показано на рисунке. Их можно настроить, меняя прикладываемый ток, температуру или магнитное поле.

    Различные временные режимы работы лазера определяются частотой, с которой поступает энергия.

    Лазеры с непрерывным излучением (Continuous wave, CW) работают с постоянной средней мощностью луча.

    У одноимпульсных лазеров длительность импульса обычно составляет от нескольких сотен микросекунд до нескольких миллисекунд. Этот режим работы обычно называется длинноимпульсным или нормальным режимом.

    Одноимпульсные лазеры с модуляцией добротности являются результатом внутрирезонаторного запаздывания (ячейка модуляции добротности), которое позволяет лазерной среде сохранять максимум потенциальной энергии. Затем, при максимально благоприятных условиях, происходит излучение одиночных импульсов, обычно с промежутком времени в 10-8 секунд. Эти импульсы обладают высокой пиковой мощностью, часто в диапазоне от 106 до 109 Ватт.

    Импульсные лазеры периодического действия или сканирующие лазеры работают в принципе также как и импульсные лазеры, но с фиксированной (или переменной) частотой импульсов, которая может изменяться от нескольких импульсов в секунду до такого большого значения как 20 000 импульсов в секунду.

    Принцип действия лазера

    Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

    Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённым состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.)

    Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное - через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы). Этот режим работы лазера называют режимом модулированной добротности.

    Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляроиды, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.


    Применение лазеров

    лазер квантовый генератор излучение

    С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё не известных проблем». В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту (проигрыватели компакт-дисков, лазерные принтеры, считыватели штрих-кодов, лазерные указки и пр.). В промышленности лазеры используются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые невозможно сварить обычными способами (к примеру, керамику и металл). Луч лазера может быть сфокусирован в точку диаметром порядка микрона, что позволяет использовать его в микроэлектронике (так называемое лазерное скрайбирование). Лазеры используются для получения поверхностных покрытий материалов (лазерное легирование, лазерная наплавка, вакуумно-лазерное напыление) с целью повышения их износостойкости. Широкое применение получила также лазерная маркировка промышленных образцов и гравировка изделий из различных материалов. При лазерной обработке материалов на них не оказывается механическое воздействие, поэтому возникают лишь незначительные деформации. Кроме того весь технологический процесс может быть полностью автоматизирован. Лазерная обработка потому характеризуется высокой точностью и производительностью.

    Полупроводниковый лазер, применяемый в узле генерации изображения принтера Hewlett-Packard.

    Лазеры применяются в голографии для создания самих голограмм и получения гологафического объёмного изображения. Некоторые лазеры, например лазеры на красителях, способны генерировать монохроматический свет практически любой длины волны, при этом импульсы излучения могут достигать 10−16 с, а следовательно и огромных мощностей (так называемые гигантские импульсы). Эти свойства используются в спектроскопии, а также при изучении нелинейных оптических эффектов. С использованием лазера удалось измерить расстояние до Луны с точностью до нескольких сантиметров. Лазерная локация космических объектов уточнила значение астрономической постоянной и способствовала уточнению систем космической навигации, расширила представления о строении атмосферы и поверхности планет Солнечной системы. В астрономических телескопах, снабженных адаптивной оптической системой коррекции атмосферных искажений, лазер применяют для создания искусственных опорных звезд в верхних слоях атмосферы.

    Сверхкороткие импульсы лазерного излучения используются в лазерной химии для запуска и анализа химических реакций. Здесь лазерное излучение позволяет обеспечить точную локализацию, дозированность, абсолютную стерильность и высокую скорость ввода энергии в систему. В настоящее время разрабатываются различные системы лазерного охлаждения, рассматриваются возможности осуществления с помощью лазеров управляемого термоядерного синтеза(самым подходящим лазером для исследований в области термоядерных реакций, был бы лазер, использующий длины волн, лежащие в голубой части видимого спектра). Лазеры используются и в военных целях, например, в качестве средств наведения и прицеливания. Рассматриваются варианты создания на основе мощных лазеров боевых систем защиты воздушного, морского и наземного базирования.

    В медицине лазеры применяются как бескровные скальпели, используются при лечении офтальмологических заболеваний (катаракта, отслоение сетчатки, лазерная коррекция зрения и др.). Широкое применение получили также в косметологии (лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен). В настоящее время бурно развивается так называемая лазерная связь. Известно, что чем выше несущая частота канала связи, тем больше его пропускная способность. Поэтому радиосвязь стремится переходить на всё более короткие длины волн. Длина световой волны в среднем на шесть порядков меньше длины волны радиодиапазона, поэтому посредством лазерного излучения возможна передача гораздо большего объёма информации. Лазерная связь осуществляется как по открытым, так и по закрытым световодным структурам, например, по оптическому волокну. Свет за счёт явления полного внутреннего отражения может распространяться по нему на большие расстояния, практически не ослабевая.

    Повседневной производственной и научной деятельности. С годами этот “инструмент” будет все более совершенствоваться, а вместе с этим будет непрерывно расширяться и область применения лазеров. Нарастающие темпы исследований в области лазерной техники открывают возможности создания новых типов лазеров со значительно улучшенными характеристиками, позволяющими расширить области их применения в...




    Не только для особо твердых материалов, но и для материалов, отличающихся повышенной хрупкостью. Лазерное сверло оказалось не только мощным, но и весьма деликатным «инструментом». Пример: применение лазера при сверлении отверстий в подложках микросхем, изготавливаемых из глинозем­ной керамики. Керамика необычайно хрупка. По этой причине механическое сверление отверстий в подложке микросхемы...

    В такой схеме (рис. 1) нижним лазерным уровнем "1" является основное энергетическое состояние ансамбля частиц, верхним лазерным уровнем "2" является относительно долгоживущий уровень, а уровень "3", связанный с уровнем "2" быстрым безызлучательным переходом, является вспомогательным. Оптическая накачка действует по каналу "1">"3".

    Рис. 1. "Трёхуровневая" схема при оптической накачке

    Найдем условие существования инверсии между уровнями "2" и "1". Полагая статистические веса уровней одинаковыми g1=g2=g3, запишем систему кинетических (балансных) уравнений для уровней "3" и "2" в стационарном приближении, а также соотношение для числа частиц на уровнях:

    где n1, n2, n3 - концентрации частиц на уровнях 1, 2 и 3, Wn1 и Wn3 - скорости поглощения и индуцированного излучения на переходах между уровнями "1" и "3" под действием излучения накачки, вероятность которой W; wik - вероятности переходов между уровнями, N-полное число активных частиц в единице объёма.

    Из (2) можно найти населённости уровней n2 и n1, как функцию W, и их разность Дn в виде

    которая определяет ненасыщенный коэффициент усиления б0 ансамбля частиц на переходе "2">"1". Для того, чтобы б0>0, необходимо, чтобы, т.е. числитель в (3) должен быть положительным:

    где Wпор - пороговый уровень накачки. Так как всегда Wпор>0, то отсюда следует, что w32>w21, т.е. вероятность накачки уровня "2" релаксационными переходами с уровня "3" должна быть больше вероятности его релаксации в состояние "1".

    В случае, если

    w32 >>w21 и w32 >>w31, (5)

    то из (3) получим: . И, наконец, если W>>w21, то инверсия Дn будет: Дn?n2?N, т.е. на уровне "2" можно "собрать" все частицы среды. Заметим, что соотношения (5) для скоростей релаксации уровней отвечают условиям генерации "пичков" (см., Раздел 3.1).

    Таким образом, в трёхуровневой системе с оптической накачкой:

    1) инверсия возможна, если w32>>w21 и максимальна когда w32>>w31;

    2) инверсия возникает при W>Wпор, т.е. создание носит пороговый характер;

    3) при невысоких w21 создаются условия для "пичкового" режима свободной генерации лазера.

    Этот твёрдотельный лазер является первым лазером, заработавшим в видимом диапазоне длин волн (Т.Мейман, 1960 г.). Рубином называют синтетический кристалл Аl2O3 в модификации корунд (матрица) с примесью 0,05% ионов-активаторов Cr3+ (концентрация ионов ~1,6 1019 см_3), и обозначается как Аl2O3:Cr3+. Рубиновый лазер работает по трёхуровневой схеме с ОН (рис. 2,а). Лазерными уровнями являются электронные уровни Cr3+: нижний лазерный уровень "1" является основным энергетическим состоянием Cr3+ в Аl2O3, верхний лазерный уровень "2" - долгоживущий метастабильный уровень с ф2~10_3с. Уровни "3а" и "3б" являются вспомогательными. Переходы "1">"3а" и "1">"3б" принадлежат к синей (л0,41мкм) и "зелёной" (л0,56мкм) частям спектра, и представляют собой широкие (с Дл~50нм) контура поглощения (полосы).

    Рис. 2. Рубиновый лазер. (а) - Диаграмма энергетических уровней Cr3+ в Al2O3 (корунде); (б) - конструктивная схема лазера, работающего в импульсном режиме с модуляцией добротности. 1 - рубиновый стержень, 2 - лампа накачки, 3 - эллиптический отражатель, 4а - неподвижное зеркало резонатора, 4б - вращающееся зеркало резонатора, модулирующее добротность резонатора, Сн - накопительный конденсатор, R - зарядный резистор, "Кн" - кнопка пуска импульса тока через лампу; показан вход и выход охлаждающей воды.

    Метод оптической накачки обеспечивает селективное заселение вспомогательных уровней "3а" и "3б" Cr3+ по каналу "1">"3" ионами Cr3+ при поглощении ионами Cr3+ излучения импульсной ксеноновой лампы. Затем за сравнительно малое время (~10_8 с) происходит безызлучательный переход этих ионов из "3а" и "3б" - на уровни "2". Выделяющаяся при этом энергия превращается в колебания кристаллической решетки. При достаточной плотности с энергии излучения источника накачки: когда, и на переходе "2">"1" возникает инверсия населённостей и генерация излучения в красной области спектра на л694,3нм и л692,9 нм. Пороговая величина накачки с учётом статвесов уровней соответствует переводу на уровень "2" около? всех активных частиц, что при накачке с л0,56 мкм требует удельную энергию излучения Епор>2Дж/см 3 (и мощность Рпор>2кВт/см 3 при длительности импульса накачки ф?10_3c). Столь высокое значение вкладываемой в лампу и рубиновый стержень мощности при стационарной ОН может привести к его разрушению, поэтому лазер работает в импульсном режиме и требует интенсивного водяного охлаждения.

    Схема лазера показана на рис. 2,б. Лампа накачки (лампа-вспышка) и рубиновый стержень для повышения эффективности накачки располагаются внутри отражателя с цилиндрической внутренней поверхностью и сечением в форме эллипса, причём лампа и стержень располагаются в фокальных точках эллипса. В результате всё излучение, выходящее из лампы, оказывается сфокусированным в стержне. Импульс света лампы возникает при пропускании через неё импульса тока путём разряда накопительного конденсатора в момент замыкания контактов кнопкой "Кн". Охлаждающая вода прокачивается внутри отражателя. Энергия излучения лазера в импульсе достигает нескольких джоулей.

    Импульсный режим работы этого лазера может быть одним из следующих (см., Раздел 3):

    1) режим "свободной генерации" при малой частоте повторения импульсов (обычно 0,1-10 Гц);

    2) режим "модулированной добротности", обычно оптико-механический. На рис. 2,б модуляция добротности ООР осуществляется путём вращения зеркала;

    3) режим "синхронизации мод": при ширине линии излучения Дннеодн~1011Гц,

    число продольных мод М~102, длительность импульса ~10 пс.

    Среди применений рубинового лазера: голографические системы записи изображений, обработка материалов, оптические дальномеры и др.

    Широко применяется в медицине и лазер на BeAl2O4:Cr3+ (хризоберилле, легированном хромом, или александрите), излучающий в диапазоне 0,7-0,82 мкм.

    Первым принцип действия лазера, физика которого основывалась на законе излучения Планка, теоретически обосновал Эйнштейн в 1917 году. Он описал поглощение, спонтанное и вынужденное электромагнитное излучение с помощью вероятностных коэффициентов (коэффициенты Эйнштейна).

    Первопроходцы

    Теодор Мейман был первым, кто продемонстрировал принцип действия основанный на оптической накачке с помощью лампы-вспышки синтетического рубина, производившего импульсное когерентное излучение с длиной волны 694 нм.

    В 1960 г. иранские ученые Джаван и Беннетт создали первый газовый квантовый генератор с использованием смеси газов He и Ne в соотношении 1:10.

    В 1962 году Р. Н. Холл продемонстрировал первый из арсенида галлия (GaAs), излучавший на длине волны 850 нм. Позже в том же году Ник Голоняк разработал первый полупроводниковый квантовый генератор видимого света.

    Устройство и принцип действия лазеров

    Каждая лазерная система состоит из активной среды, помещенной между парой оптически параллельных и высокоотражающих зеркал, одно из которых полупрозрачное, и источника энергии для ее накачки. В качестве среды усиления может выступать твердое тело, жидкость или газ, которые обладают свойством усиливать амплитуду световой волны, проходящей через него, вынужденным излучением с электрической или оптической накачкой. Вещество помещается между парой зеркал таким образом, что свет, отражающийся в них, каждый раз проходит через него и, достигнув значительного усиления, проникает сквозь полупрозрачное зеркало.

    Двухуровневые среды

    Рассмотрим принцип действия лазера с активной средой, атомы которой имеют только два уровня энергии: возбужденный E 2 и базовый Е 1 . Если атомы с помощью любого механизма накачки (оптического, электрического разряда, пропускания тока или бомбардировки электронами) возбуждаются до состояния E 2 , то через несколько наносекунд они вернутся в основное положение, излучая фотоны энергии hν = E 2 - E 1 . Согласно теории Эйнштейна, эмиссия производится двумя различными способами: либо она индуцируется фотоном, либо это происходит спонтанно. В первом случае имеет место вынужденное излучение, а во втором - спонтанное. При тепловом равновесии вероятность вынужденного излучения значительно ниже, чем спонтанного (1:10 33), поэтому большинство обычных источников света некогерентны, а лазерная генерация возможна в условиях, отличных от теплового равновесия.

    Даже при очень сильной накачке населенность двухуровневых систем можно лишь сделать равной. Поэтому для достижения инверсной населенности оптическим или иным способом накачки требуются трех- или четырехуровневые системы.

    Многоуровневые системы

    Каков принцип действия трехуровневого лазера? Облучение интенсивным светом частоты ν 02 накачивает большое количество атомов с самого низкого уровня энергии E 0 до верхнего Е 2 . Безызлучательный переход атомов с E 2 до E 1 устанавливает инверсию населенности между E 1 и E 0 , что на практике возможно только, когда атомы длительное время находятся в метастабильном состоянии E 1, и переход от Е 2 до Е 1 происходит быстро. Принцип действия трехуровневого лазера заключается в выполнении этих условий, благодаря чему между E 0 и E 1 достигается инверсия населенности и происходит усиление фотонов энергией Е 1 -Е 0 индуцированного излучения. Более широкий уровень E 2 мог бы увеличить диапазон поглощения длин волн для более эффективной накачки, следствием чего является рост вынужденного излучения.

    Трехуровневая система требует очень высокой мощности накачки, так как нижний уровень, задействованный в генерации, является базовым. В этом случае для того, чтобы произошла инверсия населенности, до состояния E 1 должно быть накачано более половины от общего числа атомов. При этом энергия расходуется впустую. Мощность накачки можно значительно уменьшить, если нижний уровень генерации не будет базовым, что требует, по крайней мере, четырехуровневой системы.

    В зависимости от природы активного вещества, лазеры подразделяются на три основные категории, а именно, твердый, жидкий и газовый. С 1958 года, когда впервые наблюдалась генерация в кристалле рубина, ученые и исследователи изучили широкий спектр материалов в каждой категории.

    Твердотельный лазер

    Принцип действия основан на использовании активной среды, которая образуется путем добавления в изолирующую кристаллическую решетку металла переходной группы (Ti +3 , Cr +3 , V +2 , Со +2 , Ni +2 , Fe +2 , и т. д.), редкоземельных ионов (Ce +3 , Pr +3 , Nd +3 , Pm +3 , Sm +2 , Eu +2,+3 , Tb +3 , Dy +3 , Ho +3 , Er +3 , Yb +3 , и др.), и актиноидов, подобных U +3 . ионов отвечают только за генерацию. Физические свойства базового материала, такие как теплопроводность и имеют важное значение для эффективной работы лазера. Расположение атомов решетки вокруг легированного иона изменяет ее энергетические уровни. Различные длины волн генерации в активной среде достигаются путем легирования различных материалов одним и тем же ионом.

    Гольмиевый лазер

    Примером является квантовый генератор, в котором гольмий заменяет атом базового вещества кристаллической решетки. Ho:YAG является одним из лучших генерационных материалов. Принцип действия гольмиевого лазера состоит в том, что алюмоиттриевый гранат легируется ионами гольмия, оптически накачивается лампой-вспышкой и излучает на длине волны 2097 нм в ИК-диапазоне, хорошо поглощаемом тканями. Используется этот лазер для операций на суставах, в лечении зубов, для испарения раковых клеток, почечных и желчных камней.

    Полупроводниковый квантовый генератор

    Лазеры на квантовых ямах недороги, позволяют массовое производство и легко масштабируются. Принцип действия полупроводникового лазера основан на использовании диода с p-n-переходом, который производит свет определенной длины волны путем рекомбинации носителя при положительном смещении, подобно светодиодам. LED излучают спонтанно, а лазерные диоды - вынужденно. Чтобы выполнить условие инверсии заселенности, рабочий ток должен превышать пороговое значение. Активная среда в полупроводниковом диоде имеет вид соединительной области двух двумерных слоев.

    Принцип действия лазера данного типа таков, что для поддержания колебаний никакого наружного зеркала не требуется. Отражающая способность, создаваемая благодаря слоев и внутреннему отражению активной среды, для этой цели достаточна. Торцевые поверхности диодов скалываются, что обеспечивает параллельность отражающих поверхностей.

    Соединение, образованное одного типа, называется гомопереходом, а созданное соединением двух разных - гетеропереходом.

    Полупроводники р и n типа с высокой плотностью носителей образуют р-n-переход с очень тонким (≈1 мкм) обедненным слоем.

    Газовый лазер

    Принцип действия и использование лазера этого типа позволяет создавать устройства практически любой мощности (от милливатта до мегаватта) и длин волн (от УФ до ИК) и позволяет работать в импульсном и непрерывном режимах. Исходя из природы активных сред, различают три типа газовых квантовых генераторов, а именно атомные, ионные, и молекулярные.

    Большинство газовых лазеров накачиваются электрическим разрядом. Электроны в разрядной трубке ускоряются электрическим полем между электродами. Они сталкиваются с атомами, ионами или молекулами активной среды и индуцируют переход на более высокие энергетические уровни для достижения состояния населения инверсии и вынужденного излучения.

    Молекулярный лазер

    Принцип действия лазера основан на том, что, в отличие от изолированных атомов и ионов, в атомных и ионных квантовых генераторах молекулы обладают широкими энергетическими зонами дискретных энергетических уровней. При этом каждый электронный энергетический уровень имеет большое число колебательных уровней, а те, в свою очередь, - несколько вращательных.

    Энергия между электронными энергетическими уровнями находится в УФ и видимой областях спектра, в то время как между колебательно-вращательными уровнями - в дальней и ближней ИК областях. Таким образом, большинство молекулярных квантовых генераторов работает в далекой или ближней ИК областях.

    Эксимерные лазеры

    Эксимеры представляют собой такие молекулы как ArF, KrF, XeCl, которые имеют разделенное основное состояние и стабильны на первом уровне. Принцип действия лазера следующий. Как правило, в основном состоянии число молекул мало, поэтому прямая накачка из основного состояния не представляется возможной. Молекулы образуются в первом возбужденном электронном состоянии путем соединения обладающих большой энергией галогенидов с инертными газами. Населенность инверсии легко достигается, так как число молекул на базовом уровне слишком мало, по сравнению с возбужденным. Принцип действия лазера, кратко говоря, состоит в переходе из связанного возбужденного электронного состояния в диссоциативное основное состояние. Населенность в основном состоянии всегда остается на низком уровне, потому что молекулы в этой точке диссоциируют на атомы.

    Устройство и принцип действия лазеров состоит в том, что разрядную трубку наполняют смесью галогенида (F 2) и редкоземельного газа (Ar). Электроны в ней диссоциируют и ионизируют молекулы галогенида и создают отрицательно заряженные ионы. Положительные ионы Ar + и отрицательные F - реагируют и производят молекулы ArF в первом возбужденном связанном состоянии с последующим их переходом в отталкивающее базовое состояние и генерацией когерентного излучения. Эксимерный лазер, принцип действия и применение которого мы сейчас рассматриваем, может применяться для накачки активной среды на красителях.

    Жидкостный лазер

    По сравнению с твердыми веществами, жидкости более однородны, и обладают большей плотностью активных атомов, по сравнению с газами. В дополнение к этому, они не сложны в производстве, позволяют просто отводить тепло и могут быть легко заменены. Принцип действия лазера состоит в использовании в качестве активной среды органических красителей, таких как DCM (4-дицианометилен-2-метил-6-p- диметиламиностирил-4Н-пиран), родамина, стирила, LDS, кумарина, стильбена, и т. д., растворенных в надлежащем растворителе. Раствор молекул красителя возбуждается излучением, длина волны которого обладает хорошим коэффициентом поглощения. Принцип действия лазера, кратко говоря, заключается в генерации на большей длине волны, называемой флуоресценцией. Разница между поглощенной энергией и излучаемыми фотонами используется безызлучательными энергетическими переходами и нагревает систему.

    Более широкая полоса флуоресценции жидкостных квантовых генераторов обладает уникальной особенностью - перестройкой длины волны. Принцип действия и использование лазера этого типа как настраиваемого и когерентного источника света, приобретает все большее значение в спектроскопии, голографии, и в биомедицинских приложениях.

    Недавно квантовые генераторы на красителях стали использоваться для разделения изотопов. В этом случае лазер избирательно возбуждает один из них, побуждая вступить в химическую реакцию.

    Последние материалы раздела:

    Практические и графические работы по черчению б) Простые разрезы
    Практические и графические работы по черчению б) Простые разрезы

    Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...

    Третичное образование Третичное образование
    Третичное образование Третичное образование

    Чешская система образования развивалась на протяжении длительного периода. Обязательное образование было введено с 1774 года. На сегодняшний день в...

    Презентация земля, ее развитие как планеты Презентация на тему возникновения земли
    Презентация земля, ее развитие как планеты Презентация на тему возникновения земли

    Слайд 2 В одной галактике насчитывается около 100 миллиардов звезд, а всего в нашей Вселенной, предполагают учёные, существует 100 млрд...