Опыты с древесным углем. Реактивы и оборудование

Обзор материала

Введение

Адсорбционные явления чрезвычайно широко распространены в живой и неживой природе. Толщи горных пород и почвы являются огромными колоннами с адсорбентами, по которым перемещаются водные и газовые растворы. Легочная ткань млекопитающих подобна адсорбенту - носителю, на котором удерживается гемоглобин крови, обеспечивающий перенос кислорода в организм. Многие функции живой клетки связаны со свойствами их поверхности поглощать питательные вещества, поступающие извне. Даже такие наши чувства, как обоняние и вкус, зависят от адсорбции молекул соответствующих веществ в носовой полости и на языке.

Явление адсорбции известно очень давно. Такие природные материалы, как песок и почва, использовали для очистки воды еще на заре человеческого общества. В конце XVIII века К. Шееле и одновременно Ф. Фонтана обнаружили способность свежепрокаленного древесного угля поглощать различные газы в объемах, в несколько раз превышающих его собственный объем. Вскоре выяснилось, что величина поглощенного объема зависит от типа угля и природы газа.

Т.Е. Ловиц в 1785 году открыл явление адсорбции углем в жидкой среде, подробно исследовал его и предложил использовать уголь для очистки фармацевтических препаратов, спирта, вина, органических соединений. Ловиц показал, что древесный уголь способен быстро очищать испорченную воду и делать ее пригодной для питья. И сейчас основным действующим началом фильтров для воды служат углеродные материалы, конечно более современные, чем природные угли.

Адсорбция отравляющих веществ из воздуха была использована Н.Д. Зелинским при создании противогаза во время первой мировой войны .

Сегодня адсорбция составляет основу многих промышленных операций и научных исследований. Адсорбцию используют для очистки газов от примесей и вредных веществ, для извлечения из растворов ценных продуктов, например соединений редких металлов, для разделения различных химических веществ.

Исследования адсорбции, как процесса, происходящего на поверхности вещества, тесно связаны с развитием полупроводниковой техники, медицины, строительства и военного дела. Адсорбционные процессы играют ключевую роль при выборе стратегии защиты окружающей среды.

Цель исследования: поиск и изучение информации об адсорбции,постановка и описание опытов, демонстрирующих явление адсорбции.

Для достижения цели были поставлены следующие задачи:

1. Поиск и обобщение информации о явлении адсорбции.

2. Рассмотрение различных видов адсорбентов.

3. Постановка и описание опытов, демонстрирующих явление адсорбции.

4. Анализ результатов, полученных при проведении опытов по адсорбции.

5. Написание выводов и заключения о процессе изучения явления адсорбции.

6. Изготовление прототипов приборов, моделей.

7. Изучение всех возможностей такого процесса как адсорбция.

При написании работы были использованы следующие методы исследования: исторический метод, метод анализа литературы об адсорбции и её применении, экспериментальный метод.

Глава1

Адсорбция. Общие сведения

Адсорбция - поглощение газообразных или растворённых веществ поверхностью твёрдого вещества.

Обратный процесс - выделение этих поглощённых веществ - десорбция .

Адсорбция - всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между веществами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей из газа либо жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью (площадь поверхности 1 г адсорбента): пористый углерод (наиболее распространённая форма - активированный уголь), силикагели, цеолиты, а также некоторые другие группы природных минералов и синтетических веществ.

Вещество, на поверхности которого происходит адсорбция, называется адсорбентом , а поглощаемое из газа или жидкости вещество - адсорбатом . В зависимости от характера взаимодействия между молекулой адсорбата и адсорбентом адсорбцию принято подразделять на физическую адсорбцию и хемосорбцию . Менее прочная физическая адсорбция не сопровождается существенными изменениями молекул адсорбата. Она обусловлена силами межмолекулярного взаимодействия, которые связывают молекулы в жидкостях и некоторых кристаллах и проявляются в поведении сильно сжатых газов. При хемосорбции молекулы адсорбата и адсорбента образуют химические соединения. Часто адсорбция обусловлена и физическими и химическими силами, поэтому не существует чёткой границы между физической адсорбцией и хемосорбцией.

Величину адсорбции, то есть количество адсорбированного газа (или пара), выражают в разных единицах, но наиболее часто в молях адсорбированного вещества на 1 г адсорбента. Понятно, что величина адсорбции данного вещества тем выше, чем более доступная для этого вещества поверхность адсорбента. Поэтому в качестве характеристики твердых тел приводят величину удельной поверхности S.

Отдельные виды адсорбции (хемосорбция, адсорбция физическая, активированная адсорбция ) на практике часто протекают одновременно. Так весьма часто совмещаются физическая и активированная адсорбции, причем при низких температурах преимущественно протекает – первая, при высоких вторая. Несмотря на своеобразие рассмотренных явлений, не существует особых сил, обуславливающих адсорбцию. Здесь действуют лишь обычные силы взаимного притяжения между атомами и молекулами, в результате чего и возникают связи между поглощаемым веществом и поглотителем.

Так же этот процесс очень эффективен в улучшении экологи. Каждый день в атмосферу выделяется большое количество углекислого газа, что вызывает парниковый эффект и изменение климата. Углекислый газ наносит болшой вред на здоровье человека. Повышенная концентрация углекислого газа влияет на здоровье человека, поскольку под его воздействием снижается рН крови, что ведет к ацидозу, минимальным эффектом последствием ацидоза является состояние перевозбуждения и умеренная гипертензия. По мере возрастания степени ацидоза появляется сонливость и состояние беспокойства. Одним из следствий этих изменений является уменьшение желания проявлять физическую активность и получать от этого удовольствия. Ученые выяснили, что углекислый газ даже в невысоких концентрациях негативно влияет на клеточную мембрану человека и может приводить к таким биохимическим изменениям в организме, как увеличение СО 2, увеличение концентрации ионов бикарбоната, ацидоз и др., По своему воздействию углекислый газ так же токсичен для человека, как двуокись азота (NО 2)

Глава2

ПОВЕРХНОСТЬ КРИСТАЛЛА

Во время первой мировой войныГермания первая из держав применила химические боевые вещества. Когда было известно об этом преступлении великий учёный Николай Дмитриевич Зелинский изобрел специальный прибор, который защищал людей от боевых химических веществ. Данный прибор называется- угольная противогазовая маска, которая спасла жизни десяткам тысяч невинных людей. Разработанная Зелинским маска является прототипом современного противогаза. Коробочка, заполненная угольным порошком – главная часть противогаза. Тогда попытаемся понять на чём основано действие такого порошка и каким образом он может защитить от действия ядовитых газов.

Маленькие, да удаленькие

Допустим, что в коробочке противогаза находится кусок угля той же массы вместо угольного порошка. Интересно, что будет если с таким противогазом попасть в зону газовой атаки? Сможет ли он защитить от ядовитых газов? Оказывается нет. Вся проблема в порошке из коробочки. Ну тогда что же отличает порошок от простого куска угля?В противогазе используютcя специально подготовленный уголь, который называют активированным. Такой уголь имеет гораздо большую поверхность на единицу массы, тем самым отличается от обычного . Он напоминает изъеденное червями дерево, так как его частицы пронизаны порами. Площадь поверхности активированного угля на единицу массы, называемая удельной поверхностью, оказывается в миллионы раз больше удельной поверхности сплошного куска. Один грамм активированного угля имеет поверхность, превышающую 1000 м 2 . Вы только подумайте: маленький кусочек, специально подготовленный и размолоты в порошок, приобретает огромную поверхность. В таком порошке не малая часть молекул и атомов оказывается на поверхности. И именно этот факт объясняет защитное действие противогаза: так как поверхностные атомы угля «задерживают» атомы ядовитых газов, которые проходят в дыхательную маску. Тогда почему поверхностные атомы могут поглощать ядовитый газ, а в объёме- нет? Будем разбираться.

Почему атому неудобно на поверхности?

Нам хорошо известно, что кристалл имеет упорядоченную и симметричную решётку, в которой каждый атом занимает строго определённое место. Атомы кристалла в свою очередь взаимодействуют друг с другом, и в результате у каждого атома образуются устойчивые «связи» с его соседями. Число ближайших соседей у атома в данной кристаллической решетке называется координационным числом и является характеристикой кристалла. В любом месте внутри кристалла у атома всегда будет количество соседей, равное координационному числу. А если атом находится на поверхности?

Представим себе кристалл, который находится в вакууме. У атомов находящихся на поверхности, соседи есть не со всех сторон- с одной стороны атомы вообще отсутствуют(рис.1). Тем самым мы можем сделать вывод, что у атома на поверхности иное координационное число, чем у атома внутри кристалла.

Например, у атома изнутри кристалла с кубической решеткой (как на рис. 1) шесть соседей, а у атома на поверхности- лишь пять. Следовательно, часть возможных связей у поверхностного атомаостается незадействованной, и энергия такого атома больше, чем, атома, живущего внутри кристалла. Существование поверхности энергетически невыгодно, так как это увеличивает энергию кристалла в целом. Атомы поверхности стремятся уйти внутрь кристалла, окружить себя своими родными атомами, задействовать все возможные связи и тем самым уменьшить свою энергию. Однако любой реальный кристалл занимает ограниченную область пространства, поверхность существует, и кому-то надо на ней находится. Причем атомы оказываются на поверхности не за какие-либо «провинности», а случайно. Как в известной песне:»Пусть кому-то повезет, а кому-то нет».

Таким образом, мы видим, что образование поверхности связано с определенными энергетическими затратами, и основной характеристикой поверхности является поверхностная энергия - энергия, необходимая для создания поверхности единичной площади.

До сих пор мы говорили о кристалле в вакууме. Однако обычно веществанаходятся в реальной среде, и взаимодействие с окружающей средой начинается именно с поверхности.

Глава3

Виды адсорбентов

Адсорбенты делят нанепористые и пористые . Удельная поверхность непористых адсорбентов составляет от сотых долей до сотен м 2 /г. Можно оценить, как увеличивается поверхность кубика твердого тела с ребром в 1 см в результате раздробления на кубики одинакового размера с ребром 500 нм (1 нм=1×10 -9 м). Оказывается, поверхность маленьких кубиков возрастает в 20000 раз.

Пористые адсорбенты отличаются наличием системы пор (каналов), которые представляют собой полости в твердом теле, как правило соединенные между собой и имеющие различную форму и размеры. У большинства пористых тел внутренняя поверхность пор в десятки, сотни и даже тысячи раз больше, чем внешняя. Интересно, что 1 см 3 обычного пористого кремнезема обладает площадью поверхности около 90 м 2 .

Твердые тела или жидкости, имеющие большую удельную поверхность, применяемые для поглощения газов, паров или растворенных веществ. Активность адсорбентов характеризуется количеством вещества, поглощаемого единицей их массы или объема. Максимальная активность достигаемая к моменту равновесия при данных температуре и концентрации поглощаемого вещества в газовой фазе, есть равновесная статическая активность.

В качестве твердых поглотителей газов и паров могут выступать разнообразные материалы с высокой удельной поверхностью: пористый углерод (наиболее распространённая форма - активированный уголь), и минеральные адсорбенты: силикагель, алюмосиликагель, различные ионообменные смолы, цеолиты, а так же некоторые другие группы природных материалов и синтетических веществ.

3.1 Природные адсорбенты

Природные адсорбенты, получаемые из растительного или минерального сырья, также обладают развитой пористой структурой.

К природным адсорбентам относятся некоторые разновидности глин, трепелы, опоки, диатомиты,бокситы,серпентин, асканглина, крымский кил, натролит, каолин.

Хорошим природным адсорбентом являются донные осадки , особенно илистые. Они способны накапливать в себе повышенные концентрации загрязняющих веществ по сравнению с их содержанием в воде того же самого водоема.

Активированные угли - адсорбенты органического происхождения (из угля, торфа, древесных материалов, отходов бумажного производства, костей животных, скорлупы орехов, косточек плодов и т.д.).Активированными углями называются угли, специально обработанные для освобождения их пор от смолистых веществ и увеличения адсорбирующей поверхности. Очень часто углеродсодержащим материалом для получения активных углей служат вещества растительного происхождения. Поэтому название активированных углей часто связанно с названием исходного материала: древесный уголь, сахарный, кровяной, костяной.

Они обладают прекрасными адсорбирующими свойствами, благодаря своей пористой структуре, поглощают широкий спектр вредных веществ - яды, токсины, тяжёлые металлы, газы.

Активный оксидалюминия

Природные цеолиты (молекулярные сита) представляют собой кристаллы, для которых характерны поры строго определенных размеров,поэтому адсорбировать эти кристаллы могут лишь те молекулы, диаметр которых меньше или равен размерам поры применяемого адсорбента.Их применение весьма широко: от использования в качестве катализаторов многих процессов нефтехимии и нефтепереработки до наполнителя для кошачьего туалетаикормовых добавок для животных и птиц, восполняющих потребность в минералах и улучшающих обмен веществ за счет своих адсорбционных качеств.

Из природных цеолитов, в том числе высококремнистых кислотостойких форм известныклиноптилолит, морденит, эрионит. Содержание собственно цеолитов в некоторых месторождениях достигает 80-90%, а в отдельных случаях превосходит и эти величины. С разрабатываемых месторождений природные цеолиты поступают в виде образованных зернами неправильной формы фракций определенных размеров, получаемых дроблением и последующей классификацией соответствующих цеолитсодержащих пород. Однако присутствие в природных цеолитах различных примесей и сопутствующих пород, а также трудность обогащения сдерживают сколь-либо значительное их использование для решения задач очистки отходящих газов в промышленных условиях.

Силикагель представляет собой высушенный гель кремниевой кислоты. Силикагели получают обычно, действуя на жидкое стекло хлороводородной или серной кислотой. Производимые силикагели различают по размерам пор и частиц. Основное применение силикагели находят при осушке воздуха, углекислого газа, водорода, кислорода, азота, хлора и других промышленных газов.

3.2 Исскуственные адсорбенты

Алюмогели

Активный оксидалюминия получают из технического гидроксида алюминия обработкой его едким натром и осаждением азотной кислотой. Применяется в качестве осушителя в различных процессах химических, нефтехимических производств, в частности, при осушке природного газа и других углеводородных газов в сжиженном и газообразном состоянии.

Основные марки выпускаемого отечественной промышленностью активного оксида алюминия представляют собой цилиндрические гранулы диаметром 2,5-5,0 мм и длиной 3-7 мм, а также шариковые гранулы со средним диаметром 3-4 мм. Удельная поверхность алюмогелей составляет 170-220 м2/г, суммарный объем пор находится в пределах 0,6-1,0 см3/г, средний радиус пор и гравиметрическая плотность гранул цилиндрической и шариковой формы составляют соответственно (6-10)*10-9 и (3-4)*10-9 м и 500-700 и 600-900 кг/м3. В отличие от силикагелей алюмогели стойки к воздействию капельной влаги. Их используют для улавливания полярных органических соединений и осушки газов.

Цеолиты

Представляют собой алюмосиликаты, содержащие в своем составе оксиды щелочных и щелочно-земельных металлов и характеризующиеся регулярной структурой пор, размеры которых соизмеримы с размерами молекул, что определило и другое их название - «молекулярные сита». Общая химическая формула цеолитов Ме2/nО*Аl2О3*xSiO2*yН2О, (где Ме-катион щелочного металла, n-его валентность). Кристаллическая структура (алюмосиликатный скелет) цеолитов образована тетраэдрами SiO4 и А1O4, их избыточный отрицательный заряд компенсирован положительным зарядом катионов соответствующих металлов. Катионы цеолитов в определенных условиях их обработки могут замещаться на соответствующие катионы контактируемых с ними растворов, что позволяет рассматривать цеолиты как катионообменники. Поглощение вещества происходит в основном в адсорбционных полостях цеолитов, соединяющихся друг с другом входными окнами строго определенных размеров. Проникать через окна могут лишь молекулы, критический диаметр которых (диаметр по наименьшей оси молекулы) меньше диаметра входного окна.

Цеолиты получают синтетическим путем и добывают при разработке природных месторождений. Среди многих десятков различных синтетических цеолитов в решении задач газоочистки в основном используют производимые в промышленных масштабах цеолиты общего назначения марок NаА, СаА, СаХ, МаХ, характеризующиеся диаметром входного окна. Синтетические цеолиты выпускаются промышленностью в виде цилиндрических и шарообразных гранул, диаметр которых обычно составляет 2-5 мм, производимых с применением связующего материала (10-20% глины) или без него (в последнем случае механическая прочность гранул выше).

Цеолиты обладают наибольшей адсорбционной способностью по парам полярных соединений я веществ с кратными связями в молекулах.

Цеолит NаА может адсорбировать большинство компонентов промышленных газов, критический диаметр молекул которых не превышает 4*10-9м.

К таким веществам относятся Н2S, СS2, СО2, NН3, низшие диеновые и ацетиленовые углеводороды, этан, этилен, пропилен, органические соединения, содержащие в молекуле одну метильную группу, а при низких температурах сорбции также СН4, Nе, Аr, Кr, Хе, О2, N2, СО. Пропан и органические соединения с числом атомов углерода в молекуле более трех этим цеолитом не адсорбируются.

Цеолит СаА характеризуется повышенной стойкостью в слабокислой среде, что предопределяет возможность его использования в процессах декарбонизации и сероочистки газов. Этот цеолит способен адсорбировать углеводороды и спирты нормального строения.

Цеолиты типа Х адсорбируют все типы углеводородов, органические сернистые, азотистые и кислородные соединения, галоидозамещенные углеводороды, пента - и декаборан. При полном замещении катиона натрия на катион кальция цеолит СаХ в отличие от цеолита NaХ не адсорбирует ароматические углеводороды и их производные с разветвленными радикалами.

Цеолиты, так же, как силикагели и активный оксид алюминия, характеризуются значительной сорбционной способностью по парам воды. Наряду с этим цеолиты отличаются сохранением достаточно высокой активности по соответствующим целевым компонентам при относительно высоких (до 150- 250 °С) температурах. Однако по сравнению с другими типами промышленных адсорбентов они имеют относительно небольшой объем адсорбционных полостей, вследствие чего характеризуются сравнительно небольшими предельными величинами адсорбции. Гравиметрическая плотность синтетических цеолитов составляет 600-900 кг/м3.

Иониты

Иониты - высокомолекулярные соединения - пока еще не нашли широкого применения для очистки отходящих газов промышленности. Однако проводятся исследования по; извлечению из газов кислых компонентов (оксидов серы и азота, галогенов и т. п.) на анионитах и щелочных - на катионитах .

Глава 4

Собственные исследования адсорбционных свойств различных адсорбентов

ОПИСАНИЕ ОПЫТА №1(использование активированного угля)

Очень хороший адсорбент - уголь. Причем не каменный, а древесный, и не просто древесный, а активный (активированный). Такой уголь продают в аптеках, обычно в виде таблеток. С него и начнем опыты по адсорбции.

Приготовить бледный раствор чернил любого цвета и налить в пробирку, но не доверху. Положить в пробирку таблетку активного угля, лучше растолченного, закрыть пальцем и встряхнуть как следует. Раствор посветлеет на глазах. Поменяли раствор на другой, тоже окрашенный - разбавленная гуашь. Эффект окажется таким же. А если взять просто кусочки древесного угля, то они будут поглощать краситель значительно слабее.

В этом нет ничего странного: активный уголь отличается от обычного тем, что у него гораздо большая поверхность. Его частицы буквально пронизаны порами (для этого уголь особым способом обрабатывают и удаляют из пего примеси). А коль скоро адсорбция - это поглощение поверхностью, то ясно: чем больше поверхность, тем и поглощение лучше.

Результаты опыта представлены в (приложении 2)

ОПИСАНИЕ ОПЫТА №2 (использование активированного угля, кукурузных палочек)

1.Адсорбенты способны поглощать вещества не только из растворов. Взять стеклянную колбу, капнуть на дно одну каплю одеколона или любого другого пахучего вещества. Поставить колбу на спиртовку, чтобы немного нагреть пахучую жидкость - тогда она будет быстрее испаряться и сильнее пахнуть. Легкими взмахами руки направить к носу воздух вместе с парами вещества.

Запах чувствуется явственно. Теперь положим в склянку немного активированного угля, закрыть ее плотно крышкой и оставьте на несколько минут. Снять крышку и вновь направить воздух к себе взмахами ладони. Запах исчез. Он поглотился адсорбентом, или, точнее, поглотились молекулы летучего вещества, которое поместили в банку.

2.Очень хороший адсорбент - воздушная кукуруза, или кукурузные палочки, столь любимые многими из нас. Конечно, тратить на опыт пакет или даже четверть пакета нет смысла, но несколько штук... Предыдущий опыт с пахучими веществами повторить в присутствии кукурузных палочек - и запах совершенно исчезнет. Конечно, после опыта есть палочки уже нельзя.

Результаты опыта представлены в (приложении 1)

Глава 5

АДСОРБЦИОННЫЕ МЕТОДЫ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ

Адсорбция жидкостями применяется в промышленности для извлечения из газов диоксида серы, сероводорода и других сернистых соединений, оксидов азота, паров кислот (НСI, HF, H2SO4), диоксида и оксида углерода, разнообразных органических соединений (фенол, формальдегид, летучие растворители).

Адсорбционный метод реализует процессы, происходящие между молекулами газов и жидкостей. Если отсутствует взаимодействие между распыливающейся жидкостью и орошаемым газом, то эффективность поглощения компонентов из паровоздушной смеси определяется только равновесием пар-жидкость.

Скорость поглощения газа жидкостью зависит от:

а) диффузии поглощаемых веществ из газового потока к поверхности соприкосновения с поглощающей жидкостью;

б) перехода газовой частицы к поверхности жидкости;

в) диффузии абсорбированных веществ в промывной жидкости, где устанавливается равновесие;

г) химической реакции (если она имеет место).

Абсорбционная очистка применяется как для извлечения ценных компонентов из газового потока и возврата их снова в технологический процесс для повторного использования, так и для поглощения из выбросных газов вредных веществ с целью санитарной очистки газов. Обычно рационально использовать абсорбционную очистку, когда концентрация примесей в газовом потоке превышает 1%(об). В этом случае над раствором существует определенное равновесное давление поглощаемого компонента, и поглощение происходит лишь до тех пор, пока его парциальное давление в газовой фазе выше равновесного давления его над раствором. Полнота извлечения компонента из газа при этом достигается только при противотоке и подаче в абсорбер чистого поглотителя, не содержащего извлекаемого вещества.

5.1 Применение адсорбционной очистки

Адсорбционная очистка - непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цикла очистки. Применение абсорбционного метода очистки обусловлено высокой интенсивностью абсорбционных процессов, позволяющей создавать высокопроизводительные газоочистные установки, возможностью применения метода для очистки газов, содержащих и вредные газы, и пыль, и, наконец, наличием огромного опыта эксплуатации абсорбционного оборудования в различных технологических процессах и в первую очередь в химической технологии .

5.2 Недостатки и преимущества адсорбционного метода очистки газов

Адсорбционный метод очистки газов не свободен от определенных недостатков, связанных, прежде всего, с громоздкостью оборудования. Этот метод достаточно капризен в эксплуатации и связан с большими затратами. К недостаткам абсорбционного метода следует отнести также образование твердых осадков, что затрудняет работу оборудования, и коррозионную активность многих жидких сред. Однако, не смотря на эти недостатки, абсорбционный метод еще широко применяется в практике газоочистки, так как он позволяет улавливать наряду с газами и твердые частицы, отличается простотой оборудования и открывает возможности для утилизации улавливаемых примесей

ЗАКЛЮЧЕНИЕ

В ходе выполнения научной работы было изучено большое количество литературного материала по адсорбции паров пористых углеродных материалов, полученных из различного углеродсодержащего сырья. Так же мной были сделаны прототипы приборов и модели, которые явно показывают эффективность адсорбции.

Современное мировое производство пористых углеродных материалов приближается к одному миллиону тонн в год. На данный момент перспективным направлением является получение сорбентов из различных отходов деревопереработки и не древесного растительного сырья. Такое использование отходов различных производств позволяет одновременно решать экологическую проблему их утилизации и расширить перечень сорбентов, пригодных для использования в различных областях. В настоящее время из древесины производят около 36% углеродных сорбентов, из каменных углей - 28, из бурых углей - 14, из торфа - 10, из скорлупы кокосовых орехов - около 10%.

Масштаб использования сорбентов для решения экологических задач лимитируется их стоимостью. Привлечение дешевых сырьевых источников и разработка эффективных технологических решений их переработки позволяет существенно снизить стоимость товарного продукта.

Важнейшим сырьем для получения активных углей является древесина (в виде опилок), древесный уголь, торф, торфяной кокс, некоторые каменные и бурые угли, а также полукокс бурых углей.

Приложения

Презентация

Приложения:

Скачать материал

Приведенные ниже простые опыты по химии связаны с изучением программного материа­ла школьного курса химии.

Необходимо иметь батарейку для карманного фонаря, тонкую медную проволоку длиной 15-20 см с эмалированной изоляцией, стержни простых каран­дашей, активированный уголь в ви­де черных таблеток под названием «карболен» (продается в аптеках), по 1 г трех-четырех образцов удоб­рений, спринцовку и некоторые другие вещи, которые всегда най­дутся дома. Какие вещества и обо­рудование необходимо брать для проведения опыта, видно из описа­ния самих опытов, а также по ри­сункам.

1. Скорость реакции зависит от концентрации электролита

В две пробирки опустить кусочки яичной скорлупы, например по 6 штук, одинаковые по площади. В первую пробирку налить 0,5-1 мл уксусной кислоты, во вторую - столько же кислоты, но разбавленной в 5-6 раз водой. Вставить в пробирки газоотводные трубки, свободные концы которых опустить в банки с водой. Обе пробирки закрепить в держал­ках. Установить по числу выделяю­щихся пузырьков, в которой из про­бирок скорость реакции большая. Этот опыт наглядно демонстрирует, что с уменьшением концентрации электролита - в данном случае при разбавлении водой кислоты - увеличивается число ионов (рас­павшихся молекул) и скорость реакции.

2. Гидролиз солей

В четыре флакона налить по 3-4 мл воды. В один добавить древесную золу (карбонат калия), в другой-3-4 капли силикатного клея (силикаты натрия и калия), в третий - крошки мыла (мыла-это соли высших жирных кислот), в четвертый - поваренную соль (хлорид натрия). Через 2-3 мин после растворения веществ растворы разлить на две части для испытания индикаторами - лакмусом и фенолфталеином. Хорошо, если школьник заполнит таблицу, указав в ней не только окраску индикатора (и, следовательно, сделав вывод о характере раствора - кислом или щелочном), но и уравнения гидролиза.

3. Электролиз раствора хлорида натрия

Присоединить провода к батарейке от карманного фонаря. Провод-анод (плюс) вставить в свежий срез клубня картофеля (среда, в которой распределяется раствор соли). Провод-катод (ми­нус) с укрепленным на нем гвоз­диком также вставить в срез кар­тофеля (на расстоянии 1,5-2 см от первого электрода). На срез кар­тофеля нанести 3-4 капли раство­ра поваренной соли. У гвоздика поместить измельченный кусочек пургена. В таком положении ос­тавьте установку на 15-20 мин. Какие изменения происходят на срезе картофеля и чем их объяснить? (Точно так же можно провести опыт с электролизом раствора поварен­ной соли, взяв вместо клубня кар­тофеля срез соленого огурца)

4. Электролиз раствора хлорида натрия с применением бумажной диафрагмы

В стаканчик налить раствор поваренной соли и разгородить сосуд бумажной перегородкой. Опустить в раствор стержни от карандаша - в разные отделения, верхние концы стержней соединить проводами с батарейкой. В катодное пространство опустить кусочек пургена (фенолфталеин) и наблюдать за происходящими изменениями. Как изменяется окраска жидкости в катодном пространстве? Какой газ выделяется на поверхности катода? Определить по запаху выделяющийся у анода газ.

5. Распознавание важнейших удобрений

Девятиклассники изучают пятую группу периодической системы элементов, подробно знакомясь с физическими и химическими свойствами азота и фосфора. Предлагаемые опыты не требуют каких-либо специальных реактивов. Практически для распознавания многих удобрений вполне достаточно воспользоваться лишь тлеющим угольком, стальным пером и пламенем.

Предполагается, что в трех бу­мажных пакетиках имеются образ­цы удобрений из следующих воз­можных: селитры (калийная, нат­риевая, кальциевая, аммиачная), сульфат аммония, карбамид, хлорид калия.

Ознакомиться с физическими свойствами образца удобрения (цвет, кристалличность, раствори­мость в воде и др.) и кратко описать их. В ходе анализа необходимо использовать бесцветное пламя го­рящего одеколона, газа, тлеющий уголек. (При анализе образца тлею­щим угольком держать его - на стальном пере - над блюдцем или тарелкой с водой!) Появление плот­ного «дыма», плавление кристаллов и запах аммиака укажут на нали­чие карбамида.

Запах аммиака появляется и в случае, если мы имеем дело с кристаллами сульфа­та аммония или аммиачной селитры. Но кристаллы карбамида никогда не дают вспышек на тлеющем уголь­ке, а кристаллы сульфата аммония и аммиачной селитры не образуют интенсивного (плотного) «дыма».

Для обнаружения в составе удоб­рения солей натрия, калия или каль­ция окраску пламени можно сделать более наглядной: на конец лучинки намотать немного ваты, смочить ее одеколоном, поджечь и в пламя внести несколько кристаллов ис­следуемого образца удобрения на кончике пера, вставленного в ручку. Окраску кальциевой селитры можно спутать с фиолетовой окраской соли калия. Чтобы различить их, надо сделать дополнительный анализ: отфильтровать приготовленный раствор золы (пользоваться им как раствором карбоната калия) и при­лить к нему раствор исследуемого образца удобрения. Появление бе­лого осадка укажет на кальциевую селитру. (Почему?)

В такой же последовательности провести анализ других образцов удобрений. Рекомендуем заполнить таблицу, в которой указать физи­ческие свойства вещества, окраши­вание пламени, действие на тлею­щий уголек, взаимодействие с ра­створом золы, сделанный вывод и формулу образца.

6. Как адсорбирует активированный уголь

В трубочку на тонкий рыхлый слой ваты по­местить слой угля (растолочь таб­летку карболена; если ее нет, мож­но воспользоваться измельченным древесным углем липы, березы), потом - тонкий слой промытого речного песка, чтобы уголь не всплывал. Закрепить трубочку в вертикальном положении с помощью проволочки. Для собирания жид­кости, прошедшей через слой угля-адсорбента, можно воспользовать­ся флаконами, стаканами, а еще лучше узкой рюмкой. Капельницей в верхнюю часть трубочки налить 7-8 капель раствора чернил и на­блюдать за тем, что происходит.

7. Адсорбция углем газов

Два одинаковых флакона (в один из них предварительно насыпать на дно уголь - 2-3 измельченных таблет­ки) заполнить оксидом углерода (IV). Его можно получить, напри­мер, действием уксусной эссенции на яичную скорлупу. Вставить во флаконы газоотводные трубки, на­конечники которых опустить в банку с раствором чернил. Для большей устойчивости и удобства флаконы также опустить в стеклянные бан­ки. Наблюдать за происходящими изменениями. В каком из наконеч­ников раствор поднимается выше? Как это можно объяснить?

8. Адсорбционные свойства гли­ны.

Приготовить (по 2 мл) раство­ры: чернил, перманганата калия и сок столовой свеклы. Поставить три флакона, поместить в них вер­тикально трубки и на маленький ватный тампон насыпать предвари­тельно прокаленную и измельченную глину толщиной 1,5-2 см. Отфиль­тровать приготовленные растворы. Что получилось и почему?

9. Использование электролиза для «сверления» стального изделия.

При­готовить в блюдце насыщенный раствор поваренной соли. Соеди­нить проводом лезвие безопасной бритвы с положительным полюсом батарейки. Это лезвие будет ано­дом. Заточить карандаш, обломить заточенный кончик стержня, но так, чтобы на этом конце карандаша получилось углубление 0,5-1 мм. На 1,5-2 см выше обнажить стер­жень и намотать на него провод, присоединенный к отрицательному полюсу батарейки. Таким образом, стержень карандаша будет катодом.

Положить лезвие в блюдце с раствором соли и коснуться каранда­шом-катодом лезвия. Чтобы карандаш устойчиво находился в таком положении, закрепить его. Необхо­димо помнить, что если стержень заостренного конца карандаша бу­дет касаться металла, электролиз не произойдет. (Почему?)

Поста­вить установку на 20-30 мин и наблюдать за изменениями. Какой газ выделяется вокруг карандаша? Почему лезвие-анод в месте при­косновения карандаша будет раст­воряться и образуется отверстие? Как изменяется окраска жидкости в блюдце?

Из журнала «Семья и школа»


Активированный уголь далеко не такая простая вещь, как может показаться на первый взгляд. Нет, сам уголь вещь чрезвычайно простая, однако именно в этом и заключается его самая сильная сторона. Именно это позволяет использовать активированный уголь для самых разных целей и задач.

1. Поглотитель запахов в холодильнике



Неприятные запахи в холодильнике – распространенная проблема, с которой сталкиваются многие хозяйки. Найти причину и справиться с этой проблемой бывает непросто так, как некоторые «ароматы» не исчезают даже после разморозки и тщательного мытья холодильника. В таком случае следует воспользоваться активированным углем и серым хлебом. Разложите таблетки и кусочки хлеба на всех полках холодильника и через пол дня от запахов не останется и следа.

2. Плесень и грибок дома



В местах повышенной влажности со временем появляется плесень и грибок, справиться с которой бывает непросто. Однако, такую неприятность можно избежать, раскладывая таблетки угля в непроветриваемых местах с повышенной влажностью таких, как шкафчики ванной, подоконники, кладовка и санузел.

3. Фильтр для воды



Уголь прекрасно впитывает в себя промышленные отходы, пестициды и химикаты, содержащиеся в воде. Поэтому, таблетки активированного угля можно использовать для очистки воды. Для этого понадобятся два тканевых круга, соответствующих диаметру емкости, которую вы будете заполнять водой. Сшейте тканевые круги, оставив небольшое отверстие, выверните изделие наизнанку, заполните измельченным углем и закрепите на горлышке емкости с помощью тонкой проволоки или ниток.

4. Ароматизатор воздуха



Активированный уголь способен не только впитывать запахи, но и распространять их. Поэтому таблетки угля можно использовать в качестве бюджетных ароматизаторов воздуха. Просто смочите несколько таблеток угля в любимом эфирном масле и разложите их по дому.

5. Неприятный запах ног



Людям, чьи ноги сильно потеют и источают не лучший аромат, стоит задуматься об изготовлении специальных стелек с измельченным активированным углем. Такие стельки будут впитывать пот, неприятные запахи и сделают процесс носки закрытой обуви более комфортным.

6. Маска от черных точек



Оказывается, нашумевшую черную маску от угрей можно приготовить самостоятельно буквально за копейки. Для этого нужно измельчить 3 таблетки активированного угля, добавить столовую ложку желатина, залить смесь тремя столовыми ложками воды или желатина и тщательно размещать. Полученную субстанцию следует нанести на проблемные участки кожи, оставить на 15 минут, а после резким движением снять.

7. Средство от похмелья



Наверняка, многим знакомы неприятные ощущения, которые проявляются утром после веселой вечеринки. Предотвратить тошноту, головную боль и слабость поможет доза активированного угля, принятая перед вечеринкой.

8. Косметический лед



Кубики льда с активированным углем – прекрасное средство, которое позволит освежить и омолодить кожу, а также нормализовать работу сальных желез. Для приготовления такого льда, измельченные таблетки угля нужно смешать с водой (1 таблетка на 100 грамм воды), залить в форму и использовать для утреннего умывания.

9. Чистота волос



Адсорбирующие свойства активированного угля прекрасно очищают фолликулы волос и кожу головы. Просто смешайте измельченную таблетку угля с порцией шампуня и помойте полученной смесью голову. Такая процедура позволит устранит жирный блеск и продлить эффект чистых волос.

10. Скраб для тела



Активированный уголь прекрасно средство для очищения кожи. Измельчите упаковку таблеток, смешайте получившийся порошок с жидким медом и используйте в качестве скраба для очищения тела. Такое средство лучше всего наносить на распаренную кожу и использовать не чаще одного раза в неделю.

11. Тушь для ресниц



На основе активированного угля можно приготовить тушь для ресниц, которая придется по душе любительницам натуральной косметики или здорово выручить в случае если обычной туши нету под рукой. Для изготовления туши измельченные таблетки угля нужно смешать с несколькими каплями масла жажоба или соком алоэ, тщательно перемещать, перелить в подходящую емкость и использовать, как обычную тушь.

Видео-бонус:

12. Средство для умывания



Благодаря своим адсорбирующим свойствам, активированный уголь прекрасно очищает поры, убирает излишки кожного сала, способствует заживлению прыщей и разглаживанию морщин. Поэтому измельченные в порошок таблетки угля можно использовать для ежедневного умывания.

13. Детокс эффект



Холестерин, пестициды, гормоны роста, химикаты и прочие вредные вещества, которые мы ежедневно поглощаем вместе с продуктами питания, негативно влияют на наш организм, внешний вид и общее самочувствие. Вывести из организма негативные вещества, поможет активированный уголь. Для этого в течении десяти дней перед едой нужно выпивать по 10 таблеток угля, распределяя их на три части (завтрак, обед и ужин). К концу курса вы почувствуете легкость и прилив сил.

Видео-бонус:

В продолжение темы , которые могут пригодиться.

Главная > Исследование

IV Соревнование молодых исследователей программы «Шаг в будущее»

в Северо-Западном федеральном округе РФ

XII Региональная научная и инженерная выставка молодых исследователей «Будущее Севера»

Направление: Естественные науки и современный мир

Секция: химия

АДСОРБЦИЯ КАК МЕТОД ОЧИСТКИ ХИМИЧЕСКИХ ОТХОДОВ

ученица 9 А класса

МОУ лицей имени В.Г. Сизова г. Мончегорска.

Научный руководитель:

Семичева Валентина Фирсовна

Учитель химии I квалификационной категории

МОУ лицей имени В.Г. Сизова г. Мончегорска

Ирина Анищенко

АДСОРБЦИЯ КАК МЕТОД ОЧИСТКИ ХИМИЧЕСКИХОТХОДОВ

Муниципальное общеобразовательное учреждение

лицей имени В.Г. Сизова г. Мончегорска Мурманской области

Научная статья.

Введение………………………………………………………………………………4 Основная часть…………………………………………………………………….….6 1.Теоретическое исследование………………………………………………………6 1.1.Что такое адсорбция?..............................................................................................6 1.2.Зависимость адсорбции от площади поверхности адсорбента ………………..7 1.3.Опыт №1. ………………………………………………………………………....7 1.4.Адсорбция газов………………………………………………………………….7 1.5.Опыт №2………………………………………………………………………….7 1.6.Адсорбция из растворов………………………………………………………....8 1.7.Опыт№3………………………………………………………………………..…9 1.8.Выводы теоретического исследования…………………………………….…..9 2Исследование…………………………………………………………………….…9 2.1. Опыт№1- адсорбция глины и наполнителя из мела…………………………..9 2.2.Опыт №2- улучшение свойств адсорбции глины…………………………….10 2.3.Опыт №3- адсорбция разливов кислоты и щелочи……………………….…..11 2.4.Выводы исследования……………………………………………………….…12 3Общие выводы…………………………………………………………………….13 Заключение………………………………………………………………………….14 Источники информации……………………………………………………………15

Адсорбция.

План исследования.

Цель: изучить явление адсорбции, приготовить универсальный адсорбент для химической лаборатории. Задачи: 1.Изучить явление адсорбции на примере активированного угля, используя методы качественного и количественного анализа. 2.Изучить другие адсорбенты: глину, наполнитель из мела. 3.Сравнить адсорбенты, выявить преимущества. 4. Создать универсальный адсорбент для химической лаборатории. 5.Оформить результаты. 6.Представить результаты на конференции. Объект исследования: явление адсорбции. Предмет исследования : свойства различных адсорбентов. Гипотеза: если есть адсорбенты, обладающие определенными свойствами; действием на определенные вещества, то в химической лаборатории необходим адсорбент широкого спектра действия.

Введение.

Инициатива использования отравляющих веществ в качестве оружия массового уничтожения принадлежит германскому империализму. Хлор был впервые применен 22 апреля 1915 года на Западном фронте недалеко от бельгийского города Ипра против англо-французских войск. Вдыхание хлора вызывает удушье, тяжелое воспаление дыхательных путей, отек легких и смерть. Было выпущено 180 т хлора в течении 5 мин из 6 тысяч баллонов на фронте шириной 6 км. Первая атака хлором лишила боеспособности целую дивизию, оборонявшую участок. 15 тыс. человек было выведено из строя, из них 5 тыс. навсегда. Почти через месяц газовая атака была повторена на Восточном фронте против русских войск у местечка Воля Шидловска, в Польше. На участке фронта в 12 км при ветре, дувшем в сторону русских позиций, было выпущено из 12 тысяч баллонов более 150 т ядовитого газа. Внезапность нападения и полная беззащитность против ядовитого действия газа вызвали массовые и тяжелые поражения. «Газы» в эту ночь вывели из строя целую дивизию. Передовые линии, представляющие собой сплошной лабиринт окопов и ходов сообщения, были завалены трупами и умирающими людьми. Из строя выбыло 9 тыс. человек. Начавшаяся химическая война готовила человечеству неисчислимые жертвы и страдания. От этих жертв человечество спас древесный уголь. Профессор, Н. Д. Зелинский, выдающийся химик и ученый, изобрел, провел испытания и в 1915 г. предложил противогаз, действующий на основе явления адсорбции. Вдыхание отравленного воздуха через противогаз целиком освобождало воздух от ядовитых примесей и защищало солдат от действия отравляющих веществ. Способность некоторых материалов поглощать другие вещества, иногда ядовитые, используют и по сей день. Происходят разливы нефти при ее транспортировке. Можно эту нефть собрать другими веществами-поглотителями. Происходят разливы кислот при их транспортировке. Можно нейтрализовать эти разливы кислот и собрать продукты адсорбентами. Вопрос утилизации некоторых веществ, очистки веществ от примесей актуален до сих пор. Цель: изучить явление адсорбции, приготовить универсальный адсорбент для кабинета химии. Задачи:1. Изучить явление адсорбции на примере активированного угля, используя методы качественного и количественного анализа.

2.Изучить другие адсорбенты: глину, наполнитель из мела. 3.Сравнить адсорбенты, выявить преимущества. 4.Создать универсальный адсорбент для кабинета химии. 5.Оформить результаты исследования. 6.Представить результаты исследования на конференции. Объект исследования: явление адсорбции. Предмет исследования: свойства различных адсорбентов. Гипотеза: если есть адсорбенты, обладающие определенными поглотительными свойствами; действием на определенные вещества, то в химической лаборатории необходим универсальный адсорбент, широкого спектра действия.

Основная часть.

1.Теоретическое исследование Методы: анализ, обобщение, химический эксперимент. 1.1.Открытие явления адсорбции. Явление адсорбции было открыто в 1785 г. русским ученым Ловицем. Изучая свойства угля, Ловиц обнаружил, что это вещество обладает замечательной способностью поглощать (адсорбировать) различные вещества(газы, растворенные в воде краски). Ловиц указал на возможность использования этих свойств угля для практических целей. Например, для очистки питьевой воды на кораблях. Адсорбция(лат.ad-на; при; sorbeo-поглощаю)-процесс концентрирования вещества из объема фаз на границе их раздела. В более узком смысле под адсорбцией понимают поглощение примесей из газа или жидкости твердым веществом-адсорбентом. Адсорбционная способность угля объясняется особыми условиями, в которых находятся частицы на их поверхности.

Если внутри вещества все силы, действующие между частицами, уравновешены, то на поверхности в равновесии находятся только те силы, которые направлены внутрь вещества. Вследствие этого у поверхности адсорбента создается силовое поле, благодаря которому и притягиваются частицы газа или раствора к поглотителю. Процесс идет самопроизвольно. 1.2.Зависимость адсорбции от площади поверхности адсорбента. Адсорбционные свойства определяются величиной поверхности адсорбента. Адсорбент способен поглощать тем большее количество вещества, чем больше его поверхность. Поверхность зависит от степени измельчения адсорбента. 1.3.Опыт№1. 6 Цель: установить зависимость адсорбции от площади поверхности адсорбента. Задачи: -провести хим. эксперимент адсорбции хлора активированным углем с разной площадью адсорбента; -вести наблюдение за адсорбцией хлора; -наблюдения записать в дневник, проанализировав, сделать вывод. Методика: (опыт проводим в вытяжном шкафу) Колбы №1,№2 заполняются хлором. Это газ желто-зеленого цвета. В колбу№1 помещаем 2 таблетки активированного угля, колбу закрываем пробкой, встряхиваем, засекаем время, за которое происходит поглощение хлора углем. Газ поглотился за 30 сек. В колбу№2 помещаем измельченные 2 таблетки активированного угля. Колбу закрываем пробкой, встряхиваем, засекаем время, за которое происходит поглощение хлора углем. Газ поглотился за 5 сек. Вывод: с увеличением площади поверхности адсорбента скорость адсорбции увеличивается, значит, увеличивается и количество поглощаемого вещества. Следовательно, хорошими адсорбентами могут быть такие материалы, которые обладают сильно развитой поверхностью, что свойственно веществам, имеющим пористую, губчатую структуру. 1.4.Адсорбция газов. Газы неодинаково адсорбируются активированным углем. Существует зависимость адсорбции газа от его температуры кипения. Трудно адсорбируются газы, которые трудно сжижаются(О 2). Хорошо адсорбируются газы, которые легко сжижаются (SO 2 , Cl 2 , NH 3). 1.5.Опыт №2 Цель: установить зависимость адсорбции газов от их температуры кипения. Задачи:- провести адсорбцию хлора, аммиака, кислорода активированным углем; - вести наблюдения за химическим экспериментом; - наблюдения записать в дневник, проанализировав, сделать вывод. Методика: (опыты проводим в вытяжном шкафу) 7 Колба №1 заполняется хлором. Это газ желто-зеленого цвета. Температура кипения- -34,1 0 С. В колбу помещаем 2 таблетки активированного угля. Колбу закрываем пробкой, встряхиваем. Через 5 секунд желто-зеленый цвет исчез. Хлор поглотился активированным углем. Колба №2 заполняется аммиаком. Это бесцветный газ. Температура кипения аммиака - 35 0 С. Газ доказываем влажной полоской универсального индикатора. Полоска приобретает насыщенный синий цвет у отверстия колбы. В колбу помещаем 2 таблетки активированного угля, закрываем пробкой, встряхиваем.Через сутки проверяем наличие аммиака у отверстия колбы. Влажная полоска универсального индикатора приобретает слабый синий цвет. Большая часть газа поглотилась активированным углем. Колба №3 заполняется кислородом. Это бесцветный газ. Температура кипения кислорода- -183 0 С. Газ доказываем тлеющей лучинкой. Лучинка ярко загорается. В колбу помещаем 2 таблетки активированного угля, закрываем пробкой, встряхиваем. Через сутки проверяем газ тлеющей лучинкой у отверстия колбы. Лучинка ярко вспыхивает. Газ почти не поглотился активированным углем. Вывод: данный химический эксперимент подтвердил закономерность: с уменьшением температуры кипения газа понижается его адсорбция. 1.6. Адсорбция из растворов. Активированный уголь адсорбирует не только газы, адсорбирует и растворенные вещества. Существует зависимость величины адсорбции от концентрации растворенного вещества. 1.7.Опыт №3. Цель: установить зависимость адсорбции растворенного вещества от концентрации растворенного вещества. Задачи: - провести адсорбцию ненасыщенного и насыщенного растворов фуксина активированным углем; -вести наблюдение за химическим экспериментом; -наблюдения записать в дневник, проанализировав, сделать вывод. Методика: 8 Колба №1 наполовину заполняется ненасыщенным раствором фуксина (раствор имеет розоватый цвет). В раствор помещаем 3 таблетки измельченного активированного угля. Оставляем на сутки. Колба №2 наполовину заполняется насыщенным раствором фуксина (раствор имеет насыщенный розовый цвет). Через сутки наблюдаем следующее. Раствор фуксина в колбе №1,№2 прозрачный, т. е. краситель из раствора поглотился. Вывод: с увеличением концентрации растворенного вещества адсорбция увеличивается. Выводы теоретического исследования. 1.Адсорбция – процесс самопроизвольный. 2.С увеличением площади поверхности адсорбента адсорбция увеличивается. 3.Адсорбенты поглощают газы, растворенные вещества. 4.С уменьшением температуры кипения газа адсорбция уменьшается. 5.С увеличением концентрации растворенного вещества адсорбция увеличивается. 6.Адсорбция- процесс обратимый.

2. Исследование.

Методы: химический эксперимент, наблюдение, сравнение. Цель: приготовить универсальный адсорбент для кабинета химии. Задачи: - исследовать другие материалы на способность поглощать вещества: глину, наполнитель из мела; - сравнить адсорбционные свойства исследуемых веществ, выявить преимущества; - создать универсальный адсорбент для кабинета. Адсорбцией обладают многие вещества. 2.1. Опыт№1. Цель: исследовать адсорбционные свойства глины, наполнителя из мела. Задачи:- провести адсорбцию раствора перманганата калия глиной и наполнителем из мела;9 - вести наблюдение за химическим экспериментом; - наблюдения записать в дневник,проанализировав, сделать вывод. Методика: Воронка №1 заполняется наполовину измельченной глиной. Через слой глины пропустим 50 мл раствора перманганата калия (р-р фиолетового цвета). Наблюдаем, что из воронки выходит прозрачный фильтрат. Ионы марганцевой кислоты адсорбировались глиной. Адсорбция прошла за 30 мин. Глина приобрела вид пластичной массы, через которую трудно проходит раствор. Воронка №2 наполовину заполняется наполнителем из мела. Через слой наполнителя пропустили 50 мл раствора перманганата калия. Наблюдаем, что из воронки выходит фиолетовый фильтрат. Ионы марганцевой кислоты не адсорбировались наполнителем из мела. Вывод. 1. Глина-адсорбент. Адсорбция глиной идет медленно, т.к. частицы глины слипаются, образуя вязкую массу, затрудняющую прохождение раствора. 2.Наполнитель из мела не обладает свойствами адсорбента. 2.2.Опыт№2. Цель: улучшить адсорбционные свойства глины; Задачи:- провести адсорбцию раствора перманганата калия смесью из глины и песка; - провести адсорбцию раствора перманганата калия смесью из глины; песка; и наполнителя из мела; - вести наблюдение за химическим экспериментом; - наблюдения записать в дневник, проанализировав, сделать вывод. Методика: Воронка №1 заполняется наполовину смесью: 1 ч. глины и 1 ч. песка. Через смесь пропустить 50 мл раствора перманганата калия. Наблюдаем, что из воронки выходит прозрачный фильтрат. Адсорбция прошла за 2 минуты. 10 Вывод. Песок улучшает адсорбцию глины. Песок- разрыхлитель, препятствует слипанию частиц глины, обеспечивает насыщаемость жидкостью по микрокапилярам всего слоя адсорбента. Воронка №2 наполовину наполняется смесью: 1 ч. глины, 1 ч. песка, 1 ч. наполнителя. Через смесь пропускаем 50 мл раствора перманганата калия. Наблюдаем, что из воронки выходит прозрачный фильтрат. Адсорбция прошла за 30 сек., поглотилось много жидкости. Вывод. 1.Песок вместе с наполнителем улучшили адсорбционные свойства глины. 2.Смесь, состоящую из 1 ч. глины, 1 ч. песка, 1 ч. наполнителя предлагаем использовать в химической лаборатории в качестве адсорбента. 2.3. Опыт№3 Цель: исследовать адсорбционные свойства смеси адсорбента на разлив кислоты и щелочи. Задачи: - провести адсорбцию разлива серной кислоты смесью адсорбента; - провести адсорбцию разлива щелочи смесью адсорбента; - вести наблюдение за химическим экспериментом; - наблюдения записать в дневник, проанализировав, сделать вывод. Методика: Пластмассовый поддон №1. В нем делаем разлив 5 мл серной кислоты.(1:1). Смесь адсорбента насыпаем по периметру разлива, а затем в центр. Перемешиваем адсорбент стеклянной палочкой. Наблюдения: - слышим шипение, т. е. выделяется газ. Наполнитель из мела нейтрализует кислоту. Через 5 мин. индикаторная полоска не фиксирует наличие кислоты в смеси адсорбента. Адсорбент убрал кислоту. Сама смесь адсорбента не растекается, хорошо собирается в совок. Пластмассовый поддон №2. В нем сделали разлив 5 мл щелочи. Смесь адсорбента насыпаем по периметру, а затем в центр. Перемешиваем адсорбент стеклянной палочкой. 11 Наблюдения:- щелочь поглотилась адсорбентом, разлив убрали, но индикаторная полоска фиксирует наличие щелочи в адсорбенте. Щелочь не нейтрализуется. Адсорбент не растекается, хорошо собирается в совок. 2.4. Выводы исследования. 1.Глина обладает свойствами адсорбента. 2.Наполнитель из мела не обладает свойствами адсорбента. Наполнитель из мела - нейтрализатор. 3.Адсорбцию глины можно улучшить, добавив к ней песок и наполнитель из мела. 4.Смесь: 1 ч. глины, 1 ч. песка, 1 ч. наполнителя из мела- хороший адсорбент. 5.Смесь- адсорбент хорошо убирает разливы кислот и щелочей. 6.Адсорбент, состоящий из 1 ч. глины, 1 ч. песка, 1 ч. наполнителя из мела, можно рекомендовать для использования в химический лаборатории.

Общие выводы.

1.Адсорбция- процесс самопроизвольный. 2.С увеличением площади поверхности адсорбента адсорбция увеличивается. 3.Адсорбенты поглощают газы, растворенные вещества. 4.С уменьшением температуры кипения газа адсорбция уменьшается. 5.С увеличением концентрации растворенного вещества адсорбция увеличивается. 6.Адсорбция- процесс обратимый. 7.Глина обладает свойствами адсорбента. 8.Наполнитель не обладает свойствами адсорбента. 9.Адсорбционные свойства глины можно улучшить, добавив песок и наполнитель из мела. 10.Смесь: 1 ч. глины, 1 ч. песка, 1 ч. наполнителя из мела- хороший адсорбент, который убирает разливы кислот и щелочей. Эту смесь можно рекомендовать для использования в химической лаборатории. Свойства компонентов в смеси: - глина- адсорбент; - наполнитель из мела – нейтрализатор; - песок – разрыхлитель

Заключение.

    Адсорбция – всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между фазами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей газа или жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью: пористый уголь, силикагели, цеолиты, а также некоторые другие группы природных материалов и синтетических веществ. Обработка воды адсорбентами позволяет удалить из воды вещества, которые придают ей привкусы и запахи. Очистка воды через угольные фильтры тоже решает вопрос чистоты питьевой воды. Люди используют фильтры для сигарет, которые задерживают частицы дыма и часть никотина и этим уменьшают вредные воздействия этого яда на организм. Один из новых подходов к утилизации вредных веществ – их переработка в адсорбенты, последующее использование которых ориентировано на решение экологических проблем промышленно-насыщенных регионов.
  • Железные гвозди покрываем слоем меди
  • Невидимые надписи - как их сделать и как проявить
  • Обесцвечивание активированным углем чернил и других красящих веществ
  • Обесцвечивание раствора йода помощью меди
  • По окрашиванию пламени различаем вещества
  • Поглощение запаха пористыми веществами
  • Хроматография - разделение веществ
  • Цветная реакция медного купороса с раствором аммиака
  • Цветные картинки с помощью жидкого стекла (или силикатного клей)
  • Экстракция водой красящих веществ кофе и цикория
  • Экстракция йода бензином
  • Экстракция хлорофилла спиртом

Для разноцветных чудес требуются:

Индикаторы, принимая то один, то другой цвет, помогали нам отличить кислоту от основания. Например, уксус от нашатырного спирта. Но часто этого недостаточно. Как, скажем, отличить одну кислоту от другой? Для этой очень важной цели химики придумали и проверили множество реакций, пожалуй, для всех мало-мальски распространенных веществ. Такие реакции всегда чем-нибудь приметны, они позволяют по какому-либо признаку сразу и безошибочно определить то или иное вещество. Этим признаком очень часто служит окраска.

С одной цветной реакцией, помогающей опознать одно распространенное вещество, ты уже знаком: крахмал, который содержится во многих растениях, синеет в присутствии крошечной добавки, даже следов йода. К сожалению, это редкий случай, а для большинства химических анализов нужны вещества, которые тебе, пожалуй, нигде не купить. Но, впрочем, кое-что можно придумать...

Вот, скажем, аммиак, водный раствор которого, нашатырный спирт, ты уже покупал в аптеке. Как узнать аммиак? Во-первых, по запаху: один раз понюхаешь - навсегда запомнишь. Да только не всегда удобно нюхать (а иногда и просто невозможно). Тогда - цветная реакция.

Брось в стакан или в склянку с водой несколько крупинок медного купороса и размешай как следует. Раствор должен быть бледно-голубым; если же он окажется темным, разведи его водой. В эту бледно-голубую жидкость влей немного нашатырного спирта. Раствор тотчас станет ярко-синим. Это аммиак, соединившись с медным купоросом, образовал такое яркое вещество. И выдал себя с головой.

Другая реакция - тоже с медным купоросом. Приготовь в стакане раствор, но не такой бледный, как раньше, а ярко- синий (то есть возьми побольше медного купороса). Положи в него ненужные железные предметы - хотя бы старые гвозди или шурупы, только не ржавые. И займись какими-нибудь другими делами, впрочем, поглядывая иногда на раствор с гвоздями. Некоторое время спустя ты заметишь, что раствор из синего стал зеленым. А когда вынешь из него гвозди (но только не пальцами, а пинцетом или хотя бы бельевой прищепкой - это общее правило на все химические случаи), то увидишь, что они стали медно-красными.

Когда гвозди лежали в медном купоросе, железо постепенно вытесняло из него медь и становилось на ее место. В результате получился зеленый железный купорос. А куда было деваться вытесненной меди? Разве что оседать прямо на гвозде. Что она и делала, покрыв гвоздь красной медной пленкой.

Чтобы распознать некоторые вещества, химики испытывают их огнем. Хитрость тут в том, что многие простые вещества, которые входят в состав сложных веществ (например, медь - в медный купорос, кальций - в хлорид кальция), обладают свойством окрашивать пламя.

Причем не в один и тот же цвет, а в самые разные цвета.

Если дома есть спиртовка, можешь ею воспользоваться. А можешь взять свечку. Но в любом случае делай опыт только при взрослых - с огнем шутки плохи! И будь внимателен: рядом не должно быть бумаги, тряпок и любых других вещей, которые легко загораются.

Найди мягкую проволочку, лучше всего нихромовую - из этой проволоки делают спирали электрических плиток, утюгов и т. п. Конечно, плитку или утюг ломать для этого не надо; вполне сгодится и перегоревшая спираль из старого электрического прибора. В крайнем случае купи самую дешевую спираль в магазине электротоваров.

Не очень длинный кусок спирали распрями и закрепи в какой-нибудь держалке: например, намотай один конец проволоки на карандаш или зажми в бельевой прищепке. На другом конце сделай маленькую петельку диаметром не больше, чем полсантиметра. Нагрей петельку на огне и опусти ее в стакан с чистой водой - это нужно для того, чтобы проволочка стала чистой, без загрязнений, которые могут исказить всю картину. Сделай так несколько раз, пока пламя не перестанет менять цвета при внесении проволочки.

Возьми немножко поваренной соли - той самой, что в солонке; ее химическое имя - хлорид натрия. Смешай соль с равным количеством нашатыря (хлорида аммония). Не спутай, пожалуйста, нашатырь с нашатырным спиртом: первый - белый порошок, употребляемый при пайке, поэтому его продают в хозяйственных магазинах; второй - жидкость с резким запахом. В нашем опыте, как и при пайке, нашатырь очищает проволоку и помогает соли быстро улетучиваться.

В смесь соли и нашатыря капни две-три капли воды, обмакни проволочную петельку и внеси в пламя. Оно сразу станет ярко-желтым. Так оно реагирует на натрий. Честно говоря, натрий даже в малых количествах заставляет пламя желтеть, и особых приготовлений к этому опыту можно было бы и не делать: достаточно просто "посолить" пламя. Но во всех остальных случаях тщательная подготовка очень желательна: не все вещества действуют на пламя столь же энергично.

Следующим веществом может быть хлорид кальция. Если у тебя есть порошок, поступи с ним так же, как описано выше. Если жидкость, обмакни очищенную петельку прямо в нее. Кальций окрашивает пламя в ярко-красный цвет, но беда в том, что такие вещества редко обходятся без примесей натрия, и в результате желтая окраска подавляет характерную красную. Поэтому хорошо бы запастись синим стеклышком (или голубыми солнечными очками) и глядеть на пламя через него: синее стекло задерживает желтые лучи. Это, кстати, полезно и при разглядывании пламени с другими веществами - и в них не исключена примесь соединений натрия.

Тот же опыт, не забывая каждый раз очищать проволоку огнем и водой, повтори с медным купоросом и с тремя веществами, которые ты сможешь купить в аптеке: с хлоридом калия, оксидом цинка и борной кислотой (эта кислота твердая, ее продают в виде порошка). Погляди и запиши на всякий случай, как изменяют цвет пламени вещества, в состав которых входят калий, цинк и бор. И в этих опытах, если пламя окажется желтым из-за примеси натрия, возьми голубой фильтр.

Займемся чудесами иного рода. Если раньше у вас появлялась окраска, то теперь она будет исчезать.

В пузырек с водой капни чуть-чуть синих чернил для авторучки, чтобы раствор был бледно-голубым. В тот же пузырек положи растолченную таблетку активированного угля. Закрой горлышко пальцем и взболтай смесь. Она посветлеет на глазах. Дело в том, что такой уголь буквально впитывает своей поверхностью молекулы красителя, извлекая их из воды. А когда окрашенное вещество поглощено углем, его, понятное дело, уже не видно.

Попробуй поставить тот же опыт с другими красящими веществами, например с чернилами разных цветов и с гуашевыми красками (но во всех случаях бери сильно разбавленные растворы).

Ты убедишься, что уголь способен поглощать многие вещества.

Такая способность присуща не одному только углю. Некоторые глины так и называют - отбеливающими. Влажный порошок мела тоже впитывает в себя краски (и поэтому мелом чистят иногда разные загрязненные предметы). Можешь испытать, как впитывают, поглощают красящие вещества клочки промокательной бумаги, лоскутки старой ткани, почва из цветочного горшка. Или, скажем, кукурузные палочки. Если несколько палочек положить в банку, в которую ты капнешь заранее пипеткой каплю одеколона, а потом закрыть банку крышкой, то минут через десять, открыв крышку, ты не почувствуешь уже запаха: его поглотило пористое вещество, из которого состоят кукурузные палочки. Такое поглощение - цвета ли, запаха ли - химики называют адсорбцией.

Вернемся к цвету, который у нас появлялся, менялся и исчезал. Сейчас он будет переходить от одного вещества к другому.

В пробирку или пузырек налей примерно на треть воды и добавь с десяток капель йодной настойки, чтобы получился не очень темный, буроватый раствор. Поверх раствора налей столько же бензина (возможно, в вашем семейном хозяйстве он есть, а если нет, придется сходить в хозяйственный магазин).

Проводя этот опыт, а также любой иной, в котором будут участвовать бензин и другие горючие вещества, помни, что поблизости не должно быть огня - ни газовой горелки, ни даже спички!

Закрыв пузырек пробкой, встряхни как следует его содержимое и оставь в покое на несколько минут. Бензин легче воды, поэтому смесь расслоится: вода останется внизу, а бензин всплывет вверх - он с водой не смешивается. Но, пустившись в путь наверх, он прихватит с собою и йод, потому что йод в воде растворяется плохо, а в бензине хорошо. В результате нижний, водный, слой окажется почти бесцветным, бензиновый - темно-бурым.

Аккуратно, не перемешивая, слей верхний, бензиновый, слой в другой пузырек, закрой его пробкой и оставь в покое. Тем временем приготовь немного свежей меди - такой опыт ты ставил совсем недавно, погружая железные гвозди в раствор медного купороса. С гвоздя, покрасневшего в растворе, соскреби старой ложкой или какой-нибудь железкой налет только что осевшей меди. Когда наберется щепотка красного влажного порошка, всыпь его сразу же в пузырек с бензиновым раствором и опять закрой пробкой.

Теперь встряхни пузырек несколько раз и наблюдай за окраской раствора. Спустя минуту-другую она исчезнет или, по меньшей мере, станет почти незаметной. Это йод вступил в реакцию с медью, и при этом получилось бесцветное соединение - йодид меди.

Такой же опыт можно поставить и с кусочками медной фольги (она похожа на серебристую алюминиевую фольгу, в которую заворачивают шоколад, только красноватого цвета). Однако в этом случае реакция будет идти гораздо медленнее, и понадобится встряхивать раствор несколько минут, прежде чем окраска исчезнет.

То, что происходило в пузырьке с йодом, когда в него налили бензин, называется по-научному экстракцией. Это очень распространенный прием, и не только в химии. С помощью растворителей экстрагируют, извлекают масло из семян подсолнечника и ядрышек ореха. А когда экстракции подвергают кофейные зерна, то получают коричневую жидкость, из которой потом выпаривают воду, и остаток - пушистый порошок - раскладывают в банки с надписью "Растворимый кофе".

Поставим еще один опыт с экстракцией. На сей раз мы сделаем зеленое бесцветным, а бесцветное зеленым.

Источником зелени нам послужат свежие листья любого растения: от салата до крапивы. Для ускорения дела можно растереть лист-другой, но можно оставить их нетронутыми - как хочешь. Положи их в тонкостенный стакан (обязательно в тонкостенный: толстый, граненый, может лопнуть) и залей небольшим количеством разбавленного спирта. Можно взять, скажем, рюмку водки (такое ее применение - для химических опытов - самое, по-моему, правильное), а можно и одеколон: в нем тоже есть спирт. Ты уже догадался, наверное, что будет дальше. Но при комнатной температуре спирт будет зеленеть довольно долго. Поэтому поставь стакан в кастрюльку с горячей водой (химики называют ее водяной баней), причем желательно ставить стакан не прямо на дно, а на какой-нибудь деревянный кружок. Когда вода в кастрюльке остынет, пинцетом достань из стакана листики. Они обесцветились, а спирт стал изумрудно-зеленым. Знаешь, что мы извлекли из листьев? Хлорофилл, зеленый краситель, который помогает растениям "питаться" солнечной энергией.

Из этого опыта можно сделать два полезных вывода. Во- первых, если ты нечаянно запачкал коленки травой, то оттереть их можно спиртом или одеколоном. Во-вторых, для украшения тортов, пирогов и прочих домашних сладостей часто бывает нужен зеленый краситель, безвредный для человека. Теперь ты знаешь, как его приготовить. Спирт тут не повредит, ведь красителя потребуется несколько капель. Но если ты извлекаешь хлорофилл для употребления в пищу, то, пожалуйста, не бери одеколон и позаботься о том, чтобы листья были съедобные и не горькие - салата, шпината и т. п. А то получится крем с луковым запахом...

Экстракция, как ты, наверное, заметил, основана на том, что разные вещества растворяются по-разному. Вернемся к примеру с кофе, который, кстати, в холодной воде почти не растворяется. Цикорий растворяется намного лучше. Если в склянку с холодной водой бросить немного молотого кофе с цикорием, видно, что часть порошка плавает на поверхности (это кофе), а часть растворяется и опускается вниз, оставляя за собой коричневый след (это, понятное дело, цикорий).

На способности веществ по-разному растворяться в одной и той же жидкости основан любопытный и часто применяемый способ распознавания и разделения примесей. Этот способ называют хроматографией.

Надеюсь, у тебя сохранился еще раствор хлорофилла из зеленых листьев. Сейчас мы проверим, одно это вещество или смесь.

Достань из тетрадки чистую белую промокашку (строго говоря, и она имеет научное имя - фильтровальная бумага). Положи ее на стекло или на кафельную плитку и в середину нанеси из пипетки каплю раствора хлорофилла. Подожди, пока пятно расплывется, и в середину капни каплю спирта (можно изопропилового, его применяют для чистки стекла и продают под названием ИПС). Когда капля впитается, капни следующую; и так несколько раз. Пятно будет становиться все больше и больше, и на нем четко заметны два разноцветных кольца: одно желтовато-зеленое, а другое серо-зеленое. Это две разновидности хлорофилла, обе они были в листьях, а теперь разделились на бумаге благодаря тому, что по-разному растворяются в спирте. Химики так и называют этот способ "бумажная хроматография"; они пользуются особой пористой бумагой, которую, как видишь, вполне можно заменить промокашкой.

А вот другой вариант хроматографии. Может быть, он окажется более доступным, поскольку растворителем будет служить просто чистая вода.

Вырежи из фильтровальной бумаги (то есть из промокашки) полоску шириною в один- два пальца и на одном из ее концов, примерно в сантиметре от края, проведи чернилами черточку. На другом конце полоски проткни отверстие, вставь в него палочку или карандаш и положи на края высокого стакана таким образом, чтобы полоска оказалась внутри стакана, но не задевала бы за стенки и чуть-чуть не доставала бы до дна. Очень осторожно, чтобы брызги не попали на бумажную полоску, налей по стенке стакана немного воды. Как только нижний край полоски окажется в воде, перестань лить воду и внимательно следи за тем, что будет дальше.

А будет вот что: вода станет подыматься вверх по бумаге. И пусть подымается, пока не дойдет почти до конца. Вот тогда вынь полоску из стакана и дай ей высохнуть. Ты увидишь на ней уже не одну, а несколько черточек разного цвета и на разной высоте. Это вода, которая служит растворителем в чернилах, так разогнала по бумаге разные красящие вещества.

Надо сказать, что чернила любого цвета редко делают из одного-единственного красителя: гораздо чаще из смеси. Так что можешь испытать в своем домашнем хроматографе синие, красные, зеленые и черные чернила, гуашевые краски, различные красители для окраски тканей (их продают в хозяйственных магазинах) да и любые другие окрашенные жидкости, включая сок и фруктовую воду.

Может случиться и так, что чистая вода плохо разделяет вещества. Тогда испытай другие варианты, тем более что опыт несложен и не отнимет много времени. Попробуй вместо воды взять смесь равных количеств воды и уксуса - это будет кислый растворитель. Испытай и основной растворитель - две-три столовые ложки нашатырного спирта на стакан воды. Можно, конечно, взять спирт или изопропиловый спирт.

Для хроматографии используют не только бумагу. Несложные опыты можно ставить и с крахмалом. Две-три чайные ложки крахмала взболтай с небольшим количеством изопропилового спирта (ИПС) или одеколона, нанеси жидкую смесь на стекло и дай высохнуть. Потом на сухую пластинку капни одну каплю цветного вещества, дай подсохнуть, нанеси каплю спирта и последи, как расплывается пятно. Если это была смесь веществ, появятся окрашенные кольца. Попробуй разделить таким способом какие-нибудь жидкости из домашней аптечки - скажем, валерьяновые капли, микстуру от кашля или настойку календулы.

И последний вариант для домашнего использования - с крахмалом, насыпанным в длинную прозрачную трубку. Нижний конец трубки заткни ватой, насыпь слой крахмала высотою около 10 см. Влей сверху немного окрашенной жидкости (раствора хлорофилла, разбавленных чернил, сока и т. д.) и, когда она пропитает слой крахмала наполовину, добавь немного спирта или другого растворителя. На белом крахмале возникнут красивые разноцветные полосы. Попробуй сам подобрать разные окрашенные вещества и разные растворители. А чтобы в конце концов не запутаться, что же получилось в результате этих весьма серьезных опытов, запиши добытые тобою сведения в тетрадку (лучше в виде таблицы).

Вообще, должен сказать, ты уже справедливо считаешь себя юным химиком, а каждый уважающий себя химик ведет лабораторную тетрадь (или журнал), куда записывает свои наблюдения и результаты опытов. Пора и тебе завести такой лабораторный журнал. Записывай в него, что, когда и как ты делал, какие получил результаты, какие сделал для себя выводы. Все это займет буквально минуты, а пользы и пищи для размышлений даст немало. Иначе, зачем бы взрослые экспериментаторы тратили время на записи в журналах?

После такого серьезного дела позволим себе немного передохнуть и предпримем несколько разноцветных чудес просто для забавы. Для них надо будет запастись стеклом, только не обычным, оконным, а жидким. Есть такое вещество - силикат натрия, его раствор в воде, густой и липучий, называют жидким стеклом. Его часто применяют в строительстве; впрочем, и в быту тоже, но под другим названием - силикатный конторский клей. Пожалуй, для нашей цели клей несколько густоват, поэтому отлей его в небольшой флакончик и смешай пополам с водой. Имей в виду, что жидкое стекло, как только оно высохнет, ничем уже не отдерешь, и поэтому, если посадил пятно силикатного клея на стол или на одежду, отмой его водой, и немедленно. По этой же причине я не советую тебе приклеивать таким клеем фотографии в альбом или рисунки на стену.

Налей в пробирку или в пузырек примерно на треть аптечного хлорида кальция и капни несколько капель раствора фенолфталеина. В другой пузырек налей примерно столько же разбавленного силикатного клея. А теперь содержимое первого пузырька перелей во второй и взболтай смесь. Она, во-первых, покраснеет и, во-вторых, загустеет наподобие студня или желе. В который раз - опыт совсем как фокус.

Еще один вариант опыта-фокуса с жидким стеклом: вместо хлорида кальция возьми две- три щепотки сульфата магния (в аптеке его продают под названием горькой соли, или английской соли) и брось в пузырек, наполовину наполненный водой. Взболтай, добавь три-четыре капли разбавленного силикатного клея и как следует размешай. Опять в пузырьке образуется студень, только на этот раз бледно-розовый.

Своим умением получать красный студень из бесцветных растворов ты можешь воспользоваться для раскраски картинок без красок и цветных карандашей. Хотя бы вот таким образом. Нарисуй на листе бумаги карандашом контур рисунка и все, что внутри контура, "закрась" прозрачным раствором фенолфталеина. Другой лист бумаги целиком покрой разбавленным силикатным клеем. Сложи оба листа, прижми один к другому и дай им побыть вместе три-четыре минуты. Аккуратно отдели листки - и ты увидишь, что нарисованная тобою картинка сама собой выкрасилась в красный цвет.

Сделать невидимое видимым - не такое уж особенное чудо. Для этого есть много рецептов, и все они очень давно известны. Например, такой: взять порошок нашатыря на кончике ложки, всыпать в маленький флакончик с водой. Прозрачный раствор будет служить тебе чернилами. Обмакни в него чистое перо и напиши или нарисуй что-нибудь на обычной писчей бумаге. Дай бумаге как следует высохнуть, но не вздумай только для ускорения дела класть ее в теплое место, скажем на батарею. Ничего пока не видно - ведь раствор был прозрачным.

А теперь нагреем наш листок бумаги. Чтобы он случайно не загорелся, лучше всего нагревать над электроплиткой с закрытой спиралью, держа листок пинцетом или прищепкой. Если такой плитки нет, можно нагревать над свечкой (или спиртовкой). Однако бумагу с невидимым рисунком надо держать над огнем достаточно высоко, чтобы она грелась, но не загоралась! Ты увидишь, как по мере нагревания на чистом листе бумаги начнет проступать рисунок или надпись - то, что ты начертил пером.

Чтобы превратить невидимое в видимое, необязательно покупать какие-то специальные вещества. Вместо чернил можно использовать некоторые продукты, которые, вполне возможно, найдутся в холодильнике или кухонном шкафу. Скажем, молоко. Или сок лимона. Или сок, выжатый из лука. Или хотя бы столовый уксус. Но во всех случаях, чтобы проявить надпись или картинку, надо нагреть листок бумаги над плиткой или свечкой, следя за тем - напомню еще раз, - чтобы он был достаточно далеко от плитки или от пламени.

Читайте и пишите полезные

Последние материалы раздела:

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....