От каких факторов зависит растворимость. Растворимость, коэффициент растворимости

В повседневной жизни люди редко сталкиваются с Большинство предметов представляют собой смеси веществ.

Раствор - это в которой компоненты равномерно смешались. Есть несколько их видов по размеру частиц: грубодисперсные системы, молекулярные растворы и коллоидные системы, которые часто называют золи. В этой статье речь идет о молекулярных (или Растворимость веществ в воде - одно из главных условий, влияющих на образование соединений.

Растворимость веществ: что это и зачем нужно

Чтобы разобраться в этой теме, нужно знать, и растворимость веществ. Простым языком, это способность вещества соединяться с другим и образовывать однородную смесь. Если подходить с научной точки зрения, можно рассмотреть более сложное определение. Растворимость веществ - это их способность образовывать с одним или более веществами гомогенные (или гетерогенные) составы с дисперсным распределением компонентов. Существует несколько классов веществ и соединений:

  • растворимые;
  • малорастворимые;
  • нерастворимые.

О чем говорит мера растворимости вещества

Содержание вещества в насыщенной смеси - это мера его растворимости. Как сказано выше, у всех веществ она разная. Растворимые - это те, которые могут развести более 10 г себя на 100 г воды. Вторая категория - менее 1 г при тех же условиях. Практически нерастворимые - это те, в смесь которых переходит менее 0,01 г компонента. В этом случае вещество не может передавать воде свои молекулы.

Что такое коэффициент растворимости

Коэффициент растворимости (k) - это показатель, максимальной массы вещества (г), которая может развестись в 100 г воды или другого вещества.

Растворители

В данном процессе участвуют растворитель и растворенное вещество. Первый отличается тем, что изначально он пребывает в таком же агрегатном состоянии, что и конечная смесь. Как правило, он взят в большем количестве.

Однако многие знают, что в химии вода занимает особое место. Для нее существуют отдельные правила. Раствор, в котором присутствует H 2 O называется водным. Когда говорится о них, жидкость является экстрагентом и тогда, когда она в меньшем количестве. В пример можно привести 80%-ный раствор азотной кислоты в воде. Пропорции здесь не равны Хоть доля воды меньше, чем кислоты, вещество называть 20%-ным раствором воды в азотной кислоте некорректно.

Существуют смеси, в которых отсутствует H 2 O. Они будут носить имя неводная. Подобные растворы электролита представляют собой ионные проводники. Они содержащие один или смеси экстрагентов. В их состав входят ионы и молекулы. Они используются в таких отраслях, как медицина, производство бытовой химии, косметики и в другие направления. Они могут сочетать в себе несколько нужных веществ с различной растворимостью. Компоненты многих средств, которые применяются наружно, являются гидрофобными. Иными словами, они плохо взаимодействуют с водой. В таких могут быть летучими, нелетучими и комбинированными. Органические вещества в первом случае хорошо растворяют жиры. К летучим относятся спирты, углеводороды, альдегиды и другие. Они часто входят в состав бытовой химии. Нелетучие чаще всего применяются для изготовления мазей. Это жирные масла, жидкий парафин, глицерин и прочие. Комбинированные - это смесь летучих и нелетучих, например, этанол с глицерином, глицерин с димексидом. Также они могут содержать воду.

Виды растворов по степени насыщенности

Насыщенный раствор - это смесь химических веществ, содержащая максимальную концентрацию одного вещества в растворителе при определенной температуре. Дальше оно разводиться не будет. В препарате твёрдого вещества заметно выпадение осадка, который находится в динамическом равновесии с ним. Под этим понятием подразумевается состояние, сохраняющееся во времени вследствие его протекания одновременно в двух противоположных направлениях (прямая и обратная реакции) с одинаковой скоростью.

Если вещество при постоянной температуре все еще может разлагаться, то этот раствор - ненасыщенный. Они устойчивы. Но если в них продолжать добавлять вещество, то оно будет разводиться в воде (или другой жидкости), пока не достигнет максимальной концентрации.

Еще один вид - перенасыщенный. В нем содержится больше растворенного вещества, чем может быть при постоянной температуре. Из-за того, что они находятся в неустойчивом равновесии, при физическом воздействии на них происходит кристаллизация.

Как отличить насыщенный раствор от ненасыщенного?

Это сделать достаточно просто. Если вещество - твердое, то в насыщенном растворе можно увидеть осадок. При этом экстрагент может загустевать, как, например, в насыщенном составе вода, в которую добавили сахар.
Но если изменить условия, повысить температуру, то он перестанет считаться насыщенным, так как при более высокой температуре максимальная концентрация этого вещества будет другой.

Теории взаимодействия компонентов растворов

Существует три теории относительно взаимодействия элементов в смеси: физическая, химическая и современная. Авторы первой - Сванте Август Аррениус и Вильгельм Фридрих Оствальд. Они предположили, что вследствие диффузии частицы растворителя и растворённого вещества равномерно распределились по всему объему смеси, но взаимодействия между ними нет. Химическая теория, которую выдвинул Дмитрий Иванович Менделеев, ей противоположна. Согласно ей, в результате химического взаимодействия между ними формируются неустойчивые соединения постоянного или переменного состава, которые называются сольваты.

В настоящее время используется объединенная теория Владимира Александровича Кистяковского и Ивана Алексеевича Каблукова. Она совмещает физическую и химическую. Современная теория гласит, что в растворе существуют как не взаимодействующие частицы веществ, так и продукты их взаимодействия - сольваты, существование которых доказывал Менделеев. В случае, когда экстрагент - вода, их называют гидратами. Явление, при котором образуются сольваты (гидраты) носит имя сольватация (гидратация). Она воздействует на все физико-химические процессы и меняет свойства молекул в смеси. Сольватация происходит благодаря тому, что сольватная оболочка, состоящая из тесно связанных с ней молекул экстрагента, окружает молекулу растворенного вещества.

Факторы, влияющие на растворимость веществ

Химический состав веществ. Правило "подобное притягивает подобное" распространяется и на реагенты. Схожие по физическим и химическим свойствам вещества могут взаимно растворяться быстрее. Например, неполярные соединения хорошо взаимодействуют с неполярными. Вещества с полярными молекулами или ионным строением разводятся в полярных, например, в воде. В ней разлагаются соли, щёлочи и другие компоненты, а неполярные - наоборот. Можно привести простой пример. Для приготовления насыщенного раствора сахара в воде потребуется большее количество вещества, чем в случае с солью. Как это понимать? Проще говоря, вы можете развести гораздо больше сахара в воде, чем соли.

Температура. Чтобы увеличить растворимость твердых веществ в жидкостях, нужно увеличить температуру экстрагента (работает в большинстве случаев). Можно продемонстрировать такой пример. Если положить щепотку хлорида натрия (соль) в холодную воду, то данный процесс займет много времени. Если проделать то же самое с горячей средой, то растворение будет проходить гораздо быстрее. Это объясняется тем, что вследствие повышения температуры возрастает кинетическая энергия, значительное количество которой часто тратится на разрушение связей между молекулами и ионами твёрдого вещества. Однако, когда повышается температура в случае с солями лития, магния, алюминия и щелочами, их растворимость понижается.

Давление. Этот фактор влияет только на газы. Их растворимость увеличивается при повышении давления. Ведь объём газов сокращается.

Изменение скорости растворения

Не стоит путать этот показатель с растворимостью. Ведь на изменение этих двух показателей влияют разные факторы.

Степень раздробленности растворяемого вещества. Этот фактор влияет на растворимость твердых веществ в жидкостях. В цельном (кусковом) состоянии состав разводится дольше, чем тот, который разбит на мелкие куски. Приведем пример. Цельный кусок соли будет растворяться в воде намного дольше, чем соль в виде песка.

Скорость помешивания. Как известно, этот процесс можно катализировать с помощью помешивания. Его скорость также важна, потому что чем она больше, тем быстрее растворится вещество в жидкости.

Для чего нужно знать растворимость твердых веществ в воде?

Прежде всего, подобные схемы нужны, чтобы правильно решать химические уравнения. В таблице растворимости есть заряды всех веществ. Их необходимо знать для правильной записи реагентов и составления уравнения химической реакции. Растворимость в воде показывает, может ли соль или основание диссоциировать. Водные соединения, которые проводят ток, имеют в своем составе сильные электролиты. Есть и другой тип. Те, которые плохо проводят ток, считаются слабыми электролитами. В первом случае компоненты представляют собой вещества, полностью ионизованные в воде. Тогда как слабые электролиты проявляют этот показатель лишь в небольшой степени.

Уравнения химической реакции

Есть несколько видов уравнений: молекулярный, полный ионный и краткий ионный. По сути последний вариант - сокращённая форма молекулярного. Это окончательный ответ. В полном уравнении записаны реагенты и продукты реакции. Теперь наступает очередь таблицы растворимости веществ. Для начала надо проверить, является ли реакция осуществимой, то есть выполняется ли одно из условий проведения реакции. Их всего 3: образование воды, выделение газа, выпадение осадка. Если два первых условия не соблюдаются, нужно проверить последнее. Для этого нужно посмотреть в таблицу растворимости и выяснить, есть ли в продуктах реакции нерастворимая соль или основание. Если оно есть, то это и будет осадок. Далее таблица потребуется для записи ионного уравнения. Так как все растворимые соли и основания - сильные электролиты, то они будут распадаться на катионы и анионы. Далее сокращаются несвязанные ионы, и уравнение записывается в кратком виде. Пример:

  1. K 2 SO 4 +BaCl 2 =BaSO 4 ↓+2HCl,
  2. 2K+2SO 4 +Ba+2Cl=BaSO 4 ↓+2K+2Cl,
  3. Ba+SO4=BaSO 4 ↓.

Таким образом, таблица растворимости веществ - одно из ключевых условий решения ионных уравнений.

Подробная таблица помогает узнать, сколько компонента нужно взять для приготовления насыщенной смеси.

Таблица растворимости

Так выглядит привычная неполная таблица. Важно, что здесь указывается температура воды, так как она является одним из факторов, о которых мы уже говорили выше.

Как пользоваться таблицей растворимости веществ?

Таблица растворимости веществ в воде - один из главных помощников химика. Она показывает, как различные вещества и соединения взаимодействуют с водой. Растворимость твердых веществ в жидкости - это показатель, без которого многие химические манипуляции невозможны.

Таблица очень проста в использовании. В первой строке написаны катионы (положительно заряженные частицы), во второй - анионы (отрицательно заряженные частицы). Большую часть таблицы занимает сетка с определенными символами в каждой ячейке. Это буквы "Р", "М", "Н" и знаки "-" и "?".

  • "Р" - соединение растворяется;
  • "М" - мало растворяется;
  • "Н" - не растворяется;
  • "-" - соединения не существует;
  • "?" - сведения о существовании соединения отсутствуют.

В этой таблице есть одна пустая ячейка - это вода.

Простой пример

Теперь о том, как работать с таким материалом. Допустим, нужно узнать растворима ли в воде соль - MgSo 4 (сульфат магния). Для этого необходимо найти столбик Mg 2+ и спускаться по нему до строки SO 4 2- . На их пересечении стоит буква Р, значит соединение растворимо.

Заключение

Итак, мы изучили вопрос растворимости веществ в воде и не только. Без сомнений, эти знания пригодятся при дальнейшем изучении химии. Ведь растворимость веществ играет там важную роль. Она пригодится при решении и химических уравнений, и разнообразных задач.

Растворимость — это свойство вещества образовывать с различными растворителями гомогенные смеси. Как мы уже упоминали, количество растворяемого вещества, необходимое для получения насыщенного раствора и определяет этого вещества. В связи с этим растворимость имеет ту же меру, что и состав, например, массовая доля растворенного вещества в его насыщенном растворе или количество растворенного вещества в его насыщенном растворе.

Все вещества с точки зрения его растворимости можно классифицировать на:

  • Хорошо растворимые – в 100 г воды способно раствориться более 10 г. вещества.
  • Малорастворимые — в 100 г воды способно раствориться менее 1 г. вещества.
  • Нерастворимые — в 100 г воды способно раствориться менее 0,01 г. вещества.

Известно, что если полярность растворяемого вещества схожа с полярностью растворителя, то оно скорее всего растворится. Если же полярности разные, то с большой долей вероятности раствора не получится. Почему же так происходит?

Полярный растворитель – полярное растворяемое вещество.

Для примера опишем раствор поваренной соли в воде. Как мы уже знаем, молекулы воды имеют полярную природу с частичным положительным зарядом на каждом атоме водорода и частичным отрицательным – на атоме кислорода. А твердые ионные вещества, вроде хлорида натрия, содержат катионы и анионы. Поэтому, когда поваренную соль помещают в воду, частичный положительный заряд на атомах водорода молекул воды притягивается отрицательно заряженным ионом хлора в NaCl. Аналогично, частичный отрицательный заряд на атомах кислорода молекул воды притягивается положительно заряженным ионом натрия в NaCl. И, поскольку притяжение молекул воды для ионов натрия и хлора сильнее взаимодействия, удерживающего их вместе, соль растворяется.

Неполярный растворитель – неполярное растворяемое вещество.

Попробуем растворить кусочек тетрабромида углерода в тетрахлориде углерода. В твердом состоянии молекулы тетрабромида углерода удерживаются вместе благодаря очень слабому дисперсионному взаимодействию. При помещению его в тетрахлорид углерода его молекулы будут располагаться более хаотично, т.е. увеличивается энтропия системы и соединение растворится.

Равновесия при растворении

Рассмотрим раствор малорастворимого соединения. Для того, чтобы между твердым веществом и его раствором установилось равновесие, раствор должен быть насыщенным и соприкасаться с нерастворившейся частью твердого вещества.

Например, пусть равновесие установилось в насыщенном растворе хлорида серебра:

AgCl(тв)=Ag + (водн.) + Cl — (водн.)

Рассматриваемое соединение является ионным и в растворенном виде присутствует в виде ионов. Нам уже известно, что в гетерогенных реакциях концентрация твердого вещества остается постоянной, что позволяет включить ее в константу равновесия. Поэтому выражение для будет выглядеть следующим образом:

K = [ Cl — ]

Такая константа называется произведением растворимости ПР , при условии, что концентрации выражаются в моль/л.

ПР = [ Cl — ]

Произведение растворимости равно произведению молярных концентраций ионов, участвующих в равновесии, в степенях, равных соответствующим стехиометрическим коэффициентам в уравнении равновесия.
Следует отличать понятие растворимости и произведения растворимости. Растворимость вещества может меняться при добавлении в раствор еще какого-либо вещества, а произведение растворимости не зависит от присутствия в растворе дополнительных веществ. Хотя эти две величины взаимосвязаны, что позволяет зная одну величину, вычислить другую.

Зависимость растворимости от температуры и давления

Вода играет важную роль в нашей жизни, она способна растворять большое количество веществ, что имеет большое значение для нас. Поэтому основное внимание уделим именно водным растворам.

Растворимость газов повышается при росте давления газа над растворителем, а растворимость твердых и жидких веществ зависит от давления несущественно.

Уильям Генри впервые пришел к выводу, что количество газа, которое растворяется при постоянной температуре в заданном объеме жидкости, прямо пропорциональна его давлению . Данное утверждение известно как закон Генри и выражается оно следующим соотношением:

С = k·P ,

где С – растворимость газа в жидкой фазе

Р – давление газа над раствором

k – постоянная Генри

На следующем рисунке приведены кривые зависимости растворимости некоторых газов в воде от температуры при постоянном давлении газа над раствором (1 атм)

Как видно, растворимость газов уменьшается с ростом температуры, в отличие от большинства ионных соединений, растворимость которых растет с увеличением температуры.

Влияние температуры на растворимость зависит от изменения энтальпии, которое происходит при процессе растворения. При протекании эндотермического процесса происходит увеличение растворимости с ростом температуры. Это следует из уже известного нам : если изменить одно из условий, при котором система находится в состоянии равновесия – концентрацию, давление или температуру, - то равновесие сместится в направлении той реакции, которая противодействует этому изменению.

Представим, что мы имеем дело с раствором, находящимся в равновесии с частично растворившимся веществом. И этот процесс является эндотермическим, т.е. идет с поглощением теплоты из вне, тогда:

Вещество + растворитель + теплота = раствор

Согласно принципу Ле – Шателье, при эндотермическом процессе, равновесие смещается в направлении, способствующее уменьшению поступления теплоты, т.е. вправо. Таким образом, растворимость увеличивается. Если же процесс экзотермический , то повышение температуры приводит к уменьшению растворимости.


зависимость растворимости ионных соединеий от Температуры

Известно, что существуют растворы жидкостей в жидкостях . Некоторые из них могут растворяться друг в друге в неограниченных количествах, как вода и этиловый спирт, а другие — растворяются лишь частично. Так, если попробовать растворить четыреххлористый углерод в воде, то при этом образуются два слоя: верхний — насыщенный раствор воды в четыреххлористом углероде и нижний - насыщенный раствор четыреххлористого углерода в воде. При повышении температуры, в основном, взаимная растворимость таких жидкостей увеличивается. Это происходит до тех пор, пока не будет достигнута критическая температура, при которой обе жидкости смешиваются в любых пропорциях. От давления растворимость жидкостей практически не зависит.

При вводе в смесь, состоящую из двух несмешивающихся между собой жидкостей, вещества, которое может растворяться в любой из этих двух жидкостей, то его распределение между этими жидкостями будет пропорционально растворимости в каждой из них. Т.е. согласно закону распределения вещество, способное растворяться в двух несмешивающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества:

С 1 /С 2 = К,

где С 1 и С 2 – концентрации вещества в двух жидкостях

К – коэффициент распределения.

Категории ,

Одни вещества лучше растворяются в том или ином растворителе, другие хуже. Считается, что абсолютно нерастворимых веществ нет. Каждое вещество способно к растворению, пусть даже в некоторых случаях и в очень незначительных количествах (например, ртуть в воде, бензол в воде).

К сожалению, до настоящего времени, нет теории, с помощью которой можно было бы предсказать и вычислить растворимость любого вещества в соответствующем растворителе. Обусловлено это сложностью и многообразием взаимодействия компонентов раствора между собой и отсутствием общей теории растворов (особенно концентрированных). В связи с этим необходимые данные по растворимости веществ получают, как правило, опытным путем.

Количественно способность вещества к растворению характеризуется чаще всего растворимостью иликоэффициентом растворимости (S ).

Растворимость (S ) показывает сколько граммов вещества может максимально раствориться при данных условиях (температуре, давлении) в 100 г растворителя с образованием насыщенного раствора.

При необходимости коэффициент растворимости определяется и для другого количества растворителя (например, для 1000 г, 100 см 3 , 1000 см 3 и т.д.).

По растворимости все вещества в зависимости от своей природы делятся на 3 группы: 1) хорошо растворимые; 2) мало растворимые; 3) плохо растворимые или нерастворимые.

Коэффициент растворимости для веществ первой группы больше 1 г (на 100 г растворителя), для веществ второй группы лежит в интервале 0,01 – 1,0 г и для веществ третьей группы S< 0,01 г.

На растворимость веществ оказывают влияние многие факторы, главными из которых являются природа растворителя и растворяемого вещества, температура, давление, наличие в растворе других веществ (особенно электролитов).

Влияние природы веществ на растворимость

Установлено опытным путем, что в растворителе, молекулы которого полярны, лучше всего растворяются вещества, образованные ионными или ковалентными полярными связями. А в растворителе, молекулы которого неполярны, лучше растворяются вещества, образованные слабополярными или неполярными ковалентными связями. По другому эту выявленную закономерность можно сформулировать так: «Подобное растворяется в подобном».

Растворимость веществ во многом обуславливается силой и характером их взаимодействия с молекулами растворителя. Чем сильнее выражено это взаимодействие, тем больше растворимость и наоборот.

Известно, что силы, действующие между неполярными и слабополярными молекулами, невелики и неспецифичны, т.е. в количественном выражении существенно не зависят от вида вещества.

Если в неполярную жидкость В ввести однотипные неполярные молекулы А, то энергия взаимодействия частиц А и В между собой не будет значительно отличаться от энергии взаимодействия между частицами А и А или частицами В и В. Поэтому подобно тому как смешиваются любые количества одного и того же вещества, с большой вероятностью будут неограниченно смешиваться друг с другом (т.е. растворяться друг в друге) и различные неполярные жидкости.

По этой же причине и молекулярные кристаллы обычно лучше растворяются в неполярных жидкостях.

Если же энергия взаимодействия молекул А и А или В и В больше чем А и В, то одинаковые молекулы каждого компонента будут предпочтительнее связываться между собой и растворимость их друг в друге понизится (табл. 6).

Полярность любого растворителя часто характеризуют значением его диэлектрической проницаемости (ε), которая легко определяется опытным путем. Чем она больше, тем более полярным является вещество.

Таблица 6. Растворимость KI(мас%) в растворителях различной полярности

Растворимость труднорастворимых электролитов зависит от природы электролита и растворителя, температуры, ионной силы раствора.

А) соединения с полярной связью растворяются в полярных растворителях, а соединения с неполярной связью – в неполярных. Зависимость растворимости от природы растворителя можно использовать для понижения растворимости осаждаемых соединений.

Так, осаждение сульфатов катионов III аналитической группы проводят спиртовым раствором серной кислоты, так как растворимость сульфата кальция в этаноле (10 -5 моль/л) меньше, чем в воде (7,9 10 -3 моль/л).

Б) Растворение – процесс, который характеризуется определённой теплотой растворения.

Теплота растворения – суммарный тепловой эффект всех процессов, протекающих при растворении (разрушение кристаллической решётки, гидратация ионов).

Для большинства электролитов, при повышении температуры растворимость увеличивается в различной степени.

Абсолютно нерастворимых веществ в природе не существует. Следовательно, даже малорастворимые и трудно растворимые вещества в какой-то, пусть незначительной, степени растворяются и существуют в растворах в виде молекул и ионов.

РАВНОВЕСИЕ В ГЕТОРОГЕННОЙ СИСТЕМЕ РАСТВОР – ОСАДОК. ПРОИЗВЕДЕНИЕ РАСТВОРИМОСТИ (ПР).

Рассмотрим гетерогенную систему – труднорастворимый электролит B m A n , находящийся в равновесии с осадком. В наиболее простом случае электролит B m A n при растворении полностью диссоциирует на ионы:

B m A n ↓ ↔ mB n + + nA m - .

Применяя к этому равновесию закон действующих масс, получим:

m n = K

В знаменателе этого уравнения находится значение концентрации трудно растворимого соединения в осадке. Осадок образует самостоятельную фазу, и его концентрация в ней составляет 100%. Поэтому в осадке является постоянной величиной. Тогда, преобразуя уравнение m n = К осад = К.

Растворимость веществ в различных растворителях, например в воде, колеблется в широких пределах. Если в 100 г воды при комнатной температуре растворяется более 10 г вещества, то такое вещество принято называть легкорастворим ым-, если менее 1 г вещества - малорастворимым; наконец, вещество считается практически нерастворимым, если в 100 г воды переходит менее 0,1 г вещества. К легкорастворимым веществам относятся поваренная соль (при 20 °С в 100 г воды растворяется 35,8 г NaCl), медный купорос CuS04 5Н20 (20,7 г), аммиак NH3 (67,9 г); труднорастворимые вещества - гипс CaS04 (0,195 г), гашеная известь Са(ОН)2 (0,165 г); практически нерастворимые - сульфат бария BaS04 (0,00023 г), хлорид серебра AgCl (0,00015 г), карбонат кальция СаС03 (0,00013 г). Абсолютно нерастворимых веществ не существует. От чего же зависит растворимость веществ? На растворимость веществ в общем случае оказывает влияние природа растворяемого вещества и природа растворителя, температура, давление. Влияние природы растворителя и растворяемого вещества. Очень давно опытным путем установлено правило, согласно которому подобное растворяется в подобном. Так, Вещества с ионным (соли, щелочи) или полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, например в воде. И наоборот, растворимость кислорода в бензоле, например, на порядок выше, чем в воде, так как молекулы 02 и СбНб неполярны. Растворимость газов в жидкостях может меняться в очень широких пределах. Так, например, в 100 объемах воды при 20 °С растворяется 1,54 объема азота, 2 объема водорода, 2,3 объема оксида углерода (II), 3 объема кислорода, 88 объемов оксида углерода (IV). В этих же условиях в 1 объеме воды растворяется свыше 400 объемов хлороводорода и 700 объемов аммиака. Большая растворимость аммиака объясняется химическим взаимодействием с водой, а хлороводорода - его диссоциацией на ионы под действием диполей воды. Влияние природы растворителя иллюстрируется следующим примером: при 0 X и давлении 1 атм в 100 г воды растворяется 89,5 г NH3, в метиловом спирте его растворяется 42 г, а в этиловом - только 25 г. Растворимость жидкостей в жидкостях очень сложным образом зависит от их природы. Известны три класса жидкостей, различающихся способностью к взаимному растворению. 1. Жидкости, практически не растворяющиеся друг в друге (например, Н20 - fjg, Н20 - CJH*). 2. Жидкости, неограниченно растворяющиеся друг в друге (например, Н20 - QH5OH, Н20 - СНзСООН). 3. Жидкости, ограниченно растворяющиеся друг в друге (Н20 - С2Н5ОС2Н5, н20 - QHsNHz). Например, эфир (QH5OQH5) растворяется в воде в небольшом количестве. Факторы влияющие на растворимость веществ Растворимость твердых веществ в жидкостях в первую очередь определяется характером химических связей в их кристаллических решетках. Молекулярные (или атомные) кристаллы, структурными единицами которых являются атомы или молекулы с ко валентным неполярным типом связи, практически нерастворимы в воде (например, графит, алмаз, сера, кристаллический иод). Влияние характера химических связей можно проиллюстрировать на ряде известных веществ. Так, натриевые соли муравьиной и уксусной кислот очень хорошо растворимы в воде, а мыла - соли стеариновой, пальмитиновой и олеиновой кислот - растворимы в воде в очень незначительной степени. Растворимость фенола в воде мала (QH5OH - полярные молекулы, но большой углеводородный радикал). Фенолят натрия QHjONa - ионное соединение, и, хотя радикал в анионе тот же, что и в феноле, растворимость фенолята много выше растворимости фенола. Очень характерна растворимость кри-. сталлического хлорида фенил аммония QHjNHjCl (органическая соль с полярным характером связи) в полярной воде и неполярном бензоле. В первом случае соль хорошо растворима, в бензоле - практически нерастворима, Неорганические соли имеют различную растворимость в воде. Так, все соли азотистой и азотной кислот хорошо растворимы в воде. Подавляющее большинство фторидов, бромидов и иоди-дов таю» хорошо растворимы в воде. Средние соли угольной кислоты, за исключением солей аммония и щелочных металлов, нерастворимы в воде, а все гидрокарбонаты растворимы. Из сульфатов нерастворимыми или малорастворимыми являются соли щелочно-земельных металлов, серебра и свинца. Среди фосфатов растворимыми являются соли аммония, натрия и калия. Большинство солей аммония и щелочных металлов являются растворимыми. Факторы влияющие на растворимость веществ Все сказанное выше наглядно иллюстрируется таблицей растворимости кислот, оснований и солей в воде (см. Приложение i) - обязательно проанализируйте эту таблицу после прочтения настоящего раздела.

Последние материалы раздела:

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...