Что такое система в его общем значении. Что такое система

это структура, рассматриваемая в отношении определенной функции. Более подробный анализ понятия "система" позволяет выделить следующие общие моменты, присущие любой системе. Во-первых, "система" представляет собой нечто целостное, отличное от окружающей ее среды; во-вторых, эта целостность носит функциональный характер, в-третьих, система представляется дифференцируемой на конечное множество взаимосвязанных элементов, обладающих вполне определенными свойствами; в-четвертых, отдельные, элементы взаимосодействуют в плане общего назначения системы, в-пятых, свойства системы не сводятся к свойствам, образующих ее компонентов; в-шестых, система находится в информационном и энергетическом взаимодействии с окружающей средой; в-седьмых, система изменяет характер функционирования в зависимости от информации о полученных результатах; в-восьмых, системы могут обладать свойствами адаптивности. Целесообразно отметить, что один и тот же результат может быть достигнут разными системами, а в одной и той же структуре одни и те же элементы могут группироваться в разные системы, в зависимости от целевого назначения.

Система всегда носит функциональный характер, поэтому понятия "система" и "функциональная система" следует рассматривать как синонимы.

СИСТЕМА

сложный объект - совокупность качественно различных достаточно устойчивых элементов, взаимно связанных сложными и динамическими отношениями. Система как целое не сводится к "сумме своих частей", но проявляет системные свойства, коими не обладает ни одна из составных частей системы. Она подчиняется особым законам, не сводимым и не выводимым из законов функционирования отдельных элементов или частных связей, между ними. Это понятие изошло из теории систем, пограничной с математикой и кибернетикой, но стало общенаучным.

СИСТЕМА (ОРГАНИЗМА)

Совокупность органов и тканей, взаимосвязанных анатомически и функционально, отличающихся структурной общностью и эмбриогенетически.

С. АФФЕРЕНТНАЯ. Часть нервной системы, преобразующая энергию поступающих раздражений в нервные импульсы, поступающие в ЦНС.

С. ВЕСТИБУЛОМОЗЖЕЧКОВАЯ. Охватывает вестибулярные ядра ствола головного мозга, вестибулярный отдел мозжечка и их проводящие пути. Регулирует положение тела и его частей в пространстве, сохранение равновесия тела, координацию движений.

С. ЛИМБИЧЕСКАЯ. Включает участки коры головного мозга, расположенные на медиальной поверхности полушарий, связанные с ними проводящими путями базальные ядра, часть ядер гипоталамуса, гипоталамус, поводок. Выполняет функцию регулятора сна и бодрствования, эмоций, мотиваций и других наиболее общих состояний и реакций организма.

С. НЕРВНАЯ. Включает в себя нервные клетки (нейроны) и вспомогательные элементы. Осуществляет регуляцию и координацию всех органов и систем организма в их адаптации к условиям внешней среды.

С. НЕРВНАЯ ВЕГЕТАТИВНАЯ. Иннервирует внутренние органы, гладкие мышцы, железы, кровеносные и лимфатические сосуды, осуществляет адаптационно-трофическую функцию. Разделяется на симпатическую и парасимпатическую части.

Син.: С. нервная автономная.

С. НЕРВНАЯ ТРОФОТРОПНАЯ. Отдел С. нервной вегетативной, осуществляет функции регуляции анаболизма и поддержания гомеостаза в периоды отдыха.

С. НЕРВНАЯ ЦЕНТРАЛЬНАЯ. Включает головной и спинной мозг.

С. НЕРВНАЯ ЭРГОТРОПНАЯ. Регулирует катаболизм, осуществляет обеспечение приспособления к изменению условий окружающей среды, физическую и психическую деятельность. Как и С. нервная трофотропная, не связана с определенной структурной основой.

С. ПИРАМИДНАЯ. Включает проводящие пути, идущие от коры прецентральных извилин к двигательным ядрам и передним рогам спинного мозга (пирамидные пути). Участвует в организации произвольных движений.

С. СЕНСОРНАЯ. Включает С. афферентную и органы чувств.

С. СТРИОПАЛЛИДАРНАЯ. Часть экстрапирамидной (ядра полосатого тела и их проводящие, афферентные и эфферентные, пути).

С. ЭКСТРАПИРАМИДНАЯ Включает проекционные эфферентные пути от коры головного мозга, ядра полосатого тела, некоторые ядра ствола, мозжечок. Руководит координацией движений, осуществляет регуляцию мышечного тонуса.

С. ЭФФЕРЕНТНАЯ. Осуществляет передачу нервных импульсов из ЦНС к исполнительным органам (мышцам, железам и др.).

СИСТЕМА

1. В переводе с греческого означает организованное целое. Это значение термина сохраняется в большинстве специализированных контекстов, в которых он встречается. Фактически из-за ширины и разнообразия способов употребления этот термин редко встречается изолированно, он чаще модифицируется или определяется другим (одним или более) термином или фразой, например, кровеносная система, динамическая система, открытая система, нервная система и т.д. 2. Более или менее хорошо структурированный набор идей, предположений, понятий и интерпретативных тенденций, который служит для того, чтобы структурировать данные в определенной научной области, например, система Коперника в астрономии, или любая из школ в психологии, например, бихевиоризм, структурализм и т.д. 3. Более узкое значение – определенным образом организованные или взаимосвязанные вещи (объекты, механизмы, стимулы и т.д.); см. конфигурация.

Система

это комплекс объектов, а также взаимоотношения между объектами и их атрибутами (определениями). В качестве объектов семейной системы, являющихся ее составными частями, выступают подсистемы (супружеская, детско-родительская, сиблинговая и индивидуальная), в то время как атрибуты представляют собой свойства подсистем.

Система

от греч. systema - составленное из частей, соединенное) - совокупность элементов, находящихся в отношениях и связях между собой и образующих определенную целостность, единство, качество.

СИСТЕМА

от греч. syst?ma – составленное из частей, соединенное) – совокупность элементов, находящихся в отношениях и связях между собой и образующих определенную целостность, единство. Понятие «C.» играет важную роль в философии, науке, технике и практической деятельности. Начиная с середины ХХ в. ведутся интенсивные разработки в области системного подхода и общей теории систем. Для С. характерно не только наличие связей и отношений между образующими ее элементами (определенная организованность), но и неразрывное единство со средой, во взаимоотношениях с которой C. проявляет свою целостность. Любая C. м. б. рассмотрена как элемент C. более высокого порядка, в то время как ее элементы могут выступать в качестве C. более низкого порядка. Для большинства C. характерно наличие процессов передачи информации и управления. K наиболее сложным типам C. относятся целенаправленные С, поведение которых подчинено достижению определенной цели, и самоорганизующиеся C., способные в процессе своего функционирования изменять свою структуру. Для многих сложных C. (живых, социальных и т. д.) характерно существование разных по уровню, часто не согласующихся целей, кооперирование и конфликт этих целей и т. д. Конфликт является классической социальной С, имеющей свою структуру, функции, информационную подсистему и др. Конфликт входит как один из компонентов в С. более высокого порядка. Системный подход к исследованию конфликтов является одним из наиболее перспективных на сегодняшнем этапе развития отечественной конфликтологии.

Система

греч. systema – соединение, целое, состоящее из частей). Совокупность каких-либо компонентов, взаимосвязанных и взаимодействующих, имеющих общие происхождение и общие черты строения и выполняемых функций.

СИСТЕМА

от греч. systema - целое, составленное из частей; соединение] - 1) множество закономерно связанных друг с другом элементов (предметов, явлений, взглядов, знаний и т.д.), представляющее собой определенное целостное образование, единство. Выделяют материальные и абстрактные С. Первые подразделяются на С. неорганической природы и живые С. Абстрактные С. - понятия, гипотезы, теории, научные знания о С., лингв. (языковые), формализованные, логические С. и др. 2) физиол. совокупность тканей, органов, их частей, представляющих собой определенное единство и связанных общей функцией (см., напр., Нервная система, Дыхательная система)

СИСТЕМА

от греч. systema - составленное из частей, соединение) - совокупность элементов, находящихся в отношениях и связях между собой и образующих определенную целостность, единство. Понятие С. играет важную роль в науке, технике, практической деятельности. Велико его значение для психологии вообще и инженерной психологии в частности. Изучение С. ведется с позиций системного подхода, общей теории систем, системотехники. Большую роль для понимания механизмов С. управления (больших, сложных С.) сыграли кибернетика и ряд смежных с ней технических дисциплин. Для С. характерно не только наличие связей и отношений между образующими ее элементами (определенная организованность), но и неразрывное единство со средой, во взаимодействии с которой С. проявляет свою целостность. Любая С. может быть рассмотрена как элемент С. более высокого порядка, в то время как ее элементы могут выступать в качестве С. более низкого порядка. Напр., человек, являясь элементом СЧМ, в качестве входящих в него элементов содержит нервную систему, сердечно-сосудистую систему и др. Иерархичность, многоуровневость характеризуют строение, морфологию С. и ее поведение, функционирование: отдельные уровни С. обусловливают определенные аспекты ее поведения, а целостное функционирование оказывается результатом взаимодействия всех ее сторон, уровней. Для большинства С. характерно наличие в них процессов передачи информации и управления. В наиболее общем плане С. делятся на материальные и абстрактные (идеальные). Первые, в свою очередь, включают С. неорганической природы (технические, геологические и др.), живые С, особый класс материальных С. образуют социальные С. Абстрактные С. являются продуктом человеческого мышления (напр., С. психологических понятий, С. стандартов безопасности труда и т. п.). По степени сложности различают простые и сложные С, для последних характерны существование различных по уровню, часто не согласующихся между собой целей, кооперирование и конфликт этих целей и т. д. К наиболее сложным относятся целеустремленные С. По величине и размерам могут быть малые и большие С, причем большая С. не всегда является сложной и наоборот. При использовании других оснований классификации выделяются статичные (не меняющие своего состояния с течением времени) и динамичные (меняющие свое состояние; человек) С.; детерминированные и стохастические (вероятностные) С. Для последней знание значений переменных в данный момент времени позволяет, в отличие от статичных С, только предсказать вероятность распределения значений этих переменных в последующие моменты времени. По характеру взаимоотношения С. и среды С. делятся на закрытые - замкнутые (в них не поступает и из них не выделяется вещество, происходит только обмен энергией) и открытые - не замкнутые (в них постоянно происходит ввод-вывод не только энергии, но и вещества). По второму закону термодинамики каждая закрытая С. в конечном итоге достигает состояния равновесия. Рост научно-технического прогресса привел к необходимости разработки и создания автоматизированных С. управления в различных отраслях народного хозяйства. Теоретические вопросы создания таких С. разрабатываются в теориях иерархических, многоуровневых С, целенаправленных С, в своем функционировании стремящихся к достижению определенных целей), самоорганизующихся С. (способных менять свою организацию, структуру) и др. Сложность, многокомпонентность, стохастичность и др. важнейшие особенности современных технических С. потребовали разработки теорий СЧМ, сложных систем, системотехники, системного анализа.

Как в трудах Людвига фон Берталанфи и в сочинениях Александра Богданова , так и в трудах менее значительных авторов, рассматриваются некоторые общесистемные закономерности и принципы функционирования и развития сложных систем . Среди таковых традиционно принято выделять:

  • гипотеза семиотической непрерывности «Онтологическая ценность системных исследований, как можно думать, определяется гипотезой, которую можно условно назвать „гипотезой семиотической непрерывности“. Согласно этой гипотезе , система есть образ её среды. Это следует понимать в том смысле, что система как элемент универсума отражает некоторые существенные свойства последнего»::93. «Семиотическая» непрерывность системы и среды распространяется и за пределы собственно структурных особенностей систем, экстраполируясь также и на динамику их развёртывания. «Изменение системы есть одновременно и изменение её окружения, причём источники изменения могут корениться как в изменениях самой системы, так и в изменениях окружения. Тем самым исследование системы позволило бы вскрыть кардинальные диахронические трансформации окружения» :94 . В известном смысле данная гипотеза представляет собой лишь половину истины, поскольку в данном случае не берутся в расчёт собственные, внутренние потенциалы системного центра, собственно, и организующего процессы в системе, оформляющиеся на границе системного центра и его среды;
  • принцип обратной связи Положение, согласно которому устойчивость в сложных динамических формах достигается за счёт замыкания петель обратной связи: «если действие между частями динамической системы имеет этот круговой характер, то мы говорим, что в ней имеется обратная связь»:82. Принцип обратной афферентации , сформулированный академиком Анохиным П. К. , являющийся в свою очередь конкретизацией принципа обратной связи, фиксирует что регулирование осуществляется «на основе непрерывной обратной информации о приспособительном результате»;
  • принцип организационной непрерывности (А. А. Богданов) утверждает, что любая возможная система обнаруживает бесконечные «различия» на её внутренних границах, и, как следствие, любая возможная система принципиально разомкнута относительно своего внутреннего состава (то есть открыта к его поэлементной и даже комплексной модификации), и тем самым она связана в тех или иных цепях опосредования со всем универсумом - со своей средой, со средой среды и т. д. Данное следствие эксплицирует принципиальную невозможность «порочных кругов», понятых в онтологической модальности . «Мировая ингрессия (вхождение с наполнением) в современной науке выражается как принцип непрерывности. Он определяется различно; тектологическая же его формулировка проста и очевидна: между всякими двумя комплексами вселенной, при достаточном исследовании устанавливаются промежуточные звенья, вводящие их в одну цепь ингрессии»:122;
  • принцип совместимости (М. И. Сетров), фиксирует, что «условием взаимодействия между объектами является наличие у них относительного свойства совместимости», то есть относительной качественной и организационной однородности: так, прививка различных плодоносящих ветвей между различными плодовыми растениями возможно благодаря их относительной совместимости - но при этом трансплантация тканей от животного к человеку или даже между различными людьми в высшей степени проблематична, и стала возможной лишь в результате развития медицины на протяжении многих тысячелетий;
  • принцип взаимно-дополнительных соотношений (сформулировал А. А. Богданов), дополняет закон расхождения, фиксируя, что «системное расхождение заключает в себе тенденцию развития, направленную к дополнительным связям»:198. При этом смысл дополнительных соотношений целиком «сводится к обменной связи: в ней устойчивость целого, системы, повышается тем, что одна часть усваивает то, что дезассимилируется другой, и обратно. Эту формулировку можно обобщить и на все и всякие дополнительные соотношения»:196. Дополнительные соотношения являются характерной иллюстрацией конституирующей (устанавливающей) роли замкнутых контуров обратных связей в определении целостности системы. Необходимой «основой всякой устойчивой системной дифференциации является развитие взаимно-дополнительных связей между её элементами». Данный принцип применим по отношению ко всем деривативам сложно организованных систем;
  • закон необходимого разнообразия (У. Р. Эшби). Весьма образная формулировка этого принципа фиксирует, что «только разнообразие может уничтожить разнообразие»:294. Очевидно, что рост разнообразия элементов систем как целых может приводить как к повышению устойчивости (за счёт формирования обилия межэлементных связей и обусловливаемых ими компенсаторных эффектов "действий" ), так и к её снижению (связи могут и не носить межэлементного характера в случае отсутствия совместимости или слабой механизации, напр., и приводить к диверсификации);
  • закон иерархических компенсаций (Е. А. Седов) фиксирует, что «действительный рост разнообразия на высшем уровне обеспечивается его эффективным ограничением на предыдущих уровнях». «Этот закон, предложенный российским кибернетиком и философом Е. Седовым, развивает и уточняет известный кибернетический закон Эшби о необходимом разнообразии». Из данного положения следует очевидный вывод: поскольку в реальных системах (в собственном смысле этого слова) первичный материал однороден, следовательно, сложность и разнообразие воздействий регуляторов достигается лишь относительным повышением уровня его организации. Ещё А. А. Богданов неоднократно указывал, что системные центры в реальных системах оказываются более организованными, чем периферические элементы: закон Седова лишь фиксирует, что уровень организации системного центра с необходимостью должен быть выше по отношению к периферическим элементам. Одной из тенденций развития систем является тенденция прямого понижения уровня организации периферических элементов, приводящая к непосредственному ограничению их разнообразия: «только при условии ограничения разнообразия нижележащего уровня можно формировать разнообразные функции и структуры находящихся на более высоких уровнях», т.о. «рост разнообразия на нижнем уровне [иерархии ] разрушает верхний уровень организации». В структурном смысле закон означает, что «отсутствие ограничений… приводит к деструктурализации системы как целого», что приводит к общей диверсификации системы в контексте объемлющей её среды;
  • принцип моноцентризма (А. А. Богданов), фиксирует, что устойчивая система «характеризуется одним центром, а если она сложная, цепная, то у неё есть один высший, общий центр»:273. Полицентрические системы характеризуются дисфункцией процессов координации, дезорганизованностью, неустойчивостью и т. д. Подобного рода эффекты возникают при наложении одних координационных процессов (пульсов) на другие, чем обусловлена утрата целостности;
  • закон минимума (А. А. Богданов), обобщающий принципы Либиха и Митчерлиха, фиксирует: «устойчивость целого зависит от наименьших относительных сопротивлений всех его частей во всякий момент»:146. «Во всех тех случаях, когда есть хоть какие-нибудь реальные различия в устойчивости разных элементов системы по отношению к внешним воздействиям, общая устойчивость системы определяется наименьшей её частичной устойчивостью». Именуемое также «законом наименьших относительных сопротивлений», данное положение является фиксацией проявления принципа лимитирующего (ограничивающего) фактора: темпы восстановления устойчивости комплекса после нарушающего её воздействия определяются наименьшими частичными, а так как процессы локализуются в конкретных элементах, устойчивость систем и комплексов определены устойчивостью слабейшего её звена (элемента);
  • принцип внешнего дополнения (выведен Ст. Биром) «сводится к тому, что в силу теоремы неполноты Гёделя любой язык управления в конечном счёте недостаточен для выполнения стоящих перед ним задач, но этот недостаток может быть устранён благодаря включению „чёрного ящика “ в цепь управления». Непрерывность контуров координации (взаимоупорядочение) достигается лишь посредством специфического устройства гиперструктуры, древовидность которой отражает восходящую линию суммации воздействий. Каждый координатор встроен в гиперструктуру так, что передаёт по восходящей лишь частичные воздействия от координируемых элементов (например, сенсоров). Восходящие воздействия к системному центру подвергаются своеобразному «обобщению» при суммации их в сводящих узлах ветвей гиперструктуры. Нисходящие по ветвям гиперструктуры координационные воздействия (например, к эффекторам) асимметрично восходящим подвергаются «разобобщению» локальными координаторами: дополняются воздействиями, поступающими по обратным связям от локальных процессов. Иными словами, нисходящие от системного центра координационные импульсы непрерывно специфицируются в зависимости от характера локальных процессов за счёт обратных связей от этих процессов.
  • теорема о рекурсивных структурах (Ст. Бир) предполагает, что в случае, «если жизнеспособная система содержит в себе жизнеспособную систему, тогда их организационные структуры должны быть рекурсивны »;
  • закон расхождения (Г. Спенсер), также известный как принцип цепной реакции : активность двух тождественных систем имеет тенденцию к прогрессирующему накоплению различий. При этом «расхождение исходных форм идёт „лавинообразно“, вроде того как растут величины в геометрических прогрессиях, - вообще, по типу ряда, прогрессивно восходящего»:186. Закон имеет и весьма продолжительную историю: «как говорит Г. Спенсер, „различные части однородной агрегации неизбежно подвержены действиям разнородных сил, разнородных по качеству или по напряжённости, вследствие чего и изменяются различно“. Этот спенсеровский принцип неизбежно возникающей разнородности внутри любых систем… имеет первостепенное значение для тектологии ». Ключевая ценность данного закона заключается в понимании характера накопления «различий», резко непропорционального периодам действия экзогенных факторов среды.
  • закон опыта (У. Р. Эшби) охватывает действие особого эффекта, частным выражением которого является то, что « , связанная с изменением параметра , имеет тенденцию разрушать и замещать информацию о начальном состоянии системы»:198. Общесистемная формулировка закона, не связывающая его действие с понятием информации, утверждает, что постоянное «единообразное изменение входов некоторого множества преобразователей имеет тенденцию уменьшать разнообразие этого множества»:196 - в виде множества преобразователей может выступать как реальное множество элементов, где воздействия на вход синхронизированы, так и один элемент, воздействия на который рассредоточены в диахроническом горизонте (если линия его поведения обнаруживает тенденцию возврата к исходному состоянию, и т.с. он описывается как множество). При этом вторичное, дополнительное «изменение значения параметра делает возможным уменьшение разнообразия до нового, более низкого уровня»:196; более того: сокращение разнообразия при каждом изменении обнаруживает прямую зависимость от длины цепи изменений значений входного параметра. Данный эффект в рассмотрении по контрасту позволяет более полным образом осмыслить закон расхождения А. А. Богданова - а именно положение, согласно которому «расхождение исходных форм идёт „лавинообразно“»:197, то есть в прямой прогрессирующей тенденции: поскольку в случае единообразных воздействий на множество элементов (то есть «преобразователей») не происходит увеличения разнообразия проявляемых ими состояний (и оно сокращается при каждой смене входного параметра, то есть силы воздействия, качественных сторон, интенсивности и т. д.), то к первоначальным различиям уже не «присоединяются несходные изменения»:186. В этом контексте становится понятным, почему процессы, протекающие в агрегате однородных единиц имеют силу к сокращению разнообразия состояний последних: элементы подобного агрегата «находятся в непрерывной связи и взаимодействии, в постоянной конъюгации , в обменном слиянии активностей. Именно постольку же и происходит, очевидно выравнивание развивающихся различий между частями комплекса»:187: однородность и однотипность взаимодействий единиц поглощают какие-либо внешние возмущающие воздействия и распределяют неравномерность по площади всего агрегата.
  • принцип прогрессирующей сегрегации (Л. фон Берталанфи) означает прогрессирующий характер потери взаимодействий между элементами в ходе дифференциации, однако к оригинальной версии принципа следует добавить тщательно замалчиваемый Л. Фон Берталанфи момент: в ходе дифференциации происходит становление опосредованных системным центром каналов взаимодействий между элементами. Понятно, что происходит потеря лишь непосредственных взаимодействий между элементами, что существенным образом трансформирует принцип. Данный эффект оказывается потерей «совместимости». Является немаловажным то обстоятельство, что сам процесс дифференциации в принципе нереализуем вне централистически регулируемых процессов (в противном случае координация развивающихся частей оказалась бы невозможной): «расхождение частей» с необходимостью не может быть простой потерей взаимодействий, и комплекс не может превращаться в некое множество «независимых каузальных цепей», где каждая такая цепь развивается самостоятельно вне зависимости от остальных. Непосредственные взаимодействия между элементами в ходе дифференциации действительно ослабевают, однако не иначе как по причине их опосредования центром.
  • принцип прогрессирующей механизации (Л. фон Берталанфи) является важнейшим концептуальным моментом. В развитии систем «части становятся фиксированными по отношению к определённым механизмам». Первичные регуляции элементов в исходном агрегате «обусловлены динамическим взаимодействием внутри единой открытой системы, которая восстанавливает своё подвижное равновесие. На них накладываются в результате прогрессирующей механизации вторичные механизмы регуляции, управляемые фиксированными структурами преимущественно типа обратной связи». Существо этих фиксированных структур было обстоятельно рассмотрено Богдановым А. А. и наименовано «дегрессией»: в ходе развития систем формируются особые «дегрессивные комплексы», фиксирующие процессы в связанных с ними элементах (то есть ограничивающие разнообразие изменчивости, состояний и процессов). Таким образом, если закон Седова фиксирует ограничение разнообразия элементов нижних функционально-иерархических уровней системы, то принцип прогрессирующей механизации обозначает пути ограничения этого разнообразия - образование устойчивых дегрессивных комплексов: «„скелет“, связывая пластичную часть системы, стремится удержать её в рамках своей формы, а тем самым задержать её рост, ограничить её развитие», снижение интенсивности обменных процессов, относительная дегенерация локальных системных центров и т. д. Следует заметить, что функции дегрессивных комплексов не исчерпываются механизацией (как ограничением разнообразия собственных процессов систем и комплексов), но также распространяются на ограничение разнообразия внешних процессов.
  • принцип актуализации функций (впервые сформулировал М. И. Сетров) также фиксирует весьма нетривиальное положение. «Согласно этому принципу объект выступает как организованный лишь в том случае, если свойства его частей (элементов) проявляются как функции сохранения и развития этого объекта», или: «подход к организации как непрерывному процессу становления функций её элементов может быть назван принципом актуализации функций». Таким образом, принцип актуализации функций фиксирует, что тенденция развития систем есть тенденция к поступательной функционализации их элементов; само существование систем и обусловлено непрерывным становлением функций их элементов.

В этой статье мы рассмотрим определение системы как устройства, составленного из различных структурных элементов. Здесь будет затронут вопрос о классификации систем и их характеристике, а также постановка закона Эшби и понятие об общей теории.

Введение

Определение системы представляет собой множественный ряд элементов, которые находятся в определенной связи между собой и образуют целостность.

Использование системы как термина обуславливается необходимостью подчеркнуть различные характеристики чего-либо. Речь, как правило, идет о сложном и огромном устройстве объекта. Разобрать такой механизм чаще всего сложно однозначно, что является еще одной причиной для эксплуатации термина «система».

Определение системы имеет характерное отличие от «множества» или «совокупности», которое проявляет себя в том, что основной термин статьи говорит нам об упорядоченности и целостности в определенном объекте. В системе всегда присутствует определенная закономерность ее построения и функционирования, а также она обладает спецификой развития.

Определение термина

Существуют различные определения системы, которые могут классифицироваться по самым разнообразным характеристикам. Это очень широкое понятие, которое может использоваться по отношению практически ко всему и в любых науках. Содержание контекста о системе, области знания и цели изучения и анализа также сильно влияет на определение этого понятия. Проблема исчерпывающей характеристики заключается в использовании термина как объективного, так и субъективного.

Рассмотрим некоторые дескриптивные определения:

  • Система - это комплексное образование взаимодействующих фрагментов целостного «механизма».
  • Система - общее скопление элементов, пребывающих в некотором отношении друг по отношению к другу, а также связанным со средой.
  • Система - это набор взаимосвязанных компонентов и деталей, обособленных от среды, но взаимодействующих с ней и работающих как единое целое.

Первые определения системы дескриптивного характера относятся к раннему периоду развития науки о системах. В такую терминологию включались лишь элементы и набор связей. Далее стали включать различные понятия, например функции.

Система в повседневности

Человек использует определение системы в самых различных сферах жизни и деятельности:

  • При наименовании теорий, например философской системы Платона.
  • При создании классификации.
  • При создании конструкции.
  • При наименовании совокупности установившихся жизненных норм и поведенческих правил. Примером служит система законодательства или моральных ценностей.

Исследование систем - это ход развития в науке, который изучается в самых разнообразных дисциплинах, например в инженерии, теории систем, системном анализе, системологии, термодинамике, системной динамике и т. д.

Характеристика системы посредством ее составных компонентов

Основные определения системы включают в себя ряд характеристик, посредством анализа которых можно так или иначе дать ей исчерпывающее описание. Рассмотрим главенствующие:

  • Пределом расчленения системы на фрагменты является определение элемента. С точки зрения рассматриваемых аспектов, решаемых задач и поставленной цели они могут по-разному классифицироваться и различаться.
  • Компонентом называют подсистему, которая представлена нам в виде относительно независимой частицы системы и обладает при этом ее некоторыми свойствами и подцелью.
  • Связью именуют взаимоотношение между элементами системы и тем, что они ограничивают. Связь позволяет снижать степень свободы фрагментов «механизма», но приобретать при этом новые свойства.
  • Структура - перечень самых существенных компонентов и связей, мало изменяемых в процессе текущего функционирования системы. Она отвечает за наличие главных свойств.
  • Основным понятием в определении системы также является понятие цели. Цель - это многогранное понятие, которое можно определять в зависимости от данных контекста и этапа познания, на котором система находится.

Подход к определению системы также зависит от таких понятий, как состояние, поведение, развитие и жизненный цикл.

Наличие закономерностей

При разборе основного термина статьи важно будет обратить внимание на наличие некоторых закономерностей. Первой является наличие ограниченности от общей среды. Другими словами, это интегративность, которая определяет систему как абстрактную сущность, обладающую целостностью и четко поставленными пределами своих границ.

Система обладает синергичностью, эмерджентностью и холизмом, а также системным и сверхаддитивным эффектом. Элементы системы могут быть взаимосвязаны между конкретными компонентами, а с некоторыми никак не взаимодействовать, однако влияние в любом случае оказывается всеохватывающим. Оно производится посредством косвенного взаимодействия.

Определение системы - это термин, тесно связанный с явлением иерархичности, которое представляет собой определение различных деталей системы как отдельных систем.

Классификационные данные

Практически все издания, изучающие теорию систем и системный анализ, занимаются обсуждением вопроса о том, как их правильно классифицировать. Самое большое разнообразие среди перечня мнений о таком различии относится к определению сложных систем. Преобладающая часть классификаций относится к произвольным, которые также называют эмпирическими. Это означает, что чаще всего авторы произвольно используют данный термин в случае потребности охарактеризовать определенную решаемую задачу. Различие чаще всего осуществляется по определению предмета и категориального принципа.

Среди главных свойств чаще всего обращают внимание на:

  • Количественную величину всех компонентов системы, а именно на монокомпонентность или поликомпонентность.
  • При рассмотрении статичной структуры необходимо брать в расчет состояние относительного покоя и наличие динамичности.
  • Отношение к закрытому или открытому типу.
  • Характеристику детерминированной системы в конкретный момент времени.
  • Необходимо учитывать гомогенность (например, популяцию организмов в виде) или гетерогенность (наличие различных элементов с различными свойствами).
  • При анализе дискретной системы всегда четко ограничивают закономерности и процессы, а в соответствии с происхождением выделяют: искусственную, естественную и смешанную.
  • Важно обращать внимание на степень организованности.

Определение системы, видов систем и системы в целом связано еще и с вопросом о восприятии их как сложных или простых. Однако здесь находится наибольшее количество разногласий при попытке дать исчерпывающий перечень характеристик, в соответствии с которыми необходимо их разграничивать.

Понятие вероятностной и детерминированной системы

Определение термина «система», созданное и предложенное Ст. Биром, стало одним из самых широко известных и распространенных по всему миру. В основу фундамента различия он вложил сочетание уровней детерминированности и сложности и получил вероятностные и детерминированные. Примером последних могут служить простые структуры, например оконные задвижки и проекты механизированных мастерских. Сложные представлены компьютерами и автоматизацией.

Вероятностным устройством элементов в простой форме может послужить подбрасывание монеты, передвижение медузы, наличие статистического контроля по отношению к качеству продукции. Среди сложных примеров системы можно вспомнить о хранении запасов, условных рефлексах и т. д. Сверхсложные формы вероятностного типа: понятие экономики, структура мозга, фирма и т. д.

Закон Эшби

Определение понятия системы тесно связано с законом Эшби. В случае создания определенной структуры, в которой компоненты обладают связями между собой, необходимо обусловить наличие проблеморазрешающей способности. Важно, чтобы система обладала разнообразием, превышающим этот же показатель у проблемы, над которой идет работа. Второй чертой является наличие у системы возможности создать такое разнообразие. Другими словами, устройство системы необходимо регулировать так, чтобы она могла изменять свои свойства в ответ на изменение условий решаемой задачи или проявление возмущения.

В случае отсутствия подобных характеристик в изучаемом явлении система не сможет удовлетворять требования к управленческим заданиям. Она станет малоэффективной. Важно также обращать внимание на наличие разнообразия в перечне подсистем.

Понятие об общей теории

Определение системы - это не только ее общая характеристика, но и набор различных важных аспектов. Одним из них является понятие об общей теории систем, которое представлено в виде научной и методологической концепции исследований объектов, образующих систему. Она взаимосвязана с такой терминологической единицей, как «системный подход», и является перечнем его конкретизированных принципов и методологий. Первую форму общей теории выдвинул Л. Фон Берталанфи, а идея его основывалась на признании изоморфизма основополагающих утверждений, отвечающих за управление и функциональные возможности объектов системы.

Что люди имеют в виду, когда говорят о системе? Ведь большинство из нас употребляют это слово интуитивно, не задумываясь о его значении. В этой статье расскажем о том, что такое система в общем понимании.

Определение: что такое система

В связи с тем, что данное понятие используется в различных сферах деятельности человека и научных дисциплинах, определений у него много. Использование того или иного определения зависит от того, о какой системе идет речь (область знаний), и в каком контексте рассматривается система. Однако все определения сводятся к тому, что система – это четко упорядоченная совокупность нескольких элементов, которые представляют собой единое целое, все элементы системы подчиняются одним законам и взаимосвязаны. Также, система может быть частью более масштабной системы, и в данном случае она будет выступать элементом более крупной системы.

Из данного определения вытекает еще одно понятие – «элемент». А, следовательно, напрашивается еще один вопрос: что такое элемент системы?

Элемент системы – это составная часть системы. Частью системы могут быть различные предметы, организмы, явления, сведения, знания.

Многие из нас хоть раз, да слышали такие словосочетания как: «политическая система», «информационная система», «система питания», «нервная система», «система образования» и так далее. Все это системы различных областей знаний.

Признаки системы

Для того чтобы объект можно было рассматривать как систему, он должен обладать определенными свойствами (признаками):

  • Целостность. В первую очередь система рассматривается как совокупность элементов. Элементы, входящие в систему могут различаться по функциям и свойствам, но при этом они являются совместимыми, и функционируют, как единое целое.
  • Структура (совокупность связей). Создание единого целого из разрозненных частей без четкой структуры – невозможно, поэтому следующий немаловажный признак системы, это взаимосвязи элементов. В зависимости от того, как элементы взаимосвязаны в системе, свойства системы будут различны. То есть одни и те же элементы, при различных связях будут образовывать различные по свойствам системы. Кроме того, связи между элементами системы сильнее связей этих же элементов с внешней средой.
  • Эмерджентность. Система может обладать свойствами неприсущими ни одному элементу системы, то есть не каждый элемент системы в отдельности определяет свойства системы, а именно связи между этими элементами.
  • Синергия. Функциональность системы, ее свойства превосходят суммарные возможности всех элементов системы.

Классификация систем

Существует достаточно большое разнообразие классификаций систем. Рассмотрим некоторые из них:

  • По происхождению выделяют: естественную, искусственную и смешанную системы. В различных ситуациях одна и та же система может относиться к одному или другому виду. Например, экологическая система, это естественная система, образованная природными силами, обладающая определенными характеристиками, и населенная различными живыми организмами. Если мы говорим об озере, то это естественная экологическая система, а водохранилище, это уже искусственно созданная экосистема.
  • По количеству элементов и сложности их связей различают: простые и сложные системы.
  • По взаимосвязи с внешней средой различают: открытые и закрытые (замкнутые) системы. Например, подледное озеро Антарктики является замкнутой системой, и воздействие окружающей среды на него практически отсутствует. Но если мы говорим об озерах на поверхности Земли, то все они являются открытыми экосистемами, на которые влияют осадки, впадающие в них реки, люди и другие элементы внешней среды.
  • По способности развиваться: статические и динамические. Статические системы не меняются с течением времени, динамические наоборот.
  • По степени организованности: диффузные (плохо организованные), самоорганизующиеся (развивающиеся), хорошо организованные. Так хозяйствующие субъекты (система), работающие в одной сфере достигают различных целей, и в большей степени их успехи зависят насколько эффективно управление в этих организациях, насколько оперативно реагирует система на изменение внешней среды (например, состояние рынка, для торговой организации).

Что такое тип системы

Различными типами систем, называют системы, состоящие из однотипных элементов, находящихся в различных связях, и выполняющих похожие функции. Отличным примером являются типы нервных систем различных организмов: диффузная нервная система, стволовая нервная система и другие.

Теперь Вы знаете, что такое система, и смело можете употреблять данный термин в своей речи.

Скорее всего, вы уже слышали о вики - они, кажется, выскакивают отовсюду. К примеру, наиболее известный вики-сайт называется Википедией. Это большая интернет-энциклопедия. Википедия стала такой большой (более миллиона статей), что при поиске в Google все время сталкиваешься со ссылками на нее. Она так популярна, что в настоящее время входит в первую сотню наиболее популярных WEB узлов мира!

Вики получают широкое распространение по той причине, что они по своей сути настолько просты, насколько это возможно. Благодаря этой простоте, людям легко ими пользоваться, так же, как электронной почтой и блогами. Подобно электронной почте и блогам, вики также выполняют полезные функции простым способом. Благодаря вики, группа людей получает возможность вводить и сообща редактировать участки текста. Эти участки текста может просматривать и редактировать любой посетитель вики-сайта.

Вот и все. Это означает, что, попав на вики-сайт, вы сможете редактировать то, что было написано вики-сообществом. Нажав кнопку «edit» («Редактировать»), относящуюся к статье, вы сможете редактировать текст этой статьи. В статье, которую вы читаете, можно будет добавлять или изменять все, что угодно, на ваше усмотрение.

Эта простота и абсолютная открытость вики привели к тому, что многие немедленно отвергли эту идею. Для многих людей вики представляются также очень странными. Откуда поступает вся информация? Надежна ли она? Что удержит людей от злонамеренного разрушения вики-сайта, пока тот не исчезнет окончательно? Бытует мнение, что поскольку редактировать вики может кто угодно в любое время, то вики обязательно испортят. Однако приверженцы вики считают, что это неверное предположение. Рассмотрим реальный вики-сайт, чтобы понять, что в действительности происходит.

Как работает Википедия

Поскольку Википедия - самый большой и очень популярный вики-сайт на планете, используем его в качестве примера того, как на практике действуют вики.

Если зайти на Wikipedia.org и взглянуть на домашнюю страницу, вы увидите окно приветствия, в котором показано, как получить доступ к разным версиям Википедии, а также окно поиска.

Наберите в окне поиска фразу «wing warping» - и откроется типичная статья Википедии. На странице «Wing warping» («Закручивание крыла») предлагается краткое описание закручивания крыла, приводятся ссылки на близкие по теме статьи в Википедии и предлагается несколько ссылок на внешние источники.

Это обычная практика для любой вики-страницы. Ведь вики - не больше, чем собранные вместе WEB страницы, соединенные между собой внутренними ссылками. В англоязычной версии Википедии имеется более миллиона таких страниц.

Прочитав статью, понимаешь, что это полезный источник информации. Здесь просто рассказывается, что представляет собой закручивание крыла, и предлагаются ссылки на другие ресурсы. Несмотря на то, что редактировать страницу может любой (даже вы), здесь нет порнографии, сквернословия или нацистских лозунгов. Весь материал только по теме.

Теперь можно задать главный вопрос, который задается о вики-страницах: откуда взялась эта страница о закручивании крыла? Кто ее написал? Для любой «нормальной» энциклопедии ответить на этот вопрос просто - создатели энциклопедии заплатили определенным людям и те написали статью. По отношению к Википедии ответ на этот вопрос будет совсем другим.

Последние материалы раздела:

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....