Какой многогранный угол называется выпуклым. Понятие о многогранном угле

Фигура, образованная тремя лучами, исходящими из одной точки О и не лежащими в одной плоскости, и тремя частями плоскостей, заключенных между этими лучами, называется трехгранным углом (рис. 352).

Точка О называется вершиной угла, лучи а, b, с - его ребрами, части плоскостей . Грани суть плоские углы, называемые также плоскими углами данного трехгранного угла. Углы между плоскими гранями называются двугранными углами данного трехгранного угла.

Теорема 1. В трехгранном угле каждый плоский угол меньше суммы двух других.

Доказательство. Достаточно доказать теорему для наибольшего из плоских углов. Пусть наибольший плоский угол трехгранного угла на рис. 353. Построим в плоскости угол , равный углу его сторона b пройдет внутри угла угол наибольший из плоских углов!).

Отложим на прямых с и b какие-либо равные отрезки Проведем через точки произвольную плоскость, пересекающую лучи а и b в точках N и М соответственно.

Треугольники равны, как имеющие равные углы, заключенные между равными сторонами. Покажем, что угол с вершиной О в больше угла с той же вершиной в . Действительно, эти углы заключены между парами равных сторон, третья же сторона больше в треугольнике

Отсюда видно, что сумма двух плоских углов больше третьего плоского угла что и требовалось доказать.

Теорема 2. Сумма плоских углов трехгранного угла меньше четыре прямых.

Доказательство. Возьмем три точки А, В и С на ребрах трехгранного угла и проведем через них секущую плоскость, как показано на рис. 354. Сумма углов треугольника ABC равна Следовательно, сумма шести углов ОАС, ОАВ, ОСА, ОСВ, ОВС, ОВА больше, чем как по предыдуще теореме . Но сумма углов трех треугольников ОАВ, ОВС, ОСА в гранях трехгранного угла равна . Таким образом, на долю плоских углов трехгранного угла остается меньше четырех прямых: . Эта сумма может быть сколь угодно малой («трехгранный шпиль») или сколь угодно близкой к если уменьшать высоту пирамиды SABC на рис. 355, сохраняя ее основание, то сумма плоских углов при вершине S будет стремиться к

Сумма двугранных углов трехгранного угла также имеет границы. Ясно, что каждый из двугранных углов и потому сумма их менее . Для той же пирамиды на рис. 355 эта сумма по мере уменьшения высоты пирамиды приближается к своей границе Можно также показать, что сумма эта всегда хотя может отличаться от сколь угодно мало.

Таким образом, для плоских и двугранных углов трехгранного угла имеют место неравенства

Имеется существенное сходство между геометрией треугольника на плоскости и геометрией трехгранного угла. При этом можно проводить аналогию между углами треугольника и двугранными углами трехгранного угла, с одной стороны, и между сторонами треугольника и плоскими углами трехгранного угла - с другой. Например, при указанной замене понятий сохраняют силу теоремы о равенстве треугольников. Приведем соответствующие формулировки параллельно:

Однако два трехгранных угла, у которых равны соответственные двугранные углы, равны между собой. Между тем два треугольника, углы которых соответственно равны, подобны, но не обязательно равны. Для трехгранных углов, как и для треугольников, ставится задача решения трехгранного угла, т. е. задача отыскания одних его элементов по другим заданным. Приведем пример подобной задачи.

Задача. Даны плоские углы трехгранного угла. Найти его двугранные углы.

Решение. Отложим на ребре а отрезок и проведем нормальное сечение ABC двугранного угла а. Из прямоугольного треугольника ОАВ находим Также имеем

Для ВС находим по теореме косинусов примененной к треугольнику ВАС (для краткости плоские углы обозначаем просто ab, ас, bс, двугранные - а, b, с)

Теперь применим теорему косинусов к треугольнику ВОС:

Отсюда находим

и аналогично

По этим формулам можно найти двугранные углы, зная плоские углы. Отметим еще без доказательства замечательное соотношение

называемое теоремой синусов.

Объяснение глубокой аналогии между геометрией трехгранного угла и геометрией треугольника нетрудно получить, если провести следующее построение. Поместим в вершину трехгранного угла О центр сферы единичного радиуса (рис. 357).

Тогда ребра пересекут поверхность сферы втрехточках А, В, С, грани угла высекут на сфере дуги больших кругов АС, АВ, ВС. На сфере образуется фигура ABC, называемая сферическим треугольником. Дуги («стороны» треугольника) измеряются плоскими углами трехгранного угла, углы при вершинах суть плоские углы двугранных углов. Поэтому решение трехгранных углов есть не что иное, как решение сферических треугольников, которое составляет предмет сферической тригонометрии. Соотношения (243.1) и (243.2) относятся к числу основных соотношений сферической тригонометрии. Сферическая тригонометрия имеет важное значение для астрономии. Таким образом, теория трехгранных углов есть теория сферических треугольников и потому во многом сходна с теорией треугольника на плоскости. Различие этих теорий состоит в том, что: 1) у сферического треугольника и углы и стороны измеряются в угловой мере, поэтому, напрнмер, в теореме синусов фигурируют не стороны, а синусы сторон АВ, АС, ВС;

№1 Дата05.09.14

Предмет Геометрия

Класс 11

Тема урока: Понятие о многогранном угле. Трехгранный угол.

Цели урока:

    ввести понятия: “трехгранные углы”, “многогранные углы”, “многогранник”;

    ознакомить учащихся с элементами трехгранного и многогранного углов, многогранника, а также определениями выпуклого многогранного угла и свойствами плоских углов многогранного угла;

    продолжить работу по развитию пространственных представлений и пространственного воображения, а также логического мышления учащихся.

Тип урока: изучения нового материала

ХОД УРОКА

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2. Формирование новых понятий и способов действия.

Задачи: Обеспечить восприятие, осмысление и запоминание учащимися изучаемого материала. Обеспечить усвоение учащимися методики воспроизведения изученного материала, содействовать философскому осмыслению усваиваемых понятий, законов, правил, формул. Установить правильность и осознанность учащимися изученного материала, выявить пробелы первичного осмысления, провести коррекцию. Обеспечить соотнесение учащимися своего субъективного опыта с признаками научного знания.

Пусть даны три луча а, b и с с общим началом точкой О (рис. 1.1). Эти три луча не обязательно лежат в одной плоскости. На рисунке 1.2 лучи b и с лежат в плоскости р, а луч а не лежит в этой плоскости.

Лучи а, b и с попарно задают три выделенных дугами плоских угла (рис. 1.3).

Рассмотрим фигуру, состоящую из трех указанных выше углов и части пространства, ограниченной этими плоскими углами. Эту пространственную фигуру называют трехгранным углом (рис. 2).

Лучи а, b и с называются ребрами трехгранного угла, а углы: = AOC, = AOB,

= BOC , ограничивающие трехгранный угол, - его гранями. Эти углы-грани образуют поверхность трехгранного угла. Точка О называется вершиной трехгранного угла. Трехгранный угол можно обозначать так: OABC

Рассмотрев внимательно все многогранные углы, изображенные на рисунке 3, мы можем заключить, что у каждого из многогранных углов одинаковое число ребер и граней:

4 грани и одна вершина;

    у пятигранного угла - 5 ребер, 5 граней и одна вершина;


  • у шестигранного угла - 6 ребер, 6 граней и одна вершина и т. д.

Многогранные углы бывают выпуклыми и невыпуклыми.

Представьте себе, что мы взяли четыре луча с общим началом, как на рисунке 4. В этом случае мы получили невыпуклый многогранный угол.

Определение 1. Многогранный угол называется выпуклым, если он лежит по одну сторону от плоскости каждой его грани.

Другими словами, выпуклый многогранный угол всегда можно положить любой его гранью на некоторую плоскость. Вы видите, что в случае, изображенном на рисунке 4, так поступить не всегда удается. Четырехгранный угол, изображенный на рисунке 4, является невыпуклым.

Отметим, что в нашем учебнике, если мы говорим “многогранный угол”, то имеем в виду, что он выпуклый. Если рассматриваемый многогранный угол невыпуклый, об этом будет сказано отдельно.

    Свойства плоских углов многогранного угла

Теорема 1. Каждый плоский угол трехгранного угла меньше суммы двух других плоских углов.

Теорема 2. Сумма величин всех плоских углов выпуклого многогранного угла меньше 360°.

3. Применение. Формирование умений и навыков.

Задачи: Обеспечить применение учащимися знаний и способов действий, которые им необходимы для СР, создать условия для выявления школьниками индивидуальных способов применения изученного.

6.Этап информации о домашнем задании.

Задачи: Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания.

§1(1.1, 1.2) стр. 4, № 9.

7.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.

8.Этап рефлексии.

Задачи: Инициировать рефлексию учащихся на самооценку своей деятельности. Обеспечить усвоение учащимися принципов само регуляции и сотрудничества.

Беседа по вопросам:

Что тебе на уроке было интересно?

Что не понятно?

На что обратить внимание учителю на следующем уроке?

Как ты оценишь свою работу на уроке?

2.4. Многогранные углы

В соответствии с тематическим планированием, на данный параграф отводится один час учебного времени (один урок).

1. Проверка домашнего задания (5 мин.)

2. Выполняем этап работы с информацией (20 –25 мин.)

Технологически этап ориентирован на преимущественное формирование познавательных универсальных учебных действий (умения формулировать вопросы к тексту, самостоятельно формулировать ответы с опорой на текст).

В этом параграфе находит дальнейшее развитие понятие трёхгранного угла. Появляется многогранный угол, и в связи с этим появляется возможность уточнить понятие многоугольника.

В связи с многогранными углами ещё раз обсуждается проблема выпуклости фигур. На примере многогранных углов мы дополнительно уточняем представления учащихся о выпуклых и невыпуклых фигурах (многоугольники, многогранные углы, произвольные фигуры).

Для многогранных углов полезно сформулировать свойства их плоских углов , аналогичные соответственным свойствам плоских углов трёхгранного угла (без доказательства):

1. Каждый плоский угол многогранного угла меньше суммы остальных плоских углов.

2. Сумма всех плоских углов многогранного угла меньше 360º.

3. Выполняем этап развития умений (15 20 мин.)

Этап ориентирован на выработку

познавательных УУД – формирование умений:

– по использованию математических знаний для решения различных математических задач и оценки полученных результатов;

– по использованию доказательной математической речи;

– по работе с информацией, в том числе и с различными математическими текстами;

Регулятивных УУД – формирование умений ставить личные цели деятельности, планировать свою работу, действовать по плану, оценивать полученные результаты;

коммуникативных УУД – формирование умений совместно с другими детьми в группе находить решение задачи и оценивать полученные результаты.

Обсуждаем, что это этап разъяснения всего непонятного, а также тренинга. Устанавливаем цели работы на данном этапе, добиваясь при этом от детей личного целеполагания: разъяснить для себя всё, что недостаточно хорошо понятно, потренироваться в решении тех задач, которые вызывают затруднения.

Здесь можно поработать с заданиями 34, 35 на стр. 29–30.

Предлагаем также несколько дополнительных задач.

1) Многогранный угол имеет n граней. Сколько у него рёбер?

Ответ: n рёбер.

2) Можно ли изготовить модель четырёхгранного угла с плоскими углами: 1) 80°, 130°, 70°, 100°; 2) 45°, 60°, 120°, 90°; 3) 80°, 80°, 80°, 80°? Если модель получилась, то какого угла: выпуклого или невыпуклого?

Ответ: 1) можно; 2) можно как выпуклого, так и невыпуклого; 3) можно, только выпуклого.

3) Опираясь на известное вам свойство плоских углов трёхгранного угла, докажите, что каждый плоский угол четырёхгранного угла меньше суммы трёх остальных его плоских углов.

Указание: Через два противолежащих ребра нужно провести плоскость и рассмотреть получившиеся трёхгранные углы. Доказательство справедливо только для выпуклых углов.

4) В четырёхгранном угле все плоские углы равны. Докажите, что они острые.

Решение: 1. Пусть α – градусная мера плоского угла.

2. Тогда 4α < 360° (по свойству суммы плоских углов выпуклого многогранного угла).

3. Следовательно, α < 90°, т. е. α – острый угол.

5) В выпуклом многогранном угле каждый из плоских углов равен а) 30°; б) 45°; в) 80°; г) 150°. Сколько граней может иметь такой многогранный угол?

Ответ: а) 3 ≤ n < 12; б) 3 ≤ n < 8; в) 3 ≤ n < 4,5; г) 3 ≤ n < 2,4 (такого многогранного угла не существует). При подсчетах нужно учитывать, что n – число целое.

6) В выпуклом многогранном угле все плоские углы равны между собой. Многогранный угол имеет а) 6; б) 8; в) 10 граней. Чему могут быть равны плоские углы данного многогранного угла?

Рассуждаем так же, как и при решении задачи 5, n α < 360°, где n – количество граней многогранного угла, α– градусная мера плоского угла; 0 ≤ α < 360°/ n .

Ответ: а) 0 ≤ α< 60°; б) 0 ≤ α< 45°; в) 0 ≤ α< 36°.

По истечении времени, отведённого для выполнения заданий, результаты работы выносятся педагогом на доску и обсуждаются учащимися. Подводится итог работы, происходит самооценка, связанная с определением того, что ясно и получается и того, что не ясно и не получается.

4. Формулируем домашнее задание по различным уровням сложности – в зависимости от результатов работы на предыдущем этапе.

Определения. Возьмём несколько углов (черт. 37): ASB, BSC, CSD, которые, примыкая последовательно один к другому, расположены в одной плоскости вокруг общей вершины S.

Повернём плоскость угла ASВ вокруг общей стороны SB так, чтобы эта плоскость составила некоторый двугранный угол с плоскостью BSC. Затем, не изменяя получившегося двугранного угла, повернём его вокруг прямой SC так, чтобы плоскость BSC составила некоторый двугранный угол с плоскостью CSD. Продолжим такое последовательное вращение вокруг каждой общей стороны. Если при этом последняя сторона SF совместится с первой стороной SA, то образуется фигура (черт. 38), которая называется многогранным углом . Углы ASB, BSC,... называются плоскими углами или гранями , стороны их SA, SB, ... называются рeбрами , а общая вершина S- вершиной многогранного угла.

Каждое ребро является вместе с тем ребром некоторого двугранного угла; поэтому в многогранном угле столько двугранных углов и столько плоских, сколько в нём всех рёбер. Наименьшее число граней в многогранном угле - три; такой угол называется трёхгранным . Могут быть углы четырёхгранные, пятигранные и т. д.

Многогранный угол обозначается или одной буквой S, поставленной у вершины, или же рядом букв SABCDE, из которых первая обозначает вершину, а прочие - рёбра по порядку их расположения.

Многогранный угол называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней, неограниченно продолженной. Таков, например, угол, изображённый на чертеже 38. Наоборот, угол на чертеже 39 нельзя назвать выпуклым, так как он расположен по обе стороны от грани ASB или от грани BSС.

Если все грани многогранного угла пересечём плоскостью, то в сечении образуется многоугольник (abcde ). В выпуклом многогранном угле этот многоугольник тоже выпуклый.

Мы будем рассматривать только выпуклые многогранные углы.

Теорема. В трёхгранном угле каждый плоский угол меньше суммы двух других плоских углов.

Пусть в трёхгранном угле SABC (черт. 40) наибольший из плоских углов есть угол ASC.

Отложим на этом угле угол ASD, равный углу ASB, и проведём какую-нибудь прямую АС, пересекающую SD в некоторой точке D. Отложим SB = SD. Соединив В с А и С, получим \(\Delta\)АВС, в котором

AD + DC < АВ + ВС.

Треугольники ASD и ASB равны, так как они содержат по равному углу, заключённому между равными сторонами: следовательно, AD = AB. Поэтому, если в выведенном неравенстве отбросить равные слагаемые AD и АВ, получим, что DC < ВС.

Теперь замечаем, что у треугольников SCD и SCB две стороны одного равны двум сторонам другого, а третьи стороны не равны; в таком случае против большей из этих сторон лежит больший угол; значит,

∠ CSD < ∠ CSВ.

Прибавив к левой части этого неравенства угол ASD, а к правой равный ему угол ASB, получим то неравенство, которое требовалось доказать:

∠ ASC < ∠ CSB + ∠ ASB.

Мы доказали, что даже наибольший плоский угол меньше суммы двух других углов. Значит, теорема доказана.

Следствие. Отнимем от обеих частей последнего неравенства по углу ASB или по углу CSB; получим:

∠ ASC - ∠ ASB < ∠ CSB;

∠ ASC - ∠CSB < ∠ ASB.

Рассматривая эти неравенства справа налево и приняв во внимание, что угол ASC как наибольший из трёх углов больше разности двух других углов, мы приходим к заключению, что в трёхгранном угле каждый плоский угол больше разности двух других углов .

Теорема. В выпуклом многогранном угле сумма всех плоских углов меньше 4d (360°) .

Пересечём грани (черт. 41) выпуклого угла SABCDE какой-нибудь плоскостью; от этого в сечении получим выпуклый n -угольник ABCDE.

Применяя теорему, доказанную ранее, к каждому из трёхгранных углов, вершины которых находятся в точках А, В, С, D и Е, пахолим:

∠ABC < ∠ABS + ∠SВC, ∠BCD < ∠BCS + ∠SCD и т. д.

Сложим почленно все эти неравенства. Тогда в левой части получим сумму всех углов многоугольника ABCDE, которая равна 2dn - 4d , а в правой - сумму углов треугольников ABS, SBC и т. д., кроме тех углов, которые лежат при вершине S. Обозначив сумму этих последних углов буквой х , мы получим после сложения:

2dn - 4d < 2dn - х .

Так как в разностях 2dn - 4d и 2dn - х уменьшаемые одинаковы, то, чтобы первая разность была меньше второй, необходимо, чтобы вычитаемое 4d было больше вычитаемого х ; значит, 4d > х , т. е. х < 4d .

Простейшие случаи равенства трёхгранных углов

Теоремы. Трёхгранные углы равны, если они имеют:

1) по равному двугранному углу, заключённому между двумя соответственно равными и одинаково расположенными плоскими углами , или

2) по равному плоскому углу, заключённому между двумя соответственно равными и одинаково расположенными двугранными углами .

1) Пусть S и S 1 - два трехгранных угла (черт. 42), у которых ∠ASB = ∠A 1 S 1 B 1 , ∠ASC = ∠A 1 S 1 C 1 (и эти равные углы одинаково расположены) и двугранный угол AS равен двугранному углу A 1 S 1 .

Вложим угол S 1 в угол S так, чтобы у них совпали точки S 1 и S, прямые S 1 A 1 и SA и плоскости A 1 S 1 B 1 и ASB. Тогда ребро S 1 B 1 пойдет по SB (в силу равенства углов A 1 S 1 B 1 и ASB), плоскость A 1 S 1 C 1 пойдёт по ASC (по равенству двугранных углов) и ребро S 1 C 1 пойдёт по ребру SC (в силу равенства углов A 1 S 1 C 1 и ASC). Таким образом, трёхгранные углы совместятся всеми своими рёбрами, т.е. они будут равны.

2) Второй признак, подобно первому, доказывается вложением.

Симметричные многогранные углы

Как известно, вертикальные углы равны, если речь идёт об углах, образованных прямыми или плоскостями. Посмотрим, справедливо ли это утверждение применительно к углам многогранным.

Продолжим (черт. 43) все рёбра угла SABCDE за вершину S, тогда образуется другой многогранный угол SA 1 B 1 C 1 D 1 E 1 , который можно назвать вертикальным по отношению к первому углу. Нетрудно видеть, что у обоих углов равны соответственно и плоские углы, и двугранные, но те и другие расположены в обратном порядке. Действительно, если мы вообразим наблюдателя, который смотрит извне многогранного угла на его вершину, то рёбра SА, SВ, SС, SD, SЕ будут казаться ему расположенными в направлении против движения часовой стрелки, тогда как, смотря на угол SA 1 B 1 C 1 D 1 E 1 , он видит рёбра SА 1 , SВ 1 , ..., расположенными по движению часовой стрелки.

Многогранные углы с соответственно равными плоскими и двугранными углами, но расположенными в обратном порядке вообще не могут совместиться при вложении; значит, они не равны. Такие углы называются симметричными (относительно вершины S). Подробнее о симметрии фигур в пространстве будет сказано ниже.

Другие материалы

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...