Робототехника: с чего начать изучение, где заниматься и каковы перспективы. Бытовые роботы - обзор роботов различного назначения

Робототехники олицетворяют собой сочетание противоположностей. Как специалисты, они искушены в тонкостях своей специализации. Как универсалы, они способны охватить проблему в целом в той степени, что позволяет имеющаяся обширная база знаний. Предлагаем вашему вниманию интересный материал на тему умений и навыков, которые необходимы настоящему робототехнику.

А кроме самого материала также комментарии одного из наших робо-экспертов, куратора екатеринбургского , Олега Евсегнеева.

Инженеры-робототехники, как правило, попадают в две категории специалистов: думающих (теоретиков) и делающих (практиков). Это означает, что робототехники должны отличаться хорошим сочетанием двух противоположных стилей работы. «Склонные к исследованиям» люди вообще любят решать проблемы, думая, читая и изучая. С другой стороны, специалисты-практики любят решать проблемы лишь «испачкав руки», можно так сказать.

В робототехнике нужен тонкий баланс между напряженными исследованиями и расслабленной паузой, то есть работа над реальной задачей. В представленный перечень попали 25 профессиональных умений, сгруппированных в 10 существенных для роботостроителей навыков.

1. Системное мышление

Один из менеджеров проекта однажды заметил, что многие, связанные с робототехникой люди, оказываются впоследствии менеджерами проектов или системными инженерами. В этом есть особый смысл, так как роботы являются очень сложными системами. Занимающийся роботами специалист должен быть хорошим механиком, электронщиком, электриком, программистом и даже обладать познаниями в психологии и когнитивной деятельности.

Хороший робототехник в состоянии понять и теоретически обосновать, как совместно и слаженно взаимодействуют все эти разнообразные системы. Если инженер-механик может вполне обоснованно сказать: «это не моя работа, тут нужен программист или электрик», то робототехник должен хорошо разбираться во всех этих дисциплинах.

Вообще, системное мышление является важным навыком для всех инженеров. Наш мир – одна большая сверхсложная система. Навыки системной инженерии помогают правильно понять, что и как связано в этом мире. Зная это, можно создавать эффективные системы управления реальным миром.

2. Мышление программиста

Программирование является довольно важным навыком для робототехника. При этом не имеет значения, занимаетесь ли вы низкоуровневыми системами управления (используя лишь MATLAB для проектирования контроллеров) или являетесь специалистом по информатике, проектирующим высокоуровневые когнитивные системы. Занимающиеся роботами инженеры могут быть привлечены к работе по программированию на любом уровне абстракции. Основное различие между обычным программированием и программированием роботов заключается в том, что робототехник взаимодействует с оборудованием, электроникой и беспорядком реального мира.

Сегодня используется более 1500 языков программирования. Несмотря на то, что вам явно не нужно будет учить их все, хороший робототехник обладает мышлением программиста. А они будут комфортно чувствовать себя при изучении любого нового языка, если вдруг это потребуется. И тут мы плавно переходим к следующему навыку.

Комментарий Олега Евсегнеева: Я бы добавил, что для создания современных роботов требуется знание языков низкого, высокого и даже сверхвысокого уровня. Микроконтроллеры должны работать очень быстро и эффективно. Чтобы этого достичь, нужно углубляться в архитектуру вычислительного устройства, знать особенности работы с памятью и низкоуровневыми протоколами. Сердцем робота может быть тяжелая операционная система, например, ROS. Здесь уже может понадобиться знание ООП, умение пользоваться серьезными пакетами машинного зрения, навигации и машинного обучения. Наконец, чтобы написать интерфейс робота в веб и связать его с сетью интернет, неплохо будет научиться скриптовым языкам, тому же python.

3. Способность к самобучению

О робототехнике невозможно знать все, всегда есть что-то неизвестное, что придется изучать, когда возникнет в том необходимость при реализации очередного проекта. Даже после получения высшего образования по специальности робототехника и нескольких лет работы в качестве аспиранта многие только начинают по-настоящему понимать азы робототехники.

Стремление к постоянному изучению чего-то нового является важной способностью на протяжении всей вашей карьеры. Поэтому использование эффективных лично для вас методов обучения и хорошее восприятие прочитанного помогут вам быстро и легко получать новые знания, когда в этом возникает необходимость.

Комментарий Олега Евсегнеева: Это ключевой навык в любом творческом деле. С помощью него можно получить другие навыки

4. Математика

В робототехнике имеется не так много основополагающих навыков. Одним из таких основных навыков является математика. Вам, вероятно, трудно будет добиться успеха в робототехнике без надлежащего знания, по крайней мере, алгебры, математического анализа и геометрии. Это связано с тем, что на базовом уровне робототехника опирается на способность понимать и оперировать абстрактными понятиями, часто представляемыми в виде функций или уравнений. Геометрия является особенно важной для понимания таких тем, как кинематика и технические чертежи (которых вам, вероятно, придется много сделать в течение карьеры, включая те, что будут выполнены на салфетке).

Комментарий Олега Евсегнеева: Поведение робота, его реакция на окружающие раздражители, способность учиться – это все математика. Простой пример. Современные беспилотники хорошо летают благодаря фильтру Калмана – мощному математическому инструменту для уточнения данных о положении робота в пространстве. Робот Asimo умеет различать предметы благодаря нейронным сетям. Даже робот-пылесос использует сложную математику, чтобы правильно построить маршрут по комнате.

5. Физика и прикладная математика

Есть некоторые люди (чистые математики, например), которые стремятся оперировать математическими понятиями без привязки к реальному миру. Создатели роботов не относятся к такому типу людей. Познания в физике и прикладной математике важны в робототехнике, потому что реальный мир никогда не бывает таким точным, как математика. Возможность решить, когда результат расчета достаточно хорош, чтобы на самом деле работать – это ключевой навык для инженера-робототехника. Что плавно подводит нас к следующему пункту.

Комментарий Олега Евсегнеева: Есть хороший пример – автоматические станции для полета на другие планеты. Знание физики позволяет настолько точно рассчитать траекторию их полета, что спустя годы и миллионы километров аппарат попадает в точно заданную позицию.

6. Анализ и выбор решения

Быть хорошим робототехником означает постоянно принимать инженерные решения. Что выбрать для программирования - ROS или другую систему? Сколько пальцев должен иметь проектируемый робот? Какие датчики выбрать для использования? Робототехника использует множество решений и среди них почти нет единственно верного.

Благодаря обширной базе знаний, используемой в робототехнике, вы могли бы найти для себя более выгодное решение определенных проблем, чем специалисты из более узких дисциплин. Анализ и принятие решений необходимы для того, чтобы извлечь максимальную пользу из вашего решения. Навыки аналитического мышления позволят вам анализировать проблему с различных точек зрения, в то время как навыки критического мышления помогут использовать логику и рассуждения, чтобы сбалансировать сильные и слабые стороны каждого решения.

Робототехника завоевывает сегодня все большие отрасли промышленности и все плотнее внедряется в различные сферы человеческой жизни. И если раньше роботы могли выполнять роль человека, замещая его на заводах, где часто требуются однообразные действия при конвейерном производстве, например при производстве автомобилей, то теперь наступили времена, когда роботы способны оказаться и в каждом доме, чтобы помогать человеку решать насущные задачи, и способствовать экономии наших времени и сил.

Бытовые роботы, предназначенные для помощи человеку в его повседневной жизни, набирают все большую популярность, что вовсе не удивительно, ведь разнообразие роботов растет с каждым годом. Уже сегодня это и пылесосы, и газонокосилки, и мойщики окон, и чистильщики бассейнов, и даже снегоуборочные роботы.

Кстати, еще в 2007 году Билл Гейтс обратил внимание на значительный потенциал данного технологического направления, опубликовав статью «Робот в каждом доме», где он отразил перспективы, которые откроются обществу, благодаря внедрению бытовых роботов.

Предметом данной статьи будет краткий обзор набирающих популярность типов бытовых роботов. Мы рассмотрим несколько роботов, предназначенных для различных бытовых применений, посмотрим как они работают, что могут, как их нужно использовать, и насколько легко с ними обращаться.


Поскольку робот-пылесос является устройством автономным, то он обязательно оснащен не только аккумулятором, но и камерой, помогающей ему ориентироваться в помещении, чтобы два раза не убирать одно и то же место.

Робот просто предварительно выстраивает оптимальную карту уборки, опираясь на данные с камеры, затем приступает непосредственно к уборке, по окончании которой возвращается на место старта, связанное с зарядным устройством.

На борту пылесоса имеются все необходимые датчики (включая гироскоп), позволяющие прибору измерять расстояние до препятствия, оценивать высоту основания мебели над полом (сможет ли он под нее заехать), фиксировать столкновение, определять наличие на месте пылесборника и т.д. Интеллектуальная электроника позволяет роботу нормально ориентироваться среди мебели и стен в процессе работы.

Пылесборник компактен, и располагается недалеко от щеток. Для движения робот использует два колеса, при помощи которых он может поворачивать. Две направляющие щетки заметают мусор в направлении турбощетки, которая в свою очередь направляет мусор в пылесборник, где всасывающее устройство окончательно захватывает мусор. Питается все это оборудование от емкостью в несколько ампер-часов.

Благодаря наличию гироскопа, робот-пылесос всегда «знает» угол своего наклона, и поэтому вероятность того, что он застрянет исключается. Единственный недостаток таких роботов-пылесосов — малая сила всасывания. Они подойдут для уборки гладких напольных покрытий, таких как линолеум или ламинат, но с уборкой сильно загрязненного коврового покрытия справятся вряд ли.

В любом случае, робот-пылесос способен сильно облегчить нашу жизнь. Человеку уже не придется каждый раз, когда он увидит на полу пыль, бежать за веником, чтобы подмести. Достаточно запрограммировать робота на регулярную уборку, и он будет самостоятельно осуществлять профилактику по всей квартире, по дому или даже офису.


Есть два типа роботов для мойки окон. Первый тип — робот из двух частей, в одной из которых находится управляющая электроника, а в другой — чистящий механизм. Две части крепятся к оконному стеклу с разных сторон, и держатся на нем за счет постоянных магнитов.

Сначала робот задает себе карту для работы, предварительно доезжая до каждого из краев стекла, измеряя таким образом размер поверхности которая должна быть вымыта, затем начинает мыть ее, двигаясь зигзагом.

В качестве инструментов для мытья служат четыре подушечки из микрофибры, а перемещение достигается благодаря взаимодействию постоянных магнитов и управляющего модуля.

В центре между подушечками расположено отверстие, из которого подается моющее средство. Питается устройство от встроенного литиевого аккумулятора. Человеку достаточно запустить аппарат, и он сам все сделает, используя предварительно заправленное в специальный резервуар моющее средство.

Второй тип робота-мойщика окон — робот с креплением вакуумными присосками. Такой робот имеет только один и только рабочий модуль для одной стороны окна.

Робот по сути протирает стекло, перемещаясь влево и вправо по его поверхности, без использования вращающихся подушечек. Здесь используется сменная салфетка, которую необходимо предварительно смочить моющим средством вручную.

Робот питается от сети, хотя и выполняет работу автономно, стоит его включить и установить на стекло. Есть резервный аккумулятор на случай отключения электричества в доме. Пользователю остается установить робота на стекло и включить его.


Принцип работы данных роботов заключается в следующем. Первым делом прокладывают кабель-ограничитель, по которому течет постоянный ток, и который определяет собой границу рабочей зоны робота-газонокосилки. Такая автономная газонокосилка оснащена всеми необходимыми датчиками, включая датчики препятствий, как и у роботов-пылесосов, чтобы газонокосилка могла бы объехать дерево, бордюр или клумбу.

Кабель-ограничитель необходим для того, чтобы газонокосилка не упала в водоем или не стала бы пытаться косить камни садовой дорожки, тем самым нанося себе вред. Кабелем ограждают периметр, клумбы, каменные дорожки, водоемы.

В процессе работы газонокосилка хаотично движется по площади в пределах периметра, срезая ножами траву. Некоторые модели двигаются не хаотично, а по спирали или зигзагом, это зависит от производителя.

Параметры роботов-газонокосилок отличаются. В первую очередь — шириной захвата. Согласитесь, при ширине захвата в 56 см, по сравнению с 24 см, дело пойдет и будет завершено быстрее. Мощность также имеет значение.

Газонокосилка мощностью 500 ватт и с шириной захвата в 56 см гораздо быстрее пройдет ту же площадь, что 100 ваттная модель. Аккумулятор здесь, безусловно определяет площадь, которую сможет обслужить робот на одной подзарядке. Есть роботы-газонокосилки, рассчитанные на 4 сотки, а есть — на все 30 соток.

Имеется ли в комплекте база для подзарядки, чтобы газонокосилка могла самостоятельно подъехать, подзарядиться и продолжить работу? На это потребителю необходимо обратить внимание при выборе модели, иначе придется самостоятельно носить робота на подзарядку, что не всегда удобно.

Если есть зарядная базовая станция, то человек сможет запрограммировать газонокосилку на весь сезон и не беспокоиться о графике выполнения работ по стрижке газона.


Робот имеет шнур питания и пару колес для перемещения по дну и по стенкам бассейна. В зависимости от длины провода нормируется размер бассейна, с которым сможет справиться робот. Щетки робота вращаются независимо от колес, и легко удаляют слизь и грязь, направляя ее через фильтр.

Вода вместе с грязью всасывается в фильтрующий отсек робота, затем вода выбрасывается обратно в бассейн, а грязь оседает на фильтре. Фильтр потом нужно будет просто вытащить и промыть под водой.

Робот для чистки бассейна сначала очищает дно, затем движется по стенкам, присасываясь к ним. Так, 70% времени уходит на чистку дна, а 30% - на чистку стен бассейна. Типичный бассейн площадью дна 28 кв.м. средний робот очистит за 2-3 часа.

Несмотря на то, что вода проходит через фильтр робота, всасываясь его насосом, хозяину бассейна необходимо будет как всегда использовать систему очистки воды бассейна, робот не заменит ее собой, он только очистит поверхности, но не саму воду. Тем не менее, робот избавит своего хозяина не только от необходимости чистить бассейн вручную, но и от надобности наблюдать за процессом чистки.


Наконец, робот-снегоуборщик, - актуальнейшее для наших широт решение. Вместо того, чтобы размахивать лопатой там, где не может проехать габаритная снегоуборочная техника, поможет снегоуборочный робот. Управление роботом осуществляется со смартфона по wi-fi, и выглядит это как интерактивная игра.

Поднимать и опускать ковш, перемещаться на гусеницах назад и вперед, разворачиваться, - все это может делать робот, которым оператор управляет удаленно, даже находясь дома в тепле за компьютером.

Глазами робота является видеокамера, через которую пользователь может оценивать обстановку, чтобы затем направлять робота для выполнения снегоуборочных работ.

Емкий аккумулятор, заряженный от розетки, позволит осуществлять уборку снега в течение нескольких часов без необходимости таскать снег вручную, особенно если речь идет об уборке больших территорий, вблизи строений, куда снегоуборочная техника проехать просто не может.

Как видите, ассортимент бытовых роботов сегодня довольно широк, и каждый человек наверняка найдет среди доступных сегодня на рынке именно то, что облегчит быт именно ему. Кому-то нужно регулярно чистить летний приусадебный бассейн, а кто-то замучился зимой чистить снег.

Каждый имеющий в доме животных задумается о приобретении робота-пылесоса, некоторые из которых с животными отлично ладят. Живете в районе с сильно загрязненным воздухом и окна часто становятся пыльными — робот поможет вам вымыть окна. Что уж говорить о роботе-газонокосилке, который позволит своему хозяину заниматься другими более важными делами или просто отдыхать, пока газоном занимается робот.

Андрей Повный

Сегодня занятия робототехникой становятся очень популярными. Школьникам такие уроки помогают сформировать и развить критическое мышление, научиться творчески подходить к процессу решения задач различного уровня сложности, а также получить навыки работы в команде.

Новое поколение

Современное образование переходит на новый виток своего развития. Многие педагоги и родители ищут возможность заинтересовать детей наукой, привить любовь к обучению и зарядить желанием творить и мыслить неординарно. Традиционные формы изложения материала уже давно утратили свою актуальность. Новое поколение не похоже на своих прародителей. Они хотят учиться живо, интересно, интерактивно. Это поколение легко ориентируется в современных технологиях. Дети хотят развиваться так, чтобы не только идти в ногу со стремительно развивающимися технологиями, но и непосредственно участвовать в этом процессе.

Многие из них интересуются: «Что такое робототехника? Где этому можно учиться?».

Образование и роботы

Эта учебная дисциплина включает в себя такие предметы, как конструирование, программирование, алгоритмику, математику, физику и другие дисциплины, связанные с инженерией. Ежегодно проводится World Robotics Olympiad (всемирная олимпиада по робототехнике - WRO). В образовательной сфере - это массовое соревнование, позволяющее лучше узнать, что такое робототехника для тех, кто впервые сталкивается с подобным предметом. Оно дает возможность попробовать свои силы участникам более чем из 50 стран. На соревнования съезжаются порядка 20 тысяч команд, в состав которых входят дети от 7 до 18 лет.

Основная цель WRO: развитие и популяризация НТТ (научно-технического творчества) и робототехники в молодежной и детской среде. Подобные олимпиады являются современным образовательным инструментом XXI века.

Новые возможности

Чтобы дети лучше понимали, что такое робототехника, на соревнованиях применяются теоретические и практические навыки, полученные на занятиях в рамках клубной работы и школьной программы по изучению естественно-научных предметов и точных наук. Увлеченность робототехнической дисциплиной постепенно перерастает в желание глубже узнать такие науки, как математика, физика, информатика и технологии.

WRO - это уникальная возможность для ее участников и наблюдателей не только узнать глубже что такое робототехника, но и развить в себе навыки творчества и критического мышления, которые так необходимы в XXI веке.

Обучение

Интерес к образовательной дисциплине робототехнического направления растет с каждым днем. Материальная база постоянно улучшается и развивается, многие идеи, еще недавно остававшихся мечтой - сегодня реальность. Изучение предмета «Основы робототехники» стало возможным для большого числа детей. На уроках ребята учатся решать задачи с ограниченными ресурсами, обрабатывать и усваивать информацию, а также использовать ее в правильном русле.

Дети учатся легко. Современное подрастающее поколение, воспитывающееся на различных гаджетах, как правило, не имеет трудностей в освоении дисциплины «Основы робототехники», при условии наличия желания и тяги к новым знаниям.

Нужно что даже взрослых людей сложнее переучивать, чем научить чистые, но жаждущие детские умы. Положительной тенденцией есть колоссальное внимание к популяризации робототехники в молодежной среде со стороны правительственных органов России. И это понятно, так как задача модернизации и привлечения молодых специалистов - это вопрос конкурентоспособности государства на международной арене.

Важность предмета

Сегодня актуальным вопросом Министерства образования стоит введение образовательной робототехники в круг школьных дисциплин. Она считается важным направлением развития. На уроках технологии дети должны получать представления о современной сфере развития техники и конструирования, которые дают им возможность самим придумывать и строить. Не обязательно всем ученикам становиться инженерами, но возможность должна быть у каждого.

Вообще, уроки робототехники крайне интересны детям. Это важно понимать всем - и учителям, и родителям. Такие занятия дают возможность увидеть другие дисциплины в ином свете, понять смысл их изучения. А ведь именно смысл, понимание того, зачем это нужно, движет умами ребят. Его отсутствие сводит на нет все усилия учителей и родителей.

Важным фактором является то, что обучение робототехнике - процесс не напрягающий и всецело поглощающий детей. Это не только развитие личности ученика, но и возможность уйти от улицы, неблагоприятной обстановки, праздного времяпровождения и влекущих за ним последствий.

Происхождение

Само название робототехники происходит от соответствующего английского robotics. Это прикладная наука, которая занимается разработкой технических автоматизированных систем. На производстве она является одной из главных технических основ интенсификации.

Все законы робототехники, как и сама наука, тесно связаны с электроникой, механикой, телемеханикой, механотроникой, информатикой, радиотехникой, электротехникой. Сама робототехника подразделяется на промышленную, строительную, медицинскую, космическую, военную, подводную, авиационную и бытовую.

Понятие «робототехника» впервые в своих рассказах использовал писатель-фантаст Это было в 1941 году (рассказ «Лжец»).

Само слово «робот» придумали в 1920 году чешский писатели и его брат Йозеф. Оно вошло в научно-фантастическую пьесу «Россумские универсальные роботы», которая была поставлена в 1921 году и пользовалась большим зрительским успехом. Сегодня можно наблюдать, как линия, обозначенная в пьесе, получила широкое развитие в свете научно-фантастической кинематографии. Суть сюжета: хозяин завода занимается разработкой и наладкой выпуска большого числа андроидов, способных работать без отдыха. Но эти роботы в итоге восстают против создателей.

Исторические примеры

Интересно, что зачатки робототехники появились ещё в античные времена. Об этом свидетельствуют останки движущихся статуй, которые были изготовлены в I веке до н.э. Гомер писал в «Илиаде» о сотворенных из золота служанок, способных говорить и мыслить. Сегодня разум, которым наделяют роботов, получил название - искусственный интеллект. Кроме того, древнегреческому инженеру-механику Архиту Тарентскому приписывают разработку и создание механического летающего голубя. Это событие датируется приблизительно 400 годом до н.э.

Таких примеров большое множество. Они хорошо раскрыты в книге Макарова И.М. и Топчеева Ю.И. «Робототехника: история и перспективы». В ней в популярной форме рассказано об истоках современных роботов, а также очерчена робототехника будущего и соответствующее развитие человеческой цивилизации.

Типы роботов

На современном этапе важнейшими классами роботов широкого назначения являются мобильные и манипуляционные.

Мобильный — это автоматическая машина с движущимся шасси и управляемыми приводами. Эти роботы могут быть шагающими, колёсными, гусеничными, ползающими, плавающими, летающими.

Манипуляционный — это автоматическая стационарная или передвижная машина, состоящая из манипулятора с несколькими степенями подвижности и программным управлением, выполняющим двигательные и управляющие функции в производстве. Такие роботы бывают в напольном, портальном или подвесном виде. Наибольшее распространение они получили на приборостроительных и машиностроительных производствах.

Способы перемещения

Большое распространение получили колёсные и гусеничные роботы. Перемещение шагающего робота представляет нелегкую задачу динамики. Такие роботы пока не могут иметь устойчивого движения, присущего человеку.

Относительно летающих роботов можно сказать, что большинство современных самолётов как раз ими являются, но управляются они пилотами. В то же время автопилот может контролировать полёт на всех стадиях. К летающим роботам относятся и их подкласс - крылатые ракеты. Такие аппараты имеют небольшой вес и выполняют опасные миссии, вплоть до ведения огня по команде оператора. Кроме того, есть проектные аппараты, способные к самостоятельному ведению огня.

Существуют летающие роботы, использующие методы движения, которые используют пингвины, медузы и скаты. Этот способ перемещения можно увидеть у роботов Air Penguin, Air Ray, Air Jelly. Их производит компания Festo. А вот роботы RoboBee используют методы полёта насекомых.

Среди ползающих роботов есть ряд разработок, подобных по перемещению червям, змеям и слизням. При этом робот использует силы трения на шероховатой поверхности или кривизну поверхности. Подобное перемещение полезно для узких пространств. Такие роботы нужны для поиска людей под обломками разрушенных зданий. Змееподобные роботы способны к перемещению в воде (такие, как ACM-R5 производства Японии).

Перемещающиеся по вертикальной поверхности роботы, используют такие подходы:

  • подобные человеку, который взбирается на стену с выступами (Стэнфордский робот Capuchin);
  • подобные гекконам, снабжённых вакуумными присосками (Wallbot» и Stickybot).

Среди плавающих роботов существует много разработок, перемещающимся по принципу подражания рыбам. Эффективность такого движения на 80% превосходит эффективность движения с гребным винтом. Подобные конструкции имеют низкий уровень шума и высокую маневренность. Этим они вызывают большой интерес у исследователей подводного пространства. К таким роботам относятся модели Эссекского университета - Robotic Fish и Tuna, разработанный институтом Field Robotics. Они смоделированы по движению, характерному для тунца. Среди роботов, имитирующих движение ската известна разработка фирмы Festo: Aqua Ray. А робот, движущийся как медуза, - это Aqua Jelly от того же разработчика.

Кружковая работа

Большинство кружков по робототехнике ориентированы на начальную и среднюю школу. Но и дети дошкольного возраста не обделены вниманием. Главную роль здесь играет развитие творчества. Дошкольники должны научиться мыслить свободно и воплощать свои идеи в творчестве. Именно поэтому занятия по робототехнике в кружках для детей до 6 лет направлены на активное использование кубиков и простых конструкторов.

Школьная программа, безусловно, усложняется. Она дает возможность познакомится с различными классами роботов, попробовать себя на деле, углубиться в науку. Новые дисциплины раскрывают потенциальные возможности ребенка для получения профессиональных навыков и знаний в выбранной области инженерии.

Робототехнические комплексы

Современное развитие робототехники находится в такой стадии, что, кажется, вот-вот произойдет мощный рывок в робототехнологиях. Это так же, как с видеосвязью и мобильными гаджетами. Еще недавно все это казалось недоступным для массового потребления. А сегодня - это обыденность, переставшая удивлять. Зато каждая выставка робототехники показывает нам фантастические проекты, которые захватывают дух человека от одной только мысли об их внедрении в жизнь общества.

В системе образования позволяют реализовать программу с применением проектной деятельности именно комплексные установки из роботов, среди которых популярны:


Управление

По типу управления системы бывают:

  • биотехническими (командные, копирующие, полуавтоматические);
  • автоматические (программные, адаптивные, интеллектуальные);
  • интерактивные (автоматизированные, супервизорные, диалоговые).

К основным задачам управления роботами относятся:

  • планирование движений и положений;
  • планирование сил и моментов;
  • идентификация динамических и кинематических данных;
  • анализ динамической точности.

Большое значение в сфере робототехники имеет развитие методов управления. Это важно для технической кибернетики и теории автоматического управления.

Робототехника - одно из перспективнейших направлений в сфере интернет-технологий, а то, что за ИТ-сферой будущее, в наше время и объяснять не надо. Кроме того, роботостроение может показаться занимательней прочего: сконструировать робота значит почти что создать новое существо, пусть и электронное, что, конечно же, привлекает. Впрочем, и в этой отрасли все может оказаться непросто, особенно на первых порах. Вместе с экспертами попытаемся разобраться, зачем нужна роботехника и как к ней подступиться.

Робототехника — одно из перспективнейших направлений в сфере интернет-технологий, а то, что за ИТ-сферой будущее, в наше время и объяснять не надо. Роботостроение — увлекательнейшая штука: сконструировать робота значит почти что создать новое существо, пусть и электронное.

С 60-х годов прошлого века автоматизированные и самоуправляющиеся устройства, делающие какую-либо работу за человека, стали использоваться для исследований и в производстве, затем в сфере услуг и с тех с каждым годом прочнее занимают свое место в жизни людей. Конечно, нельзя сказать, что в России все сплошь выполняется самостоятельными механизмами, однако определенный вектор в эту сторону точно намечается. Вот уже и Сбербанк планирует заменить три тысячи юристов умными машинами.

Вместе с экспертами попытаемся разобраться, зачем нужна роботехника и как к ней подступиться.

Чем отличается робототехника для детей от профессиональной?

Если коротко, то робототехника для детей направлена на изучение предмета, тогда как профессиональная - на решение конкретных задач. Если специалисты создают промышленные манипуляторы, выполняющие разные технологические задачи, или специализированные колесные платформы, то любители и дети, конечно же, занимаются вещами попроще.

Татьяна Волкова, сотрудник Центра интеллектуальной робототехники: «Как правило, с чего все начинают: разбираются с моторами и заставляют робота элементарно ехать вперед, потом - делать повороты. Когда робот выполняет команды движения, можно уже подключить датчик и сделать так, чтобы робот ехал на свет или, наоборот, «убегал» от него. А дальше идет любимая задача всех новичков: робот, который ездит по линии. Устраиваются даже различные гонки роботов».

Как понять, есть ли у ребенка склонность к робототехнике?

Для начала нужно купить конструктор и посмотреть, нравится ли ребенку собирать его. А дальше и в кружок можно отдать. Занятия помогут ему развить мелкую моторику, фантазию, пространственное восприятие, логику, концентрацию и терпеливость.

Чем быстрее получится определиться с направлением роботехники — конструирование, электроника, программирование — тем лучше. Все три области обширны и требуют отдельного изучения.

Александр Колотов, ведущий специалист STEM-программ в Университете Иннополис: «Если ребенку нравится собирать конструктор, то ему подойдёт конструирование. Если ему интересно изучать, как устроена вещь, то ему понравится заниматься электроникой. Если у ребенка тяга к математике, то его заинтересует программирование».

Когда начинать обучение робототехнике?

Начинать изучение и записываться в кружки лучше всего с детства, впрочем, не слишком рано — в 8-12 лет , говорят специалисты. Раньше ребенку сложнее уловить понятные абстракция, а позднее, в подростковом возрасте, у него могут появиться другие интересы, и он станет отвлекаться. Также ребенка необходимо мотивировать на изучение математики, чтобы ему было интересно и легко в будущем проектировать механизмы и схемы, составлять алгоритмы.

С 8-9 лет ребята уже могут понимать и запоминать, что такое резистор, светодиод, конденсатор, а позже и понятия из школьной физики осваивать с опережением школьной программы. Не важно, станут они специалистами в этой области или нет, полученные знания и навыки точно даром не пропадут.

В 14-15 лет нужно продолжать заниматься математикой, отодвинуть занятия в кружке по робототехнике на второй план и начать изучение программирования более серьезно - разбираться не только в сложных алгоритмах, но и в структурах хранения данных. Далее идут математический базис и знания в алгоритмизации, погружение в теорию механизмов и машин, проектирование электромеханической оснастки робототехнического устройства, реализацию алгоритмов автоматической навигации, алгоритмы компьютерного зрения и машинное обучение.

Александр Колотов: «Если в этот момент познакомить будущего специалиста с основами линейной алгебры, комплексным счислением, теорией вероятности и статистики, то к поступлению в вуз он уже будет хорошо представлять, зачем ему стоит обращать дополнительное внимание на эти предметы при получении высшего образования».

Какие конструкторы выбрать?

Для каждого возраста существуют свои образовательные программы, конструкторы и платформы, различающиеся степенью сложности. Можно найти как зарубежные, так и отечественные продукты. Есть дорогие наборы для робототехники (в районе 30 тыс. руб. и выше), есть и подешевле, совсем простые (в пределах 1-3 тыс. руб.).

Если ребенку 8-11 лет , можно купить конструкторы Lego или Fischertechnik (хотя, конечно, производители имеют предложения как для более младшего, так и для старшего возрастов). Конструктор Lego для робототехники обладает интересными деталями, яркими фигурками, он легок в сборке и снабжен подробной инструкцией. Серия конструкторов Fischertechnik для робототехники приближает к настоящему процессу разработки, здесь вам и провода, и штекеры, и визуальная среда программирования.

В 13-14 лет можно начать работать с ТРИК или модулями Arduino, которые, по словам Татьяны Волковой, является практически стандартом в области образовательной робототехники, а также Raspberry. ТРИК сложнее Lego, но легче Arduino и Raspberry Ri. Последние две уже требуют базовых навыков программирования.

Что еще потребуется изучить?

Программирование . Избежать его возможно только на первоначальном этапе, потом же без него никуда. Начать можно с Lego Mindstorms, Python, ROS (Robot Operating System).

Базовую механику. Начинать можно с поделок из бумаги, картона, бутылок, что важно и для мелкой моторики, и для общего развития. Самого простого робота можно сделать вообще из отдельных деталей (моторчики, провода, фотодатчик и одна несложная микросхема). Познакомиться с базовой механикой поможет «Мастерилка с папашей Шперхом».

Основы электроники. Для начала научиться собирать простые схемы. Для детей до восьми лет эксперты советуют конструктор «Знаток», дальше можно перейти к набору «Основы электроники. Начало».

Где заниматься робототехникой детям?

Если видите у ребенка интерес, можно отдать его в кружки и на курсы, хотя можно заниматься и самостоятельно. На курсах ребенок будет под руководством специалистов, сможет найти единомышленников, займется робототехникой на регулярной основе.

Также желательно сразу понять, чего хочется от занятий: участвовать в соревнованиях и бороться за призовые места, участвовать в проектной деятельности или просто заниматься для себя.

Алексей Колотов: «Для серьезных занятий, проектов, участия в соревнованиях нужно выбирать кружки, с небольшими группами по 6—8 человек и тренером, который приводит учеников к призовым местам на соревнованиях, который постоянно сам развивается и дает интересные задачи. Для занятий в виде хобби можно пойти в группы до 20 человек».

Как выбирать курсы для занятий робототехникой?

При записи на курсы обратите внимание на педагога , рекомендует коммерческий директор компании Promobot Олег Кивокурцев. «Бывают прецеденты, когда педагог просто отдает ребятам оборудование, а дальше занимайтесь кто чем хочет», — согласна с Олегом Татьяна Волкова. От таких занятий толку будет мало.

При выборе курсов также стоит обратить внимание и на имеющуюся материально-техническую базу . Есть ли там конструкторские наборы (не только Lego), имеется ли возможность писать программы, изучать механику и электронику, самому делать проекты. На каждую пару учащихся должен быть свой робототехнический комплект. Желательно с дополнительными деталями (колесами, шестернями, элементами каркаса), если хочется участвовать в соревнованиях. Если с одним набором работает сразу несколько команд то, скорее всего, никаких серьезных соревнования не предполагается.

Поинтересуйтесь, в каких соревнованиях участвует клуб робототехники . Помогают ли эти конкурсы закрепить полученные навыки и дают ли возможность для дальнейшего развития.

Соревнование Robocup 2014

Как изучать робототехнику самостоятельно?

Курсы требуют денег и времени. Если первого не хватает и регулярно ходить куда-либо не получится, можно заняться с ребенком самостоятельным изучением. Важно, чтобы родители обладали необходимой компетенцией в этой сфере: без помощи родителя, ребенку освоить робототехнику будет достаточно сложно, предостерегает Олег Кивокурцев.

Найдите материал для изучения. Их можно брать в Интернете, из заказываемых книг, на посещаемых конференциях, из журнала «Занимательная робототехника». Для самостоятельного изучения есть бесплатные онлайн-курсы, например, «Строим роботов и другие устройства на Arduino: от светофора до 3D-принтера».

Нужно ли изучать роботехнику взрослым?

Если Вы уже вышли из детского возраста, это не значит, что двери робототехники для Вас закрыты. Можно так же записаться на курсы или изучать ее самостоятельно.

Если человек решил заниматься этим как хобби, то путь его будет таким же, как у ребенка. Однако понятно, что дальше любительского уровня без профессионального образования (инженера-конструктора, программиста и электронщика) продвигаться вряд ли получится, хотя, конечно, устраиваться на стажировки в компании и упорно грызть гранит нового для вас направления никто не запрещает.

Олег Кивокурцев: «Взрослому будет проще освоить робототехнику, но важным фактором является время».

Для тех, у кого близкая специальность, но хочется переучиться, также есть разные курсы в помошь. Например, для специалистов по машинному обучению одойдет бесплатный онлайн-курс по вероятностной робототехнике «Искусственный интеллект в робототехнике». Также существуют образовательная программа Intel, просветительский проект «Лекториум», дистанционные курсы ИТМО. Не забудьте и про книги, например, есть много литературы для начинающих («Основы робототехники», «Введение в робототехнику», «Настольная книга робототехника»). Подберите то, что больше всего понятно и подходит вам.

Следует помнить, что серьезная работа отличается от любительского увлечения как минимум стоимостью затрат на оборудование и перечнем поставленных перед работником задач. Одно дело - своими руками собирать самого простого робота, совсем другое - заниматься, например, машинным зрением. Поэтому изучать основы конструирования, программирования и аппаратной инженерии все-таки лучше с ранних лет и впоследствии, если понравилось, поступать в профильный университет.

В какие вузы идти учиться?


Направления, связанные с робототехникой, можно найти в следующих вузах:

— Московский технологический университет (МИРЭА, МГУПИ, МИТХТ);

— Московский государственный технический университет им. Н. Э. Баумана;

— Московский государственный технологический университет «Станкин»;

— Национальный исследовательский университет «МЭИ» (Москва);

— Сколковский институт науки и технологий (Москва);

— Московский государственный университет путей сообщения Императора Николая II;

— Московский государственный университет пищевых производств;

— Московский государственный университет леса;

— Санкт-Петербургский государственный университет аэрокосмического приборостроения (СГУАП);

— Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (ИТМО);

— Магнитогорский государственный технический университет;

— Омский Государственный технический университет;

— Саратовский государственный технический университет;

— Университет Иннополис (Республика Татарстан);

— Южно-Российский федеральный университет (Новочеркасский ГТУ).

Самое главное

Знать азы робототехники в скором времени может оказаться полезно и обывателям, а возможность стать специалистом в этой сфере выглядит очень перспективно, так что хотя бы попробовать себя в «роботостроительстве» определенно стоит.

Изобретение относится к устройству, защищающему тело от удара, вызванного столкновением с препятствием во время перемещения устройства по поверхности. Устройство (1, 21), содержащее, по меньшей мере, тело (2, 22) и амортизатор (6), который подвижно прикреплен к телу таким образом, чтобы защищать тело от удара, вызванного столкновением с препятствием во время перемещения устройства по поверхности, в котором амортизатор (6) прикреплен к телу (2, 22) посредством, по меньшей мере, одной пружины (9, 25), продолжающейся в направлении, которое, по меньшей мере, в основном перпендикулярно направлению, в котором амортизатор является подвижным относительно тела, отличающееся тем, что пружина (9, 25) является предварительно натянутой спиральной пружиной, работающей на растяжение, при этом пружина (9, 25) имеет относительно большую жесткость при силах ниже заданного значения и относительно малую жесткость при силах выше заданного значения. Кроме того, выполнен робот-пылесос, содержащий такое устройство.

Система пылесоса-робота может быть использована для уборки пыли и посторонних материалов с пола, окон или газовых вентилей в доме и обеспечивает возможность точного определения пылесосом-роботом местоположения внешнего зарядного устройства, даже если оно находится за пределами зоны, в которой верхняя видеокамера может обнаружить опознавательные метки расположения, а способ стыковки позволяет пылесосу-роботу точно пристыковаться к внешнему зарядному устройству. Система пылесоса-робота содержит внешнее зарядное устройство с выводом питания, подключенным к сети питания общего пользования, опознавательную метку зарядного устройства, нанесенную на внешнее зарядное устройство, пылесос-робот с датчиком опознавательной метки, который обнаруживает опознавательную метку зарядного устройства, и с подзаряжаемой аккумуляторной батарей. Пылесос-робот выполнен с возможностью автоматической пристыковки к выводу питания для подзарядки подзаряжаемой аккумуляторной батареи. Система имеет блок управления выводом питания, смонтированный в составе внешнего зарядного устройства, для подачи питания только во время подзарядки пылесоса-робота и содержащий элемент крепления вывода питания, упругий элемент, подсоединенный одним концом к элементу крепления вывода питания, и подсоединенный другим концом к выводу питания для упругого крепления вывода питания, и микропереключатель, смонтированный между выводом питания и элементом крепления вывода питания и срабатывающий в соответствии с изменением положения вывода питания. Согласно способу стыковки пылесоса-робота с внешним зарядным устройством осуществляют отодвигание пылесоса-робота из положения подключения к внешнему зарядному устройству после получения сигнала к началу работы, при этом пылесос-робот после обнаружения первой опознавательной метки местоположения при посредстве верхней видеокамеры в процессе движения сохраняет в памяти, в качестве данных о точке входа, потолочное изображение, на котором впервые обнаружена первая опознавательная метка местоположения. Пылесосом-роботом выполняют назначенное задание, после ввода командного сигнала на подзарядку пылесос-робот возвращают в точку входа на основании данных текущего местоположения и сохраненных данных о точке входа, при этом данные текущего местоположения вычисляют по снятым верхней видеокамерой потолочным изображениям. Внешнее зарядное устройство обнаруживают посредством обнаружения опознавательной метки зарядного устройства с использованием датчика на корпусе пылесоса-робота, который подключают своим вводом подзарядки к выводу питания внешнего зарядного устройства. Подзаряжаемую аккумуляторную батарею подзаряжают от внешнего источника питания через ввод подзарядки.

Предложенное изобретение относится к автоматическим системам уборки помещений с парковочным модулем. Предложена автоматическая система уборки помещения, содержащая робот-пылесос, зарядную станцию, систему управления, а также парковочный модуль для робота-пылесоса. Парковочный модуль содержит корпус, обеспечивающий размещение в нем робота-пылесоса и зарядной станции, фронтальную крышку с управляемым приводным механизмом, обеспечивающим открытие и закрытие указанной фронтальной крышки по команде от системы управления. Наличие указанного парковочного модуля и его конструктивное выполнение обеспечивают улучшение эргономики автоматической системы уборки помещений, экономию внутреннего пространства помещения с сохранением дизайна помещения, а также исключение нежелательного контакта детей и домашних животных со сложной дорогостоящей роботизированной техникой.

Способ предназначен для зарядки робота-пылесоса, осуществляющего уборку очищаемой поверхности при самостоятельном перемещении по ней. Способ включает перемещение робота-пылесоса пользователем вплотную к зарядному устройству для его зарядки вручную, распознавание состояния соединения между зарядными клеммами зарядного устройства и контактными клеммами робота-пылесоса, подтверждение, находится ли робот-пылесос на заданном расстоянии от зарядного устройства, если зарядные клеммы и контактные клеммы разъединены друг с другом. Указанное подтверждение осуществляют по истечении заданного времени после получения подтверждения того, что зарядные и контактные клеммы разъединены друг с другом, путем обнаружения сигнала близкого расстояния, переданного от зарядного устройства, и подтверждения нахождения робота-пылесоса перед зарядным устройством, когда сигнал близкого расстояния обнаружен. Далее предусмотрено выполнение режима автоматической зарядки, при котором робот-пылесос автоматически перемещается и стыкуется с зарядным устройством для электрической зарядки, если робот-пылесос находится на заданном расстоянии от зарядного устройства. Технический результат состоит в обеспечении возможности выявления неправильного соединения между контактными и зарядными клеммами и предотвращении неправильной установки робота-пылесоса относительно зарядного устройства при зарядке робота-пылесоса вручную.

Робот-пылесос и система робота-пылесоса могут быть использованы для очистки различных поверхностей и способны эффективно выполнять заданный объем работы путем более точной идентификации текущего положения робота-пылесоса. Робот-пылесос содержит привод, предназначенный для приведения в движение множества колес, камеру, расположенную в корпусе, и управляющее устройство для идентификации положения привода путем использования информации о положении, полученной из идентификационной метки на потолке рабочей зоны, которая сфотографирована камерой, и для управления приводом путем использования информации об идентифицированном положении с возможностью обеспечения соответствия заданной операции чистки. Идентификационная метка имеет множество частей, указывающих направление, которые образованы за одно целое с ней. Части, указывающие направление, образованы в азимутальном направлении от заранее заданной центральной точки идентификационной метки и имеют разную длину. В варианте выполнения робот-пылесос содержит корпус, всасывающее устройство, множество колес, привод, соединенный с колесами, датчик для обнаружения препятствий, расположенный на корпусе, датчик для определения длины перемещения, расположенный на корпусе, камеру, выполненную с возможностью фотографирования идентификационной метки, образованной на потолке зоны, подлежащей чистке, управляющее устройство, сконфигурированное с возможностью выдачи сигнала приводу и идентификации положения робота-пылесоса на основе сравнения текущей фотографии идентификационной метки и хранящейся в памяти фотографии идентификационной метки. Система робота-пылесоса включает в себя робот-пылесос, содержащий привод для приведения в движение множества колес и верхнюю камеру, расположенную в корпусе для фотографирования верхнего изображения, простирающегося перпендикулярно направлению движения робота-пылесоса, и устройство дистанционного управления, имеющее беспроводную связь с роботом-пылесосом для идентификации текущего положения робота-пылесоса путем использования изображения идентификационной метки, образованной на потолке рабочей зоны, которая сфотографирована верхней камерой. Идентификационная метка имеет множество частей, указывающих направление, которые образованы за одно целое с ней. Части, указывающие направление, образованы в азимутальном направлении от заранее заданной центральной точки идентификационной метки и имеют различные длины. Устройство дистанционного управления выполнено с возможностью управления направлением рабочего перемещения робота-пылесоса и выполнения заданной операции чистки на основе идентифицированного текущего положения робота-пылесоса.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....