Магнитное поле его свойства и источники. §16

Под термином "магнитное поле" принято подразумевать определенное энергетическое пространство, в котором проявляются силы магнитного взаимодействия. Они влияют на:

    отдельные вещества: ферримагнетики (металлы - преимущественно чугуны, железо и сплавы из них) и их класс ферритов вне зависимости от состояния;

    движущиеся заряды электричества.

Физические тела, обладающие суммарным магнитным моментом электронов или других частиц, называют постоянными магнитами . Их взаимодействие представлено на картинке силовыми магнитными линиями .


Они образовались после поднесения постоянного магнита к обратной стороне картонного листа с ровным слоем железных опилок. Картинка демонстрирует четкую маркировку северного (N) и южного (S) полюсов с направлением силовых линий относительно их ориентации: выход из северного полюса и вход в южный.

Как создается магнитное поле

Источниками магнитного поля являются:

    постоянные магниты;

    подвижные заряды;

    изменяющееся во времени электрическое поле.


С действием постоянных магнитов знаком каждый ребенок детсадовского возраста. Ведь ему уже приходилось лепить на холодильник картинки-магнитики, извлекаемые из упаковок с всякими лакомствами.

Находящиеся в движении электрические заряды обычно обладают значительно большей энергией магнитного поля, чем . Его тоже обозначают силовыми линиями. Разберем правила их начертания для прямолинейного проводника с током I.


Магнитная силовая линия проводится в плоскости, перпендикулярной движению тока так, чтобы в каждой ее точке сила, действующая на северный полюс магнитной стрелки, направлялась по касательной к этой линии. Таким образом создаются концентрические окружности вокруг движущегося заряда.

Направление этих сил определяется известным правилом винта или буравчика с правосторонней навивкой резьбы.

Правило буравчика


Необходимо расположить буравчик соосно с вектором тока и вращать рукоятку так, чтобы поступательное движение буравчика совпадало с его направлением. Тогда ориентация силовых магнитных линий будет показана вращением рукоятки.

В кольцевом проводнике вращательное движение рукоятки совпадает с направлением тока, а поступательное - указывает на ориентацию индукции.


Магнитные силовые линии всегда выходят из северного полюса и входят в южный. Они продолжаются внутри магнита и никогда не бывают разомкнутыми.

Правила взаимодействия магнитных полей

Магнитные поля от разных источников складываются друг с другом, образуя результирующее поле.


При этом магниты с разноименными полюсами (N - S) притягиваются друг к другу, а с одноименными (N – N, S - S) - отталкиваются. Силы взаимодействия между полюсами зависят от расстояния между ними. Чем ближе сдвинуты полюса, тем большее усилие возникает.

Основные характеристики магнитного поля

К ним относят:

    вектор магнитной индукции (В );

    магнитный поток (Ф);

    потокосцепление (Ψ).

Интенсивность или силу воздействия поля оценивают величиной вектора магнитной индукции . Она определяется значением силы «F», создаваемой проходящим током «I» по проводнику длиной «l». В =F/(I∙l)

Единица измерения магнитной индукции в системе СИ - Тесла (в знак памяти об ученом физике, который исследовал эти явления и описал их математическими методами). В русской технической литературе она обозначается «Тл», а в международной документации принят символ «Т».

1 Тл - это индукция такого однородного магнитного потока, который воздействует с силой в 1 ньютон на каждый метр длины прямолинейного проводника, перпендикулярно расположенного направлению поля, когда по этому проводнику проходит ток 1 ампер.

1Тл=1∙Н/(А∙м)

Направление вектора В определяется по правилу левой руки.


Если расположить ладонь левой руки в магнитном поле так, чтобы силовые линии из северного полюса входили в ладонь под прямым углом, а четыре пальца расположить по направлению тока в проводнике, то оттопыренный большой палец укажет направление действия силы на этот проводник.

В случае, когда проводник с электрическим током расположен не под прямым углом к магнитным силовым линиям, то сила, воздействующая на него, будет пропорциональна величине протекающего тока и составляющей части проекции длины проводника с током на плоскость, расположенную в перпендикулярном направлении.

Сила, воздействующая на электрический ток, не зависит от материалов, из которых создан проводник и площади его сечения. Даже если этого проводника вообще не будет, а движущиеся заряды станут перемещаться в другой среде между магнитными полюсами, то эта сила никак не изменится.

Если внутри магнитного поля во всех точках вектор В имеет одинаковое направление и величину, то такое поле считают равномерным.

Любая среда, обладающая , оказывает влияние на значение вектора индукции В .

Магнитный поток (Ф)

Если рассматривать прохождение магнитной индукции через определенную площадь S, то ограниченная ее пределами индукция будет называться магнитным потоком.


Когда площадь наклонена под каким-то углом α к направлению магнитной индукции, то магнитный поток уменьшается на величину косинуса угла наклона площади. Максимальное же его значение создается при перпендикулярном расположении площади к ее пронизывающей индукции. Ф=В·S

Единицей измерения магнитного потока является 1 вебер, определяемый прохождением индукции в 1 теслу через площадь в 1 метр квадратный.

Потокосцепление

Этот термин используется для получения суммарной величины магнитного потока, создаваемого от определенного количества проводников с током, расположенных между полюсами магнита.

Для случая, когда один и тот же ток I проходит по обмотке катушки с числом витков n, то полный (сцепленный) магнитный поток от всех витков называют потокосцеплением Ψ.


Ψ=n·Ф . Единицей измерения потокосцепления является 1 вебер.

Как образуется магнитное поле от переменного электрического

Электромагнитное поле, взаимодействующее с электрическими зарядами и телами, обладающими магнитными моментами, представляет собой совокупность двух полей:

    электрического;

    магнитного.

Они взаимосвязаны, представляют собой совокупность друг друга и при изменении в течение времени одного происходят определенные отклонения в другом. К примеру, при создании переменного синусоидального электрического поля в трехфазном генераторе одновременно образуется такое же магнитное поле с характеристиками аналогичных чередующихся гармоник.

Магнитные свойства веществ

По отношению к взаимодействию с внешним магнитным полем вещества подразделяют на:

    антиферромагнетики с уравновешенными магнитными моментами, благодаря чему создается очень малая степень намагниченности тела;

    диамагнетики со свойством намагничивания внутреннего поля против действия внешнего. Когда же внешнее поле отсутствует, то у них магнитные свойства не проявляются;

    парамагнетики со свойствами намагничивания внутреннего поля по направлению действия внешнего, которые обладают малой степенью ;

    ферромагнетики , обладающие магнитными свойствами без приложенного внешнего поля при температурах, меньших значения точки Кюри;

    ферримагнетики с неуравновешенными по величине и направлению магнитными моментами.

Все эти свойства веществ нашли разнообразное применение в современной технике.

Магнитные цепи

На основе работают все трансформаторы, индуктивности, электрические машины и многие другие устройства.

Например, у работающего электромагнита магнитный поток проходит по магнитопроводу из ферромагнитных сталей и воздуху с выраженными не ферромагнитными свойствами. Совокупность этих элементов и составляет магнитную цепь.

Большинство электрических аппаратов в своей конструкции имеют магнитные цепи. Подробнее про это читайте в этой статье -

Для понимания того, что является характеристикой магнитного поля, следует дать определения многим явлениям. При этом заранее нужно вспомнить, как и почему оно появляется. Узнать, что является силовой поля. При этом немаловажно то, что подобное поле может встречаться не только у магнитов. В связи с этим не помешает упомянуть характеристику магнитного поля земли.

Возникновение поля

Для начала следует описать возникновение поля. После можно описать магнитное поле и его характеристики. Оно появляется во время перемещения заряженных частиц. Может влиять на в особенности на токопроводящие проводники. Взаимодействие между магнитным полем и движущимися зарядами, либо проводниками, по которым течет ток, происходит благодаря силам, именуемым электромагнитными.

Интенсивность или силовая характеристика магнитного поля в определенной пространственной точке определяются с помощью магнитной индукции. Последняя обозначается символом В.

Графическое представление поля

Магнитное поле и его характеристики могут быть представлены в графической форме с помощью линий индукции. Данным определением называют линии, касательные к которым в любой точке будут совпадать с направлением вектора у магнитной индукции.

Названные линии входят в характеристику магнитного поля и применяются для определения его направления и интенсивности. Чем выше интенсивность магнитного поля, тем больше данных линий будет проведено.

Что такое магнитные линии

Магнитные линии у прямолинейных проводников с током имеют форму концентрической окружности, центр которой располагается на оси данного проводника. Направление магнитных линий возле проводников с током определяется по правилу буравчика, которое звучит так: если буравчик будет расположен так, что он будет ввинчиваться в проводник по направлению тока, тогда направление обращения рукоятки соответствует направлению магнитных линий.

У катушки с током направление магнитного поля будет определяться также по правилу буравчика. Также требуется вращать рукоятку по направлению тока в витках соленоида. Направление линий магнитной индукции будет соответствовать направлению поступательного движения буравчика.

Является основной характеристикой магнитного поля.

Создаваемое одним током, при равных условиях, поле будет различаться по своей интенсивности в разных средах из-за различающихся магнитных свойств в этих веществах. Магнитные свойства среды характеризуются абсолютной магнитной проницаемостью. Измеряется в генри на метр (г/м).

В характеристику магнитного поля входит абсолютная магнитная проницаемость вакуума, называемая магнитной постоянной. Значение, определяющее, во сколько раз абсолютная магнитная проницаемость среды будет отличаться от постоянной, именуется относительной магнитной проницаемостью.

Магнитная проницаемость веществ

Это безразмерная величина. Вещества, имеющие значение проницаемости менее единицы, зовутся диамагнитными. В данных веществах поле будет слабее, чем в вакууме. Данные свойства присутствуют у водорода, воды, кварца, серебра и др.

Среды с магнитной проницаемостью, превышающей единицу, зовутся парамагнитными. В данных веществах поле будет сильнее, чем в вакууме. К данным средам и веществам относят воздух, алюминий, кислород, платину.

В случае с парамагнитными и диамагнитными веществами значение магнитной проницаемости не будет зависеть от напряжения внешнего, намагничивающего поля. Это означает, что величина является постоянной для определенного вещества.

К особой группе относятся ферромагнетики. У данных веществ магнитная проницаемость будет достигать нескольких тысяч и более. У названных веществ, имеющих свойство намагничиваться и усиливать магнитное поле, существует широкое использование в электротехнике.

Напряженность поля

Для определения характеристик магнитного поля вместе с вектором магнитной индукции может применяться значение, именуемое напряженностью магнитного поля. Данный термин является определяющей интенсивность внешнего магнитного поля. Направление магнитного поля в среде с одинаковыми свойствами по всем направлениям вектор напряженности будет совпадать с вектором магнитной индукции в точке поля.

Сильные магнитные свойства у ферромагнитов объясняются присутствием в них произвольно намагниченных малых частей, которые могут быть представлены в виде малых магнитов.

С отсутствующим магнитным полем ферромагнитное вещество может не иметь выраженных магнитных свойств, поскольку поля доменов приобретают разную ориентацию, и их общее магнитное поле равняется нулю.

По основной характеристике магнитного поля, если ферромагнит будет помещен во внешнее магнитное поле, к примеру, в катушку с током, то под влиянием наружного поля домены развернутся по направлению внешнего поля. Притом магнитное поле у катушки усилится, и магнитная индукция увеличится. Если же наружное поле достаточно слабое, то перевернётся лишь часть от всех доменов, магнитные поля которых по направлению близятся к направлению наружного поля. На протяжении увеличения силы внешнего поля число повернутых доменов будет возрастать, и при определенном значении напряжения внешнего поля почти все части будут развернуты так, что магнитные поля расположатся по направлению наружного поля. Данное состояние именуется магнитным насыщением.

Связь магнитной индукции и напряженности

Взаимосвязанность магнитной индукции ферромагнитного вещества и напряженности внешнего поля может изображаться при помощи графика, называемого кривой намагничивания. В месте изгиба графика кривой скорость возрастания магнитной индукции уменьшается. После изгиба, где напряженность достигает определённого показателя, происходит насыщение, и кривая незначительно поднимается, постепенно приобретая форму прямой. На данном участке индукция все еще растет, однако достаточно медленно и лишь за счет возрастания напряженности внешнего поля.

Графическая зависимость данных показателя не является прямой, значит, их отношение не постоянно, и магнитная проницаемость материала не постоянный показатель, а находится в зависимости от наружного поля.

Изменения магнитных свойств материалов

При увеличении силы тока до полного насыщения в катушке с ферромагнитным сердечником и последующим ее уменьшением кривая намагничивания не будет совпадать с кривой размагничивания. С нулевой напряженностью магнитная индукция не будет иметь такое же значение, а приобретет некоторый показатель, именуемый остаточной магнитной индукцией. Ситуация с отставанием магнитной индукции от намагничивающей силы именуется гистерезисом.

Для полного размагничивания ферромагнитного сердечника в катушке требуется дать ток обратной направленности, который создаст необходимую напряженность. Для разных ферромагнитных веществ необходим отрезок различной длины. Чем он больше, тем больший объем энергии необходим для размагничивания. Значение, при котором происходит полное размагничивание материала, именуется коэрцитивной силой.

При дальнейшем увеличении тока в катушке индукция вновь увеличится до показателя насыщения, но с иным направлением магнитных линий. При размагничивании в обратном направлении будет получена остаточная индукция. Явление остаточного магнетизма применяется при создании постоянных магнитов из веществ с большим показателем остаточного магнетизма. Из веществ, имеющих способность к перемагничиванию, создаются сердечники для электрических машин и приборов.

Правило левой руки

Сила, влияющая на проводник с током, обладает направлением, определяемым по правилу левой руки: при расположении ладони девой руки таким образом, что магнитные линии входят в нее, и четыре пальца вытянуты по направлению тока в проводнике, отогнутый большой палец укажет направление силы. Данная сила перпендикулярна вектору индукции и току.

Перемещающийся в магнитном поле проводник с током считается прообразом электродвигателя, который изменяет электрическую энергию в механическую.

Правило правой руки

Во время движения проводника в магнитном поле внутри него индуцируется электродвижущая сила, которая имеет значение, пропорциональное магнитной индукции, задействованной длине проводника и скорости его перемещения. Данная зависимость называется электромагнитной индукцией. При определении направления индуцированной ЭДС в проводнике используют правило правой руки: при расположении правой руки так же, как в примере с левой, магнитные линии входят в ладонь, а большой палец указывает направление перемещения проводника, вытянутые пальцы укажут направление индуктированной ЭДС. Перемещающийся в магнитном потоке под влиянием внешней механической силы проводник является простейшим примером электрического генератора, в котором преобразуется механическая энергия в электрическую.

Может быть сформулирован по-другому: в замкнутом контуре происходит индуцирование ЭДС, при любой смене магнитного потока, охватываемого данным контуром, ЭДЕ в контуре численно равняется скорости смены магнитного потока, который охватывает данный контур.

Данная форма предоставляет усреднённый показатель ЭДС и указывает на зависимость ЭДС не от магнитного потока, а от скорости его изменения.

Закон Ленца

Также нужно вспомнить закон Ленца: ток, индуцируемый при изменении магнитного поля, проходящего через контур, своим магнитным полем препятствует этому изменению. Если витки у катушки пронизываются разными по величине магнитными потоками, то индуцированная по целой катушке ЭДС равняется сумме ЭДЕ в разных витках. Сумма магнитных потоков разных витков катушки именуется потокосцеплением. Единица измерения данной величины, как и магнитного потока, - вебер.

При изменении электрического тока в контуре происходит смена и созданного им магнитного потока. При этом, согласно закону электромагнитной индукции, внутри проводника происходит индуцирование ЭДС. Она появляется в связи со сменой тока в проводнике, потому данное явление называют самоиндукцией, и индуцированная в проводнике ЭДС именуется ЭДС самоиндукции.

Потокосцепление и магнитный поток находятся в зависимости не от одной только силы тока, но и от величины и формы данного проводника, и магнитной проницаемости окружающего вещества.

Индуктивность проводника

Коэффициент пропорциональности именуется индуктивностью проводника. Он обозначает способность проводника создавать потокосцепление при прохождении сквозь него электричества. Это является одним из основных параметров электрических цепей. Для определенных цепей индуктивность является постоянным показателем. Она будет зависеть от величины контура, его конфигурации и магнитной проницаемости среды. При этом сила тока в контуре и магнитный поток не будут иметь значения.

Вышеописанные определения и явления дают объяснение тому, что является магнитным полем. Также приводятся основные характеристики магнитного поля, с помощью которых можно дать определение данного явления.

Магнитное поле

Картина силовых линий магнитного поля , создаваемого постоянным магнитом в форме стержня. Железные опилки на листе бумаги.

См. также: Электромагнитное поле

См. также: Магнетизм

Магни́тное по́ле - силовое поле , действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом , независимо от состояния их движения ; магнитная составляющая электромагнитного поля .

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц , хотя в заметно меньшей степени) (постоянные магниты ).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля .

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) . С математической точки зрения -векторное поле , определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал .

Магнитное поле можно назвать особым видом материи , посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом .

Магнитные поля являются необходимым (в контексте ) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле , проявлениями которого являются, в частности, свет и все другие электромагнитные волны .

Электрический ток (I), проходя по проводнику, создаёт магнитное поле (B) вокруг проводника.

    С точки зрения квантовой теории поля магнитное взаимодействие - как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) - виртуальным.

    1 Источники магнитного поля

    2 Вычисление

    3 Проявление магнитного поля

    • 3.1 Взаимодействие двух магнитов

      3.2 Явление электромагнитной индукции

    4 Математическое представление

    • 4.1 Единицы измерения

    5 Энергия магнитного поля

    6 Магнитные свойства веществ

    7 Токи Фуко

    8 История развития представлений о магнитном поле

    9 См. также

Источники магнитного поля

Магнитное поле создаётся (порождается) током заряженных частиц , или изменяющимся во времени электрическим полем , или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Вычисление

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био - Савара - Лапласа или теоремы о циркуляции (она же - закон Ампера ). В принципе, этот способ ограничивается случаем (приближением) магнитостатики - то есть случаем постоянных (если речь идёт о строгой применимости) или достаточно медленно меняющихся (если речь идёт о приближенном применении) магнитных и электрических полей.

В более сложных ситуациях ищется как решение уравнений Максвелла .

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца , которая всегда направлена перпендикулярно к векторам v и B . Она пропорциональна заряду частицы q , составляющей скорости v , перпендикулярной направлению вектора магнитного поля B , и величине индукции магнитного поля B . В Международной системе единиц (СИ) сила Лоренца выражается так:

в системе единиц СГС :

где квадратными скобками обозначено векторное произведение .

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током . Сила, действующая на проводник с током называется силой Ампера . Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов

Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля - взаимодействие двух магнитов : одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями , и с формальной точки зрения эта идея вполне реализуема и часто весьма удобна, а значит практически полезна (в расчётах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели, является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный приём, приводит лишь к усложнению теории в фундаментальном смысле).

Правильнее будет сказать, что на магнитный диполь , помещённый в неоднородное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле :

Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.

Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, тоже может быть получена, исходя из силы Ампера.

Явление электромагнитной индукции

Основная статья: Электромагнитная индукция

Если поток вектора магнитной индукции через замкнутый контур меняется во времени, в этом контуре возникает ЭДС электромагнитной индукции , порождаемая (в случае неподвижного контура) вихревым электрическим полем, возникающим вследствие изменения магнитного поля со временем (в случае неизменного со временем магнитного поля и изменения потока из-за движения контура-проводника такая ЭДС возникает посредством действия силы Лоренца).

Математическое представление

Магнитное поле в макроскопическом описании представлено двумя различными векторными полями , обозначаемым как H и B .

H называется напряжённостью магнитного поля ; B называется магнитной индукцией . Термин магнитное поле применяется к обоим этим векторным полям (хотя исторически относился в первую очередь к H ).

Магнитная индукция B является основной характеристикой магнитного поля, так как, во-первых, именно она определяет действующую на заряды силу, а во-вторых, векторы B и E на самом деле являются компонентами единого тензора электромагнитного поля . Аналогично, в единый тензор объединяются величины H и электрическая индукция D . В свою очередь, разделение электромагнитного поля на электрическое и магнитное является совершенно условным и зависящим от выбора системы отсчёта, поэтому вектора B и E должны рассматриваться совместно.

Впрочем, в вакууме (при отсутствии магнетиков), а значит и на фундаментальном микроскопическом уровне, H и B совпадают (в системе СИ с точностью до условного постоянного множителя, а в СГС - полностью), что позволяет в принципе авторам, особенно тем, кто не использует СИ, выбирать для фундаментального описания магнитного поля H или B произвольно, чем они нередко и пользуются (к тому же, следуя в этом традиции). Авторы же, пользующиеся системой СИ, систематически отдают и здесь в этом отношении предпочтение вектору B , хотя бы потому, что именно через него прямо выражается сила Лоренца.

Единицы измерения

Величина B в системе единиц СИ измеряется в теслах (русское обозначение: Тл; международное: T), в системе СГС - в гауссах (русское обозначение: Гс; международное: G). Связь между ними выражается соотношениями: 1 Гс = 1·10 -4 Тл и 1 Тл = 1·10 4 Гс.

Векторное поле H измеряется в амперах на метр (А/м) в системе СИ и в эрстедах (русское обозначение: Э; международное: Oe) в СГС . Связь между ними выражается соотношением: 1 эрстед = 1000/(4π) A/м ≈ 79,5774715 А/м.

Энергия магнитного поля

Приращение плотности энергии магнитного поля равно:

H - напряжённость магнитного поля ,

B - магнитная индукция

В линейном тензорном приближении магнитная проницаемость есть тензор (обозначим его ) и умножение вектора на неё есть тензорное (матричное) умножение:

или в компонентах .

Плотность энергии в этом приближении равна:

Компоненты тензора магнитной проницаемости ,

Тензор, представимый матрицей, обратной матрице тензора магнитной проницаемости,

-магнитная постоянная

При выборе осей координат совпадающими с главными осями тензора магнитной проницаемости формулы в компонентах упрощаются:

Диагональные компоненты тензора магнитной проницаемости в его собственных осях (остальные компоненты в данных специальных координатах - и только в них! - равны нулю).

В изотропном линейном магнетике:

Относительная магнитная проницаемость

В вакууме и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

Ф - магнитный поток ,

L - индуктивность катушки или витка с током.

Магнитные свойства веществ

С фундаментальной точки зрения, как это было указано выше, магнитное поле может создаваться (а значит - в контексте этого параграфа - и ослабляться или усиливаться) переменным электрическим полем, электрическими токами в виде потоков заряженных частиц или магнитными моментами частиц.

Конкретные микроскопические структуры и свойства различных веществ (а также их смесей, сплавов, агрегатных состояний, кристаллических модификаций и т. д.) приводят к тому, что на макроскопическом уровне они могут вести себя достаточно разнообразно под действием внешнего магнитного поля (в частности, ослабляя или усиливая его в разной степени).

В связи с этим вещества (и вообще среды) в отношении их магнитных свойств делятся на такие основные группы:

    Антиферромагнетики - вещества, в которых установился антиферромагнитный порядок магнитных моментов атомов или ионов : магнитные моменты веществ направлены противоположно и равны по силе.

    Диамагнетики - вещества, намагничивающиеся против направления внешнего магнитного поля.

    Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

    Ферромагнетики - вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов

    Ферримагнетики - материалы, у которых магнитные моменты вещества направлены противоположно и не равны по силе.

    К перечисленным выше группам веществ в основном относятся обычные твердые или (к некоторым) жидкие вещества, а также газы. Существенно отличается взаимодействие с магнитным полем сверхпроводников и плазмы .

Токи Фуко

Основная статья: Токи Фуко

Токи Фуко́ (вихревые токи) - замкнутые электрические токи в массивном проводнике , возникающие при изменении пронизывающего его магнитного потока . Они являются индукционными токами , образующимися в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца , магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи .

История развития представлений о магнитном поле

Один из первых рисунков магнитного поля (Рене Декарт , 1644)

Хотя магниты и магнетизм были известны гораздо раньше, изучение магнитного поля началось в 1269 году, когда французский ученый Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами » по аналогии с полюсами Земли. Почти три столетия спустя, Уильям Гильберт Колчестер использовал труд Петра Перегрина и впервые определённо заявил, что сама Земля является магнитом. Опубликованная в 1600 году, работа Гилберта « De Magnete » , заложила основы магнетизма как науки.

В 1750 году Джон Мичелл заявил, что магнитные полюса притягиваются и отталкиваются в соответствии с законом обратных квадратов. Шарль-Огюстен де Кулон экспериментально проверил это утверждение в 1785 году и прямо заявил, что Северный и Южный полюс не могут быть разделены. Основываясь на этой силе, существующей между полюсами, Симеон Дени Пуассон , (1781-1840) создал первую успешную модель магнитного поля, которую он представил в 1824 году. В этой модели магнитное H-поле производится магнитными полюсами и магнетизм происходит из-за нескольких пар (север/юг) магнитных полюсов (диполей).

Три открытия подряд бросили вызов этой «основе магнетизма». Во-первых, в 1819 году Ханс Кристиан Эрстед обнаружил, что электрический ток создает магнитное поле вокруг себя. Затем, в 1820 году, Андре-Мари Ампер показал, что параллельные провода, по которым идёт ток в одном и том же направлении, притягиваются друг к другу. Наконец, Жан-Батист Био и Феликс Савар в 1820 году открыли закон, названный законом Био-Савара-Лапласа , который правильно предсказывал магнитное поле вокруг любого провода, находящегося под напряжением.

Расширив эти эксперименты, Ампер издал свою собственную успешную модель магнетизма в 1825 году. В ней он показал эквивалентность электрического тока в магнитах, и вместо диполей магнитных зарядов модели Пуассона, предложил идею, что магнетизм связан с постоянно текущими петлями тока. Эта идея объясняла, почему магнитный заряд не может быть изолирован. Кроме того, Ампер вывел закон, названный его именем , который, как и закон Био-Савара-Лапласа, правильно описал магнитное поле, создаваемое постоянным током, а также была введена теорема о циркуляции магнитного поля . Кроме того, в этой работе, Ампер ввел термин «электродинамика » для описания взаимосвязи между электричеством и магнетизмом.

В 1831 году Майкл Фарадей открыл электромагнитную индукцию, когда он обнаружил, что переменное магнитное поле порождает электричество. Он создал определение этого феномена, которое известно как закон электромагнитной индукции Фарадея . Позже Франц Эрнст Нейман доказал, что для движущегося проводника в магнитном поле, индукция является следствием действия закона Ампера. При этом он ввел векторный потенциал электромагнитного поля , который, как позднее было показано, был эквивалентен основному механизму, предложенному Фарадеем.

В 1850 году лорд Кельвин , тогда известный как Уильям Томсон, различие между двумя магнитными полями обозначил как поля H и B . Первое было применимо к модели Пуассона, а второе - к модели индукции Ампера. Кроме того, он вывел как H и B связаны друг с другом.

Между 1861 и 1865 годами Джеймс Клерк Максвелл разработал и опубликовал уравнения Максвелла , которые объяснили и объединили электричество и магнетизм в классической физике . Первая подборка этих уравнений была опубликована в статье в 1861 году, озаглавленной « On Physical Lines of Force » . Эти уравнения были признаны действительными, хотя и неполными. Максвелл завершил свои уравнения в своей более поздней работе 1865 года « Динамическая теория электромагнитного поля » и определил, что свет представляет собой электромагнитные волны. Генрих Герц экспериментально подтвердил этот факт в 1887 году.

Хотя подразумеваемая в законе Ампера сила магнитного поля движущегося электрического заряда не была явно заявлена, в 1892 году Хендрик Лоренц вывел её из уравнений Максвелла. При этом классическая теория электродинамики была в основном завершена.

Двадцатый век расширил взгляды на электродинамику, благодаря появлению теории относительности и квантовой механики. Альберт Эйнштейн в своей статье 1905 года, где была обоснована его теория относительности, показал, что электрические и магнитные поля являются частью одного и того же явления, рассматриваемого в разных системах отсчета. (См. Движущийся магнит и проблема проводника - мысленный эксперимент , который в конечном итоге помог Эйнштейну в разработке специальной теории относительности ). Наконец, квантовая механика была объединена с электродинамикой для формирования квантовой электродинамики (КЭД).

Элементы магнитного поля Земли

Характеристикой магнитного поля Земли, как и всякого магнитного поля, служит его напряженность F или ее составляющие. Для разложения вектора F на составляющие обычно принимают прямоугольную систему координат, в которой ось х ориентируют по направлению географического меридиана, у - по направлению параллели, при этом положительным считается направление оси х к северу, а оси у - к востоку. Ось z в таком случае будет направлена сверху вниз к центру Земли.

Поместим начало координат в точку, где происходит наблюдение напряженности магнитного поля Земли. Проекция этого вектора на ось х носит название северной составляющей , проекция на ось у - восточной составляющей и проекция на ось z - вертикальной составляющей , и обозначаются они через Hx, Hy, Hz соответственно. Проекцию F на горизонтальную плоскость называют горизонтальной составляющей Н . Вертикальная плоскость, в которой лежит вектор F , называется плоскостью магнитного меридиана , а угол между географическим и магнитным меридианами - магнитным склонением , которое обозначается через D . Наконец, угол между горизонтальной плоскостью и направлением вектора F носит название магнитного наклонения I .

Нетрудно видеть, что при таком расположении осей координат, как показано на рисунке, положительным склонением будет восточное, т. е. когда вектор Н отклонен от севера к востоку, а отрицательным - западное.

Наклонение I положительно , когда вектор F направлен вниз от земной поверхности, что имеет место в северном полушарии, и отрицательно , когда F направлен вверх, т. е. в южном полушарии. F или Н - международные обозначения полного вектора магнитного поля Земли и величины древнего поля соответственно. Иногда напряженность магнитного поля Земли обозначают через Т , но так же обозначается и модуль полного вектора.

Склонение D , наклонение I , горизонтальная составляющая Н , вертикальная составляющая Hz , северная Hx и восточная Hy составляющие носят название элементов земного магнетизма , которые можно рассматривать как координаты конца вектора F в различных системах координат. Так, например, Hx, Hy, Hz - не что иное, как координаты конца вектора F в прямоугольной системе координат ; Hz, H и D - координаты в цилиндрической системе и F, D и I - координаты в сферической системе координат. В каждой из этих трех систем координаты независимы друг от друга.

Величины Hx, Hy, Hz и Н в ряде случаев называют силовыми компонентами земного магнитного поля, а D и I - угловыми .

Как показывают наблюдения, ни один из элементов земного магнетизма не остается постоянным во времени, а непрерывно меняет свою величину от часа к часу и от года к году. Такие изменения получили название вариаций элементов земного магнетизма . Если наблюдать за этими вариациями в течение короткого промежутка времени (порядка суток), то можно заметить, что они имеют периодический характер, однако периоды, амплитуды и фазы их чрезвычайно разнообразны. Если же наблюдения ведутся длительно (несколько лет) с ежегодным определением среднегодового значения элементов, то легко установить, что среднегодовые значения также меняются, но характер изменения уже монотонный, и периодичность их выявляется лишь при очень большой длительности наблюдений (порядка многих десятков и сотен лет).

Медленные вариации элементов земного магнетизма получили название вековых вариаций , их величина обычно составляет десятки гамм в год. Вековые вариации элементов связаны с источниками, лежащими внутри земного шара, и вызываются теми же причинами, что и магнитное поле Земли.

Изменение среднегодовых значений того или иного элемента в течение года называется вековым ходом .

Быстротечные вариации периодического характера, весьма различные по амплитуде, имеют своим источником электрические токи в высоких слоях атмосферы.

Данные о быстротечных вариациях магнитного поля Земли в виде часовых и минутных значений элементов земного магнетизма представлены на сайте Мирового центра данных по солнечно-земной физике.

Проекция Гаусса - Крюгера

Материал из Википедии - свободной энциклопедии

(перенаправлено с «Система координат Гаусса-Крюгера »)

Проекция Гаусса - Крюгера - поперечная цилиндрическая равноугольная картографическая проекция , разработанная немецкими учёными Карлом Гауссом и Луи Крюгером . Применение этой проекции даёт возможность практически без существенных искажений изобразить довольно значительные участки земной поверхности и, что очень важно, построить на этой территории систему плоских прямоугольных координат . Эта система является наиболее простой и удобной при проведении инженерных и топографо-геодезических работ .

О магнитном поле мы еще помним со школы, вот только что оно собой представляет, “всплывает” в воспоминаниях не у каждого. Давайте освежим то, что проходили, а возможно, расскажем что-то новенькое, полезное и интересное.

Определение магнитного поля

Магнитным полем называют силовое поле, которое воздействует на движущиеся электрические заряды (частицы). Благодаря этому силовому полю предметы притягиваются друг к другу. Различают два вида магнитных полей:

  1. Гравитационное – формируется исключительно вблизи элементарных частиц и вирируется в своей силе исходя из особенностей и строения этих частиц.
  2. Динамическое, вырабатывается в предметах с движущимися электрозарядами (передатчики тока, намагниченные вещества).

Впервые обозначение магнитному полю было введено М.Фарадеем в 1845 году, правда значение его было немного ошибочно, так как считалось, что и электрическое, и магнитное воздействие и взаимодействие осуществляется исходя из одного и того же материального поля. Позже в 1873 году, Д.Максвелл “презентовал” квантовую теорию, в которой эти понятия стали разделять, а ранее выведенное силовое поле было названо электромагнитным полем.

Как появляется магнитное поле?

Не воспринимаются человеческим глазом магнитные поля разных предметов, а зафиксировать его могут только специальные датчики. Источником появления магнитного силового поля в микроскопическом масштабе является движение намагниченных (заряженных) микрочастиц, которыми выступают:

  • ионы;
  • электроны;
  • протоны.

Их движение происходит благодаря спиновому магнитному моменту, который присутствует у каждой микрочастицы.


Магнитное поле, где его можно найти?

Как бы странно это ни звучало, но почти все окружающие нас предметы обладают собственным магнитным полем. Хотя в понятии многих магнитное поле имеется только у камушка под названием магнит, который притягивает к себе железные предметы. На самом деле, сила притяжения есть во всех предметах, только проявляется она в меньшей валентности.

Также следует уточнить, что силовое поле, называемое магнитным, появляется только при условии, что электрические заряды или тела движутся.


Недвижимые заряды имеют электрическое силовое поле (оно может присутствовать и в движущихся зарядах). Получается, что источниками магнитного поля выступают:

  • постоянные магниты;
  • подвижные заряды.

Магнитное поле – это материальная среда, через которую осуществляется взаимодействие между проводниками с током или движущимися зарядами.

Свойства магнитного поля :

Характеристики магнитного поля :

Для исследования магнитного поля используют пробный контур с током. Он имеет малые размеры, и ток в нём много меньше тока в проводнике, создающем магнитное поле. На противоположные стороны контура с током со стороны магнитного поля действуют силы, равные по величине, но направленные в противоположные стороны, так как направление силы зависит от направления тока. Точки приложения этих сил не лежат на одной прямой. Такие силы называют парой сил . В результате действия пары сил контур не может двигаться поступательно, он поворачивается вокруг своей оси. Вращающее действие характеризуетсямоментом сил .

, гдеl плечо пары сил (расстояние между точками приложения сил).

При увеличении тока в пробном контуре или площади контура пропорционально увеличится момент пары сил. Отношение максимального момента сил, действующего на контур с током, к величине силы тока в контуре и площади контура – есть величина постоянная для данной точки поля. Называется она магнитной индукцией .

, где
-магнитный момент контура с током.

Единица измерения магнитной индукции –Тесла [Тл].

Магнитный момент контура – векторная величина, направление которой зависит от направления тока в контуре и определяется поправилу правого винта : правую руку сжать в кулак, четыре пальца направить по направлению тока в контуре, тогда большой палец укажет направление вектора магнитного момента. Вектор магнитного момента всегда перпендикулярен плоскости контура.

За направление вектора магнитной индукции принимают направление вектора магнитного момента контура, ориентированного в магнитном поле.

Линия магнитной индукции – линия, касательная к которой в каждой точке совпадает с направлением вектора магнитной индукции. Линии магнитной индукции всегда замкнуты, никогда не пересекаются.Линии магнитной индукции прямого проводника с током имеют вид окружностей, расположенных в плоскости, перпендикулярной проводнику. Направление линий магнитной индукции определяют по правилу правого винта.Линии магнитной индукции кругового тока (витка с током) также имеют вид окружностей. Каждый элемент витка длиной
можно представить как прямолинейный проводник, который создаёт своё магнитное поле. Для магнитных полей выполняется принцип суперпозиции (независимого сложения). Суммарный вектор магнитной индукции кругового тока определяется как результат сложения этих полей в центре витка по правилу правого винта.

Если величина и направление вектора магнитной индукции одинаковы в каждой точке пространства, то магнитное поле называют однородным . Если величина и направление вектора магнитной индукции в каждой точке не изменяются с течением времени, то такое поле называютпостоянным.

Величина магнитной индукции в любой точке поля прямо пропорциональна силе тока в проводнике, создающем поле, обратно пропорциональна расстоянию от проводника до данной точки поля, зависит от свойств среды и формы проводника, создающего поле.

, где
Н/А 2 ; Гн/м– магнитная постоянная вакуума ,

-относительная магнитная проницаемость среды ,

-абсолютная магнитная проницаемость среды .

В зависимости от величины магнитной проницаемости все вещества разделяют на три класса:


При увеличении абсолютной проницаемости среды увеличивается и магнитная индукция в данной точке поля. Отношение магнитной индукции к абсолютной магнитной проницаемости среды – величина постоянная для данной точки поли, е называют напряжённостью.

.

Векторы напряжённости и магнитной индукции совпадают по направлению. Напряжённость магнитного поля не зависит от свойств среды.

Сила Ампера – сила, с которой магнитное поле действует на проводник с током.

Гдеl – длина проводника,- угол между вектором магнитной индукции и направлением тока.

Направление силы Ампера определяют по правилу левой руки : левую руку располагают так, чтобы составляющая вектора магнитной индукции, перпендикулярная проводнику, входила в ладонь, четыре вытянутых пальца направить по току, тогда отогнутый на 90 0 большой палец укажет направление силы Ампера.

Результат действия силы Ампера – движение проводника в данном направлении.

Если= 90 0 , тоF=max, если= 0 0 , тоF= 0.

Сила Лоренца – сила действия магнитного поля на движущийся заряд.

, гдеq– заряд,v– скорость его движения,- угол между векторами напряжённости и скорости.

Сила Лоренца всегда перпендикулярна векторам магнитной индукции и скорости. Направление определяют по правилу левой руки (пальцы – по движению положительного заряда). Если направление скорости частицы перпендикулярно линиям магнитной индукции однородного магнитного поля, то частица движется по окружности без изменения кинетической энергии.

Так как направление силы Лоренца зависит от знака заряда, то её используют для разделения зарядов.

Магнитный поток – величина, равная числу линий магнитной индукции, которые проходят через любую площадку, расположенную перпендикулярно линиям магнитной индукции.

, где- угол между магнитной индукцией и нормалью (перпендикуляром) к площадиS.

Единица измерения – Вебер [Вб].

Способы измерения магнитного потока:

    Изменение ориентации площадки в магнитном поле (изменение угла)

    Изменение площади контура, помещённого в магнитное поле

    Изменение силы тока, создающего магнитное поле

    Изменение расстояния контура от источника магнитного поля

    Изменение магнитных свойств среды.

Фарадей регистрировал электрический ток в контуре, не содержащим источника, но находившемся рядом с другим контуром, содержащим источник. Причём ток в первом контуре возникал в следующих случаях: при любом изменении тока в контуре А, при относительном перемещении контуров, при внесении в контур А железного стержня, при движении относительно контура Б постоянного магнита. Направленное движение свободных зарядов (ток) возникает только в электрическом поле. Значит, изменяющееся магнитное поле порождает электрическое поле, которое и приводит в движение свободные заряды проводника. Это электрическое поле называютиндуцированным иливихревым .

Отличия вихревого электрического поля от электростатического:

    Источник вихревого поля – изменяющееся магнитное поле.

    Линии напряжённости вихревого поля замкнуты.

    Работа, совершаемая этим полем по перемещению заряда по замкнутому контуру не равна нулю.

    Энергетической характеристикой вихревого поля является не потенциал, а ЭДС индукции – величина, равная работе сторонних сил (сил не электростатического происхождения) по перемещению единицы заряда по замкнутому контуру.

.Измеряется в Вольтах [В].

Вихревое электрическое поле возникает при любом изменении магнитного поля, независимо от того, есть ли проводящий замкнутый контур или его нет. Контур только позволяет обнаружить вихревое электрическое поле.

Электромагнитная индукция – это возникновение ЭДС индукции в замкнутом контуре при любом изменении магнитного потока через его поверхность.

ЭДС индукции в замкнутом контуре порождает индукционный ток.

.

Направление индукционного тока определяют поправилу Ленца : индукционный ток имеет такое направление, что созданное им магнитное поле противодействует любому изменению магнитного потока, породившего этот ток.

Закон Фарадея для электромагнитной индукции : ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.

Токи Фуко – вихревые индукционные токи, возникающие в проводниках больших размеров, помещённых в изменяющееся магнитное поле. Сопротивление такового проводника мало, так как он имеет большое сечениеS, поэтому токи Фуко могут быть большими по величине, в результате чего проводник нагревается.

Самоиндукция – это возникновение ЭДС индукции в проводнике при изменении силы тока в нём.

Проводник с током создаёт магнитное поле. Магнитная индукция зависит от силы тока, следовательно собственный магнитный поток тоже зависит от силы тока.

, гдеL– коэффициент пропорциональности,индуктивность .

Единица измерения индуктивности – Генри [Гн].

Индуктивность проводника зависит от его размеров, формы и магнитной проницаемости среды.

Индуктивность увеличивается при увеличении длины проводника, индуктивность витка больше индуктивности прямого проводника такой же длины, индуктивность катушки (проводника с большим числом витков) больше индуктивности одного витка, индуктивность катушки увеличивается, если в неё вставить железный стержень.

Закон Фарадея для самоиндукции :
.

ЭДС самоиндукции прямо пропорциональна скорости изменения тока.

ЭДС самоиндукции порождает ток самоиндукции, который всегда препятствует любому изменению тока в цепи, то есть, если ток увеличивается, ток самоиндукции направлен в противоположную сторону, при уменьшении тока в цепи, ток самоиндукции направлен в ту же сторону. Чем больше индуктивность катушки, тем больше ЭДС самоиндукции возникает в ней.

Энергия магнитного поля равна работе, которую совершает ток для преодоления ЭДС самоиндукции за время, пока ток возрастает от нуля до максимального значения.

.

Электромагнитные колебания – это периодические изменения заряда, силы тока и всех характеристик электрического и магнитного полей.

Электрическая колебательная система (колебательный контур) состоит из конденсатора и катушки индуктивности.

Условия возникновения колебаний :

    Систему надо вывести из состояния равновесия, для этого сообщают заряд конденсатору. Энергия электрического поля заряженного конденсатора:

.

    Система должна возвращаться в состояние равновесия. Под действием электрического поля заряд переходит с одной пластины конденсатора на другую, то есть в цепи возникает электрический ток, которые идёт по катушке. При увеличении тока в катушке индуктивности возникает ЭДС самоиндукции, ток самоиндукции направлен в противоположную сторону. Когда ток в катушке уменьшается, ток самоиндукции направлен в ту же сторону. Таким образом, ток самоиндукции стремиться возвратить систему к состоянию равновесия.

    Электрическое сопротивление цепи должно быть малым.

Идеальный колебательный контур не имеет сопротивления. Колебания в нём называютсвободными.

Для любой электрической цепи выполняется закон Ома, согласно которому ЭДС, действующая в контуре, равна сумме напряжений на всех участках цепи. В колебательном контуре источника тока нет, но в катушке индуктивности возникает ЭДС самоиндукции, которая равна напряжению на конденсаторе.

Вывод: заряд конденсатора изменяется по гармоническому закону .

Напряжение на конденсаторе :
.

Сила тока в контуре :
.

Величина
- амплитуда силы тока.

Отличие от заряда на
.

Период свободных колебаний в контуре :

Энергия электрического поля конденсатора :

Энергия магнитного поля катушки :

Энергии электрического и магнитного полей изменяются по гармоническому закону, но фазы их колебаний разные: когда энергия электрического поля максимальна, энергия магнитного поля равна нулю.

Полная энергия колебательной системы :
.

В идеальном контуре полная энергия не изменяется.

В процессе колебаний энергия электрического поля полностью превращается в энергию магнитного поля и наоборот. Значит энергия в любой момент времени равна или максимальной энергии электрического поля, или максимальной энергии магнитного поля.

Реальный колебательный контур содержит сопротивление. Колебания в нём называютзатухающими.

Закон Ома примет вид:

При условии что затухание мало (квадрат собственной частоты колебаний много больше квадрата коэффициента затухания) логарифмический декремент затухания:

При сильном затухании (квадрат собственной частоты колебаний меньше квадрата коэффициента колебаний):




Это уравнение описывает процесс разрядки конденсатора на резистор. При отсутствии индуктивности колебаний не возникнет. По такому закону изменяется и напряжение на обкладках конденсатора.

Полная энергия в реальном контуре уменьшается, так как на сопротивлениеRпри прохождении тока выделяется теплота.

Переходный процесс – процесс, возникающий в электрических цепях при переходе от одного режима работы к другому. Оценивается временем (), в течение которого параметр, характеризующий переходный процесс изменится в е раз.


Для контура с конденсатором и резистором :
.

Теория Максвелла об электромагнитном поле :

1 положение:

Всякое переменное электрическое поле порождает вихревое магнитное. Переменное электрическое поле было названо Максвеллом током смещения, так как оно подобно обычному току вызывает магнитное поле.

Для обнаружения тока смещения рассматривают прохождение тока по системе, в которую включён конденсатор с диэлектриком.

Плотность тока смещения :
. Плотность тока направлена в сторону изменения напряжённости.

Первое уравнение Максвелла :
- вихревое магнитное поле порождается как токами проводимости (движущимися электрическими зарядами) так и токами смещения (переменным электрическим полем Е).

2 положение:

Всякое переменное магнитное поле порождает вихревое электрическое поле – основной закон электромагнитной индукции.

Второе уравнение Максвелла :
- связывает скорость изменения магнитного потока сквозь любую поверхность и циркуляцию вектора напряжённости электрического поля, возникающего при этом.

Любой проводник с током создаёт в пространстве магнитное поле . Если ток постоянный (не изменяется с течением времени), то и связанное с ним магнитное поле тоже постоянное. Изменяющийся ток создаёт изменяющиеся магнитное поле. Внутри проводника с током существует электрическое поле. Следовательно, изменяющееся электрическое поле создаёт изменяющееся магнитное поле.

Магнитное поле вихревое, так как линии магнитной индукции всегда замкнуты. Величина напряженности магнитного поля Н пропорциональна скорости изменения напряжённости электрического поля . Направление вектора напряжённости магнитного полясвязано с изменением напряжённости электрического поляправилом правого винта: правую руку сжать в кулак, большой палец направить в сторону изменения напряжённости электрического поля, тогда согнутые 4 пальца укажут направление линий напряжённости магнитного поля.

Любое изменяющееся магнитное поле создаёт вихревое электрическое поле , линии напряжённости которого замкнуты и расположены в плоскости, перпендикулярной напряжённости магнитного поля.

Величина напряжённости Е вихревого электрического поля зависит от скорости изменения магнитного поля . Направление вектора Е связано с направлением изменения магнитного пол Н правилом левого винта: левую руку сжать в кулак, большой палец направить в сторону изменения магнитного поля, согнутые четыре пальца укажут направление линий напряжённости вихревого электрического поля.

Совокупность связанных друг с другом вихревых электрического и магнитного полей представляют электромагнитное поле . Электромагнитное поле не остаётся в месте зарождения, а распространяется в пространстве в виде поперечной электромагнитной волны.

Электромагнитная волна – это распространение в пространстве связанных друг с другом вихревых электрического и магнитного полей.

Условие возникновения электромагнитной волны – движение заряда с ускорением.

Уравнение электромагнитной волны :

- циклическая частота электромагнитных колебаний

t– время от начала колебаний

l– расстояние от источника волны до данной точки пространства

- скорость распространения волны

Время движения волны от источника до данной точки.

Векторы Е и Н в электромагнитной волне перпендикулярны друг другу и скорости распространения волны.

Источник электромагнитных волн – проводники, по которым протекают быстропеременные токи (макроизлучатели), а также возбуждённые атомы и молекулы (микроизлучатели). Чем больше частота колебаний, тем лучше излучаются в пространстве электромагнитные волны.

Свойства электромагнитных волн:

    Все электромагнитные волны – поперечные

    В однородной среде электромагнитные волны распространяются с постоянной скоростью , которая зависит от свойств среды:

- относительная диэлектрическая проницаемость среды

- диэлектрическая постоянная вакуума,
Ф/м, Кл 2 /нм 2

- относительная магнитная проницаемость среды

- магнитная постоянная вакуума,
Н/А 2 ; Гн/м

    Электромагнитные волны отражаются от препятствий, поглощаются, рассеиваются, преломляются, поляризуются, дифрагируют, интерферируют .

    Объёмная плотность энергии электромагнитного поля складывается из объёмных плотностей энергии электрического и магнитного полей:

    Плотность потока энергии волн – интенсивность волны :

-вектор Умова-Пойнтинга .

Все электромагнитные волны расположены в ряд по частотам или длинам волн (
). Этот ряд –шкала электромагнитных волн .

    Низкочастотные колебания . 0 – 10 4 Гц. Получают в генераторах. Они плохо излучаются

    Радиоволны . 10 4 – 10 13 Гц. Излучаются твёрдыми проводниками, по которым проходят быстропеременные токи.

    Инфракрасное излучение – волны, излучаемые всеми телами при температуре свыше 0 К, благодаря внутриатомным и внутри молекулярным процессам.

    Видимый свет – волны, оказывающие действие на глаз, вызывая зрительное ощущение. 380-760 нм

    Ультрафиолетовое излучение . 10 – 380 нм. Видимый свет и УФ возникают при изменении движения электронов внешних оболочек атома.

    Рентгеновское излучение . 80 – 10 -5 нм. Возникает при изменении движения электронов внутренних оболочек атома.

    Гамма-излучение . Возникает при распаде ядер атомов.

Последние материалы раздела:

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...

Генрих Мореплаватель: биография и интересные факты
Генрих Мореплаватель: биография и интересные факты

Португальский принц Энрике Мореплаватель совершил множество географических открытий, хотя сам выходил в море всего три раза. Он положил начало...

Последнее восстание интеллектуалов Франция 1968 год волнения студентов
Последнее восстание интеллектуалов Франция 1968 год волнения студентов

Любой революции предшествует идеологическая аргументация и подготовка. «Майская революция» 1968 года, бесспорно, не является исключением. Почему к...