Модели и методы прогнозирования. Математические методы прогнозирования (кафедра ВМиК МГУ)

Статистические наблюдения в социально-экономических исследованиях обычно проводятся регулярно через равные отрезки времени и представляются в виде временных рядов x t , где t = 1, 2, ..., п. В качестве инструмента статистического прогнозирования временных рядов служат трендовые регрессионные модели, параметры которых оцениваются по имеющейся статистической базе, а затем основные тенденции (тренды) экстраполируются на заданный интервал времени.

Методология статистического прогнозирования предполагает построение и испытание многих моделей для каждого временного ряда,ихсравнение на основе статистических критериев и отбор наилучшихизних для прогнозирования.

При моделировании сезонных явлений в статистических исследованиях различают два типа колебаний: мультипликативные и аддитивные. В мультипликативном случае размах сезонных колебаний изменяется во времени пропорционально уровню тренда и отражается в статистической модели множителем. При аддитивной сезонности предполагается, что амплитуда сезонных отклонений постоянна и не зависит от уровня тренда, а сами колебания представлены в модели слагаемым.

Основой большинства методов прогнозирования является экстраполяция, связанная с распространением закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы, или - в более широком смысле слова - это получение представлений о будущем на основе информации, относящейся к прошлому и настоящему.

Наиболее известны и широко применяются трендовые и адаптивные методы прогнозирования. Среди последних можно выделить такие, как методы авторегрессии, скользящего среднего (Бокса - Дженкинса и адаптивной фильтрации), методы экспоненциального сглаживания (Хольта, Брауна и экспоненциальной средней) и др.

Для оценки качества исследуемой модели прогноза используют несколько статистических критериев.

Наиболее распространенными критериями являются следующие.

Относительная ошибка аппроксимации:

где e t = х t - - ошибка прогноза;

х t - фактическое значение показателя;

- прогнозируемое значение.

Данный показатель используется в случае сравнения точности прогнозов по нескольким моделям. При этом считают, что точность модели является высокой, когда < 10%, хорошей - при = 10-20% и удовлетворительной - при = 20-50%.

Средняя квадратическая ошибка:

(54.2)

где k - число оцениваемых коэффициентов уравнения.

Наряду с точечным в практике прогнозирования широко используют интервальный прогноз. При этом доверительный интервал чаще всего задается неравенствами

(54.3)

где t α - табличное значение, определяемое по t -распределению Стьюдента при уровне значимости α и числе степеней свободы п - k.

В литературе представлено большое число математико-статистических моделей для адекватного описания разнообразных тенденций временных рядов.

Наиболее распространенными видами трендовых моделей, характеризующих монотонное возрастание или убывание исследуемого явления, являются:

(54.4)

Правильно выбранная модель должна соответствовать характеру изменений тенденции исследуемого явления; При этом величина е t должна носить случайный характер с нулевой средней.

Кроме того, ошибки аппроксимации e t должны быть независимыми между собой и подчиняться нормальному закону распределения e t Î N (0, σ ). Независимость ошибок e t , т.е. отсутствие автокорреляции остатков, обычно проверяется по критерию Дарбина-Уотсона, основанного на статистике:

(54.5)

где e t = x t - .

Если отклонения не коррелированы, то величина DW приблизительно равна двум. При наличии положительной автокорреляции 0 ≤ DW 2, а отрицательной - 2 ≤ D W ≤ 4.

О коррелированности остатков можно также судить по коррелограмме для отклонений от тренда, которая представляет собой график функции относительно τ коэффициента автокорреляции, который вычисляется по формуле

(54.6)

где τ = 0, 1, 2 ... .

После выбора наиболее подходящей аналитической функции для тренда его используют для прогнозирования на основе экстраполяции на заданное число временных интервалов.

Рассмотрим задачу сглаживания сезонных колебаний, исходя из ряда V t = х t - , где x t - значение исходного временного ряда в момент t, а - оценка соответствующего значения тренда (t = 1, 2, ..., п ).

Так как сезонные колебания представляют собой циклический, повторяющийся во времени процесс, то в качестве сглаживающих функций используется гармонический ряд (ряд Фурье) следующего вида:

Оценки параметров α i и β i модели определяют из выражений

(54.7)

где k = п / 2 - максимально допустимое число гармоник;

ω i = 2πi / п - угловая частота i -й гармоники (i = 1, 2, ..., т).

Пусть т - число гармоник, используемых для сглаживания сезонных колебаний (т < k). Тогда оценка гармонического ряда имеетвид

(54.8)

а расчетные значения временного ряда исходного показателя определяются по формуле

54.2. Адаптивные методы прогнозирования

При использовании трендовых моделей в прогнозировании обычно предполагается, что основные факторы и тенденции прошлого периода сохранятся на период прогноза или что можно обосновать и учесть направление их изменений в перспективе. Однако в настоящее время, когда происходит структурная перестройка экономики, социально-экономические процессы даже на макроуровне становятся очень динамичными. В этой связи исследователь часто имеет дело с новыми явлениями и с короткими временными рядами. При этом устаревшие данные при моделировании часто оказываются бесполезными и даже вредными. Таким образом, возникает необходимость строить модели, опираясь в основном на малое количество самых свежих данных, наделяя модели адаптивными свойствами.

Важную роль в деле совершенствования прогнозирования должны сыграть адаптивные методы, цель которых заключается в построении самонастраивающихся моделей, которые способны учитывать информационную ценность различных членов временного ряда и давать достаточно точные оценки будущих членов данного ряда. Адаптивные модели достаточно гибки, однако на их универсальность, пригодность для любого временного ряда рассчитывать не приходится.

При построении конкретных моделей необходимо учитывать наиболее вероятные закономерности развития реального процесса. Исследователь должен закладывать в модель те адаптивные свойства, которых достаточно для слежения за реальным процессом с заданной точностью.

У истоков адаптивного направления лежит простейшая модель экспоненциального сглаживания, обобщение которой привело в появлению целого семейства адаптивных моделей. Простейшая адаптивная модель основывается на вычислении экспоненциально взвешенной скользящей средней.

Экспоненциальное сглаживание исходного временного ряда x t осуществляется по рекуррентной формуле

(54.9)

где S t - значение экспоненциальной средней в момент t, a. S t-1 - в момент t -1;

α - параметр сглаживания, адаптации, α = const, 0 < α < 1;

Выражение (54.9) можно представить в виде

В (54.10) экспоненциальная средняя в момент t выражена как экспоненциальная средняя предшествующего момента S t-1 плюс доля α отклонения текущего наблюдения х t от экспоненциальной средней S t-1 момента t - 1.

Последовательно используя рекуррентное соотношение (54.9), можно выразить экспоненциальную среднюю S t через значения временного ряда:

где S 0 - величина, характеризующая начальные условия для первого применения формулы (54.9), при t = 1.

Так как β = (1 - α) < 1, то при t 0 β t 0, и, согласно (54.11),

(54.12)

т.е. величина S t оказывается взвешенной суммой всех членов ряда. При этом веса падают экспоненциально в зависимости от давности наблюдения, откуда и название S t - экспоненциальная средняя.

Из (54.12) следует, что увеличение веса более свежих наблюдений может быть достигнуто повышением α. В то же время для сглаживания случайных колебаний временного ряда x t величину α нужно уменьшить. Два названных требования находятся в противоречии, и на практике при выборе α исходят из компромиссного решения.

Экспоненциальное сглаживание является простейшим видом самообучающейся модели с параметром адаптации α. Разработано несколько вариантов адаптивных моделей, которые используют процедуру экспоненциального сглаживания и позволяют учесть наличие у временного ряда x t тенденции и сезонных колебаний. Рассмотрим некоторыеизтаких моделей.

Адаптивная полиномиальная модель первого порядка

Рассмотрим алгоритм экспоненциального сглаживания, предполагающий наличие у временного ряда x t линейного тренда. В основе модели лежит гипотеза о том, что прогноз может быть получен по уравнению

где - прогнозируемое значение временного ряда на момент (t + τ);

, - оценки адаптивных коэффициентов полинома первого порядка в момент t;

τ - величина упреждения.

Экспоненциальные средние 1-го и 2-го порядков для модели имеют вид

(54.13)

где β = 1 - α, а оценка модельного значения ряда с периодом упреждения τ равна

(54.14)

Для определения начальных условий первоначально по данным временного ряда x t находим методом наименьших квадратов оценки линейного тренда:

и принимаем и . Тогда начальные условия определяются как:

(54.15)

Контрольные вопросы

1. Какие модели прогнозирования вы знаете и каковы их особенности?

2. В чем состоит статистический подход к прогнозированию, моделированию тенденций и сезонных явлений в стратегических исследованиях?

3. Какие трендовые модели вам известны и как оценивается их качество?

4. В чем особенность адаптивных методов прогнозирования?

5. Какимобразом осуществляется экспоненциальное сглаживание временного ряда?

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ПРОГНОЗИРОВАНИЯ В УПРАВЛЕНИИ ПРЕДПРИЯТИЕМ

Ковальчук Светлана Петровна

студентка 4 курса, кафедра экономической кибернетики ВНАУ, г. Винница

Коляденко Светлана Васильевна

научный руководитель, докт.экон.наук, профессор ВНАУ, г. Винница

Введение. В условиях развития рыночных отношений для обеспечения эффективного хозяйствования предприятия, принятия управленческих решений необходимо проведение глубокого анализа экономических показателей его деятельности в динамике, что дает возможность с помощью методов прогнозирования по мере поступления новой информации выявить закономерности изменений во времени и определить обоснованные пути развития объекта управления.

Анализ последних исследований и публикаций. Вопрос прогнозирования исследовались в научных работах таких известных отечественных и зарубежных экономистов, как И. Ансофф, В. Геець, Г. Добров, М. Долишний, А. Илишев, М. Кизим, В. Кучерук, В. Лисичкин, А. Мельник, М. Мескон, З. Микитишин, И. Михасюк, Б. Панасюк, М. Портер, Г.Савицкая, Р. Сайфулин и другие. Тем не менее существует объективная необходимость дальнейшего исследования методических и прикладных основ прогнозирования деятельности предприятий с учетом особенностей становления рыночной экономики.

Целью исследования является систематизация математических методов экономического прогнозирования в управлении предприятием, определение их особенностей, заданий и принципов.

Основные результаты исследования. Прогноз (от греч. prognosis – предвидение) – это попытка определить состояние некоторого явления или процесса в будущем. Процесс формирования прогноза называют прогнозированием. Прогнозирование в управлении предприятием – это научное обоснование возможных количественных и качественных изменений его состояния, уровня развития в целом, отдельных направлений деятельности в будущем, а также альтернативных способов и сроков достижения ожидаемого состояния.

Процесс прогнозирования всегда основывается на определенных принципах:

  • целеустремленность – содержательное описание поставленных исследовательских задач;
  • системность – построение прогноза на основании системы методов и моделей, которые характеризуются определенной иерархией и последовательностью;
  • научная обоснованность – всесторонний учет требований объективных законов развития общества, использование мирового опыта;
  • многоуровневое описание – описание объекта как целостного явления и вместе с тем как элемента более сложной системы;
  • информационное единство – использование информации на одинаково равное обобщения и целостности признаков;
  • адекватность объективным закономерностям развития – выявление и оценка устойчивых взаимосвязей и тенденций развития объекта;
  • последовательное решение неопределенности – поэтапная процедура продвижения от выявления целей и сложившихся условий к определению возможных направлений развития;
  • альтернативность – выявление возможности развития объекта при условии разных траекторий, разнообразных взаимосвязей и структурных соотношений .

Прогнозирование выполняет три основных функции и имеет три стадии:

  • предвидение возможных тенденций изменений в будущем, выявление закономерностей, тенденций, факторов, обуславливающих эти изменения (исследовательская стадия);
  • выявление альтернативных вариантов влияния на развитие объекта в результате принятия тех или иных решений, оценка последствий реализации этих решений (стадия обоснования управленческих решений);
  • оценка результатов выполнения решений, непредвиденных изменений внешней среды, чтобы своевременно скоординировать решение (стадия наблюдения и коррекции) .

Эти три функции и три стадии взаимно переплетены, итеративно повторяются и являются составными элементами управленческой деятельности в любой сфере.

Качество прогнозов в значительной мере зависит от методов прогнозирования, которыми называют совокупность приемов и оценок, которые дают возможность на основании анализа прошлых (ретроспективных) внутренних и внешних связей, присущих объекту, а также их изменений с определенной вероятностью сделать вывод относительно будущего развития объекта .

По принципу информационного обоснования различают такие методы:

І. Фактографические методы, которые базируются на фактическом информационном материале об объекте прогнозирования и его прошлом развитии:

  • статистические методы: экстраполяции и интерполяции, корреляционно-регрессионный анализ, факторные модели;
  • аналогии: математические, исторические;
  • опережающие методы прогнозирования, которые основываются на определенных принципах специальной обработки научно-технической информации и реализуют в прогнозе ее свойство опережать развитие научно-технического прогресса (методы анализа динамики патентования, публикационные методы прогнозирования).

ІІ. Экспертные методы, которые базируются на субъективной информации, которую предоставляют специалисты-эксперты в процессе систематизированных процедур выявления и обобщение их мысли относительно будущего состояния дел. Для этих методов характерно предвидение будущего на основе как рациональных доказательств, так и интуитивных знаний. Они, как правило, имеют качественный характер. К этим методам принадлежат такие:

  • прямые: экспертного опрашивания; экспертного анализа, когда эксперт или коллектив экспертов сами ставят и решают вопросы, которые ведут к поставленной цели; с обратной связью; метод «комиссий», что может означать организацию «круглого стола» и других подобных мероприятий, в пределах которых происходит согласование мыслей экспертов; метод «мозговых атак», для которого характерны коллективная генерация идей и творческое решение проблем; метод Дельфи, что предусматривает проведение анкетных опрашиваний специалистов избранной области знаний.

ІІІ. Комбинированные методы со смешанной информационной основой, в которой как первичную используют фактографическую и экспертную информацию: балансовые модели; оптимизационные модели.

Одними из наиболее распространенных методов прогнозирования являются эконометрические методы – это комплекс экономических и математических научных дисциплин, которые изучают экономические процессы и системы. Эконометрическая модель представляет собой систему регрессионных (стохастических) уравнений и тождественностей. Коэффициенты уравнений определяются методами математической статистики на основе конкретной экономико-статистической информации, а наиболее распространенным методом количественной оценки коэффициентов есть метод наименьших квадратов с его модификациями. Эконометрические уравнения выражают зависимость исследуемых переменных от изменения других показателей, в том числе и от состояния этих переменных в прошлом. Тождественности же устанавливают взаимозависимость между переменными, отображающими структуру используемой статистики .

Математическую платформу эконометрических моделей составляют методы корреляционного и регрессионного анализа. Корреляционный анализ дает возможность отобрать наиболее существенные факторы и построить соответствующее уравнение регрессии .

Корреляционный анализ обеспечивает: измерение степени связи двух и больше переменных; выявление факторов, наиболее существенно влияющих на зависимую переменную; определение прежде неизвестных причинных связей (корреляция непосредственно не раскрывает причинных связей между явлениями, но определяет числовое значение этих связей и вероятность суждений относительно их существования). Основными средствами анализа есть парные, частные и множественные коэффициенты корреляции.

Регрессионный анализ разрешает решать такие задачи:

  • установление форм зависимости между одной эндогенной и одной или несколькими экзогенными переменными (положительная, отрицательная, линейная, нелинейная). Эндогенная переменная обычно обозначается Y , а экзогенная (экзогенные), которая еще иначе называется регрессором, – X ;
  • определение функции регрессии. Важно не только указать общую тенденцию изменения зависимой сменной, а и выяснить степень влияния на зависимую переменную главных факторов, если бы остальные (второстепенные, побочные) факторы не изменялись (находились на том самом среднему уровне) и были исключены случайные элементы;
  • оценивание неизвестных значений зависимой сменной.

Согласно цели прогнозирования определяется совокупность и структура переменных, которые входят в модель. На основе теоретического анализа взаимосвязей переменных формируется система уравнений, и оцениваются параметры уравнений регрессии. В результате рассмотрения разных вариантов структур уравнений в системе остаются те из них, которые имеют наилучшие качественные характеристики и не противоречат экономической теории. И последний этап построения модели содержит проверку ее способности воссоздавать динамику прошлого экономического развития, т.е. имитацию на модели базового периода, который разрешает оценить ее качество.

Объектами прогнозирования в управлении предприятием могут быть: спрос, производство продукции (выполнение услуг), объем продаж, потребность в материальных и трудовых ресурсах, затрат производства и реализации продукции, цены, доходы предприятия, его техническое развитие.

Субъектами прогнозирования являются планово-экономические отделы предприятия, маркетинговые и технические отделы.

Разработка планов-прогнозов (на перспективу, краткосрочные (год, квартал, месяц) и оперативные (сутки, декада)) происходит как в целому по предприятию, так и по его структурным подразделениям: цехам, участкам, службам. При прогнозировании показателей целесообразно использовать следующую систему методов: экспертные оценки, факторные модели, методы оптимизации, нормативный метод.

Выводы. Для принятия решения необходимо иметь достоверную и полную информацию, на основе которой формируется стратегия производства и сбыта продукции. В связи с этим повышается роль прогнозов, нужное расширение системы и совершенствование методов прогнозирования, применяемых на практике. Особое внимание должно уделяться прогнозированию спроса на продукцию, расходов производства, цен и прибыли. Для этого проводятся исследование внутреннего и мирового рынков, осуществляется анализ эластичности спроса.

Список литературы:

  1. Лугинин О.Е. Эконометрия: учеб. пособие для студ. высших учеб. завед. – 2-е изд., перераб. и доп. – К. : Центр учебной литературы, 2008. – 278 с.
  2. Орлов А.И. Эконометрика. – М.: Экзамен, 2002. – 576 с.
  3. Присенко Г. В., Равикович Є. И. Прогнозирование социально-экономических процессов: учебн. пособ. – К.: КНЭУ, 2005. – 378 с.
  4. Стеценко Т. О., Тищенко О. П. Управление региональнойэкономикой: учебн. пособ. ГВУЗ Киев. нац. экон. ун-т им. В. Гетьмана. – К. : КНЭУ, 2009. – 471 с.
  5. Яковец Ю.В. Прогнозирование циклов и кризисов. – M.: МФК, 2000. – С. 42.

Существуют различные методы прогнозирования показателей технического уровня, среди которых можно выделить эвристическое и математическое прогнозирование. Общим в этих методах является наличие неопределенности, связанной с будущей ситуацией.

Эвристические методы основаны на использовании мнений специалистов в данной области техники и обычно применяются для прогнозирования развития процессов и объектов при невозможности формализации в данный момент.

Математические методы в зависимости от вида математического описания объектов прогнозирования и способов определения неизвестных параметров условно подразделяются на методы моделирования процессов, описываемых дифференциальными уравнениями, и методы экстраполяции, или статистические. Ко второй группе относятся методы, определяющие прогнозируемые параметры объекта на основании статистических данных. В качестве математического аппарата при статистическом прогнозировании наиболее часто применяется метод максимального правдоподобия и, в частности, его разновидность — метод наименьших квадратов. Математические зависимости, построенные методом наименьших квадратов, могут быть линейными, квадратичными или по-линомными.

Завершающим этапом эвристических и математических прогнозных исследований является логический анализ, который предусматривает изучение тенденций развития прогнозируемого объекта, анализ результатов прогнозирования подобных объектов и оценка полученных результатов.

Эвристическое прогнозирование

Эвристическое прогнозирование относится к наиболее давним и распространенным не только в технике, но и повседневной жизни методам. Его достоинством считается возможность избегать грубых ошибок, особенно в области скачкообразных изменений прогнозируемой характеристики, при условии, что к исследованию привлекаются высококвалифицированные специалисты в данной области. Однако этот метод является субъективным и трудоемким.

Главный результат эвристического прогнозирования заключается в определении новых направлений развития и их возможностей. При этом необходимо иметь в виду, что восприятию нового и определению перспективных направлений могут препятствовать психологические аспекты. Это, в первую очередь, профессиональная ограниченность специалистов узкого профиля, которые «знают все ни о чем», или, наоборот, широкого профиля — «ничего обо всем». Также может стать помехой концентрация внимания на известных явлениях, влияние господствующего направления общественной мысли, трудность восприятия отрицательных выводов, склонность к преувеличению плохого и т. д. Не случайно многие открытия, опередившие свое время, не были восприняты современниками.

Основными этапами практического применения эвристического прогнозирования являются подбор экспертов, организация опросов и обработка полученных результатов. Эвристическое прогнозирование основано на усредненной оценке мнений группы экспертов. Поэтому главным условием такого исследования можно считать именно подбор экспертов, от компетентности которых зависит качество результата. Практически не существует методов оценки компетентности экспертов. Поэтому обычно эксперты сами оценивают свою компетентность и компетентность своих коллег.

С развитием и совершенствованием электронно-вычислительной техники роль эвристических методов заметно снижается.

Математическое прогнозирование

Математическое прогнозирование заключается в использовании имеющихся характеристик прогнозируемого объекта, обработке этих данных математическими методами, получении их математической зависимости от времени и других известных независимых переменных и вычислении с помощью найденной зависимости характеристик объекта в заданный момент времени при заданных значениях других независимых переменных.

Метод математического прогнозирования характеризуется объективностью и высокой точностью получаемых результатов при правильном выборе математической модели. К числу основных этапов математического прогнозирования относятся:

1) сбор и подготовка исходных данных (статистика);

2) выбор и обоснование математической модели прогнозируемого объекта;

3) обработка статистических данных для определения неизвестных параметров модели;

4) выполнение расчетов и анализ полученных результатов.

Оценка прогнозируемого параметра может быть точечной или интервальной, т. е. состоящей в определении доверительного вероятностного интервала значений параметра. Интервальная оценка достаточно хорошо отражает точность прогнозирования.

также к определению траектории развития после скачка.

В соответствии с законом эволюционного и скачкообразного развития техники, прогнозирование скачков неотделимо от прогнозирования эволюционного развития до скачка и после него. Системный подход к прогнозированию технического уровня машин на основе сопоставления циклов развития и потребностей позволяет определить не только достижения того или иного параметра, но и рассчитать время появления нового поколения техники, период его возможного существования. На рисунке 1 показаны характерные взаимосвязи и чередование поколений техники. Здесь отмечены участки, соответствующие стадиям жизненного цикла поколения техники: 1 — перспективная; 2 — прогрессивная; 3 — новая; 4 — модернизируемая; 5 — морально устаревшая.

При помощи корреляционной функции случайных процессов появления информации об объекте, содержащейся в патентных материалах, и появления техники с новыми значениями показателей технического уровня можно определить время т начала освоения нового поколения техники, которое для каждого конкретного образца складывается из времени, затрачиваемого на научно-исследовательские, опытно-конструкторские работы, и времени на освоение в производстве.

Смена поколений

Смена поколений техники происходит согласно объективному закону прогрессивной эволюции техники при наличии необходимого научно-технического уровня и социально-экономической целесообразности. Так, огромный прорыв в развитии техники, в том числе фасовочно-упа-ковочной, произошел после появления современных микропроцессоров, сопоставимых по своим возможностям с человеческим мозгом. Это позволило специалистам в конце XX века сделать прогноз развития техники, согласно которому, по степени автоматизации в мире будет создано всего шесть поколений машин.

Программируемые машины-автоматы четвертого поколения уже нашли широкое распространение в технике, в том числе фасовочно-упаковочной. На очереди — создание самообучающихся и самонастраивающихся машин-автоматов пятого поколения, отдельные элементы которых уже появляются в автоматах четвертого поколения. Уже создано несколько машин-автоматов с признаками пятого поколения. Например, машины с автоматической настройкой на режимы розлива жидкостей различной вязкости, упаковки штучных предметов разных размеров, самодиагностикой и т. д. Машины-автоматы шестого поколения — это машины искусственного интеллекта, которые по техническим характеристикам могут существенно отличаться от автоматов предыдущих поколений. По всей видимости, умные и многофункциональные машины в мгновение ока подстроятся под грядущие перемены. Высокоскоростные комплексные линии, которые еще недавно соответствовали нормам, заменяются менее скоростными, дающими большую маневренность действий. Тенденция к уменьшению объема партий сведет время перемен практически к нулю. Должны быть разработаны такие производственные системы, для которых изменения в бизнес-процессе являются нормой. Нужны системы, основанные на принципах искусственного интеллекта, распространяющегося по всей самоорганизующейся сети. Таким образом, искусственный интеллект должен присутствовать в упаковочном оборудовании, а само оборудование должно быть многофункциональным.

Определение технического уровня

Прогнозирование непосредственно связано с определением технического уровня упаковочной техники. Статистические прогнозные исследования позволяют установить достигнутый мировой технический уровень и опре делить параметры перспективного базового образца. Согласно закону корреляции параметров, любой объект техники характеризуется набором параметров, находящихся в корреляционной зависимости от главного параметра. Таким главным параметром для большинства существующих фасовочно-упаковочных машин служит их производительность. В машинах пятого и шестого поколения главным параметром могут быть другие показатели, например, универсальность и многофункциональность, быстрота переналадки и т. д.

От поколения к поколению техника становится сложнее в силу действия объективного закона возрастания сложности технических объектов. Трудность определения научно-технического уровня упаковочной техники заключается в выборе перспективного образца для сравнения показателей. Конкуренция среди производителей упаковочной техники и, как следствие, постоянные усовершенствования существующих моделей, применение сервоприводов и дозаторов, управляемых микропроцессорами, способствовали появлению поколения универсальных и многофункциональных машин-автоматов, использующих конструктивные элементы машин предыдущих поколений. В результате стало практически невозможно выбрать для определения достигнутого уровня некоторых объектов упаковочный техники соответствующий аналог для сравнения показателей.

Существуют различные подходы к решению этой проблемы. Так, оценивать технический уровень воротниковых упаковочных машин предлагается с помощью наглядного и весьма значимого показателя — теоретической производительности их упаковочной части, исходя из того, что ее рост лучшим образом отражает развитие этого вида оборудования. При этом рекомендуется классифицировать любое фасовочно-упаковочное оборудование по производительности, разделив, в частности, воротниковое оборудование на пять классов, и сравнивать между собой машины одного класса.

Однако деление на классы представляется довольно условным и не устраняет отмеченные выше затруднения, возникающие при выборе аналогов для сравнения. Кроме того, уже в недалекой перспективе в одном по производительности классе могут оказаться фасовочно-упаковочные машины четвертого и шестого поколений разного назначения, сравнивать которые менее корректно, чем автомобили разной грузоподъемности.

Профессор В. Панишев рекомендует для оценки мирового уровня упаковочной техники включать в сравнительную таблицу как можно больше реально существующих и функционирующих единиц оборудования и проводить ранжирование общих, классификационных и отраслевых показателей путем сопоставления каждого из них с существующими показателями технического уровня изделий по данным технических характеристик машин, техническим условиям и другим документам («Тара и упаковка», № 3/1995).

Мы предлагаем для оценки технического уровня реально существующих фасовочно-упаковочных машин, для которых невозможно выбрать подходящий аналог, использовать закон корреляции параметров. В качестве примера были приведены отдельные показатели вертикальных воротниковых фасовочно-упаковочных автоматов, представляемые отечественными и зарубежными производителями, и по этим данным построены статистические зависимости этих показателей от производительности (PG, № 1—2/2004).

Аппроксимация этих статистических данных прямыми линиями методом наименьших квадратов (рисунок 2) показывает весьма высокую степень корреляции рассматривае мых параметров от производительности машин и, несмотря на приблизительность некоторых данных, хорошую плотность укладки точек на аппроксимирующих прямых. В этом примере не ставилась задача определения технического уровня конкретных объектов. Для решения такой задачи требуется значительно больше уточненных исходных данных.

Построенные зависимости подтверждают принципиальную возможность выполнить оценку мирового технического уровня конкретного объекта по отдельным показателям, отражающим этот уровень. Технический уровень по оцениваемому показателю может соответствовать среднему отечественному или мировому уровню при совпадении этого показателя с показателями на соответствующей аппроксимирующей прямой линии. На этих графиках, построенных по данным 3—4-летней давности, имеет место заметное расхождение уровня по отдельным показателям отечественных и зарубежных машин. Аналогичные показатели новых вертикальных воротниковых фасовочно- упаковочных автоматов по материалам международных выставок 2004 г. приведены в таблице 1.

Если дополнить соответствующие корреляционные зависимости новыми данными, очевидной становится тенденция к сближению отдельных показателей технического уровня отечественных и зарубежных автоматов.

На рисунке 3 отмечены показатели таблицы 1 и представлены построенные ранее на рисунке 2 аппроксимирующие прямые зависимости установленной мощности и массы машин от производительности для зарубежных автоматов (прямые 2).

Представленные на рисунке 3 зависимости подтверждают наличие корреляции и свидетельствуют о достаточно заметном сближении рассматриваемых параметров отечественных и зарубежных фасовочно-упаковочных автоматов последних моделей, что, несомненно, указывает на определенную тенденцию повышения технического уровня отечественной фасовоч-но-упаковочной техники.

1

В статье на конкретных примерах рассмотрены различные математические методы прогнозирования во времени, среди которых простая экстраполяция, методы, основанные на темпах роста, математическое моделирование. Показано, что выбор метода зависит от базы прогноза – информации за предыдущий временной период.

прогнозирование

биостатистика

1. Афанасьев В.Н., Юзбашев М.М. Анализ временных рядов и прогнозирование: Учебник. – М.: Финансы и статистика, 2001. – 228 с.

2. Петри А., Сэбин К. Наглядная статистика в медицине. – М.: ГЭОТАР-МЕД, 2003. – 144 с.

3. Садовникова Н.А., Шмойлова Р.А. Анализ временных рядов и прогнозирование: Учебное пособие. – М.: Изд. центр ЕАОИ, 2001. – 67 с.

Обычно под прогнозированием понимается процесс предсказания будущего основанное на некоторых данных из прошлого, т.е. изучается развитие интересующего явления во времени. Тогда прогнозируемая величина рассматривается как функция времени y=f(t) . Однако в медицине рассматриваются и другие виды прогноза : прогнозируется диагноз, диагностическая ценность нового теста, изменение одного фактора под действием другого и т.д.

Целью статьи было представить различные методы прогнозирования и подходы к их правильному использованию в медицине.

Материалы и методы исследования

В статье рассмотрены следующие методы прогнозирования: методы простой экстраполяции, метод скользящих средних, метод экспоненциального сглаживания, метод среднего абсолютного прироста, метод среднего темпа роста, методы прогнозирования на основе математических моделей.

Результаты исследования и их обсуждение

Как уже было отмечено, прогноз осуществляется на основании некоторой информации из прошлого (базы прогноза). Прежде чем подобрать метод прогнозирования полезно хотя бы качественно оценить динамику изучаемой величины в предыдущие моменты времени. На представленных графиках (рис. 1) видно, что она может быть различной.

Рис. 1. Примеры динамики изучаемой величины

В первом случае (график А) наблюдается относительная стабильность с небольшими колебаниями вокруг среднего значения. Во втором случае (график Б) динамика носит линейно возрастающий характер, в третьем (график В) - зависимость от времени нелинейная, экспоненциальная. Четвертый случай (график Г)- пример сложных колебаний, имеющих несколько составляющих.

Наиболее распространенным методом краткосрочного прогнозирования (1-3 временных периода), является экстраполяция, которая заключается в продлении предыдущих закономерностей на будущее. Применение экстраполяции в прогнозировании базируется на следующих предпосылках:

Развитие исследуемого явления в целом описывается плавной кривой;

Общая тенденция развития явления в прошлом и настоящем не претерпит серьезных изменений в будущем.

Первый метод из методов простой экстраполяции - это метод среднего уровня ряда. В этом методе прогнозируемый уровень изучаемой величины принимается равным среднему значению уровней ряда этой величины в прошлом. Этот метод используется, если средний уровень не имеет тенденции к изменению, или это изменение незначительно (нет явно выраженного тренда, рис. 1, график А)

где yпрог - прогнозируемый уровень изучаемой величины; yi - значение i-го уровня; n - база прогноза.

В некотором смысле отрезок динамического ряда, охваченный наблюдением, можно уподобить выборке, а значит, полученный прогноз будет выборочным, для которого можно указать доверительный интервал

где - среднеквадратичное отклонение временного ряда; tα -критерий Стъюдента для заданного уровня значимости и числа степеней свободы (n-1).

Пример. В табл. 1 приведены данные временного ряда y(t). Рассчитать прогнозное значение y на момент времени t =13 методом среднего уровня ряда.

Таблица 1

Данные временного ряда y(t)

(80+98+94+103)/4

(80+98+94+103+84)/5

(80+98+94+103+84+115)/6

(80+98+94+103+84+115+98)/7

(80+98+94+103+84+115+98+113)/8

(80+98+94+103+84+115+98+113+114)/9

(80+98+94+103+84+115+98+113+114+87)/10

(80+98+94+103+84+115+98+113+114+87+107)/11

(80+98+94+103+84+115+98+113+114+87+107+85)/12

Исходный и сглаженный ряд представлены на рис. 2, расчет y - в табл. 2.

Рис. 2. Исходный и сглаженный ряд

Таблица 2

Доверительный интервал для прогноза в момент t =13

Метод скользящих средних - это метод прогнозирования на краткосрочный период, основан на процедуре сглаживания уровней изучаемой величины (фильтрации). Преимущественно используются линейные фильтры сглаживания с интервалом m, т.е.

.

Доверительный интервал

где - среднеквадратичное отклонение временного ряда; tα - критерий Стъюдента для заданного уровня значимости и числа степеней свободы (n-1).

Пример. В табл. 3 приведены данные временного ряда y(t). Рассчитать прогнозное значение y на момент времени t =13 методом скользящих средних с интервалом сглаживания m=3.

Исходный и сглаженный ряд представлены на рис. 3, расчет y - в табл. 4.

Таблица 3

Данные временного ряда y(t)

Рис. 3. Исходный и сглаженный ряд

Таблица 4

Прогнозное значение y

Метод экспоненциального сглаживания - это метод, при котором в процессе выравнивания каждого уровня используются значения предыдущих уровней, взятых с определенным весом. По мере удаления от какого-то уровня вес этого наблюдения уменьшается. Сглаженное значение уровня на момент времени t определяется по формуле

где St - текущее сглаженное значение; yt - текущее значение исходного ряда; St - 1 - предыдущее сглаженное значение; α - сглаживающая параметр.

S0 берется равным среднему арифметическому нескольких первых значений ряда.

Для расчета α предложена следующая формула

По поводу выбора α нет единого мнения, эта задача оптимизации модели пока еще не решена. В некоторых литературных источниках рекомендуется выбирать 0,1 ≤ α ≤ 0,3.

Прогноз рассчитывается следующим образом

.

Доверительный интервал

Таблица 5

Данные временного ряда y(t)

0,3×80+(1-0,3)×90,7

0,3×98+(1-0,3) ×87,5

0,3×94+(1-0,3) ×90,6

0,3⋅103+(1-0,3) ×91,6

0,3×84+(1-0,3) ×95

0,3⋅115+(1-0,3) ×91,7

0,3×98+(1-0,3) ×98,7

0,3⋅113+(1-0,3) ×98,5

0,3⋅114+(1-0,3) ⋅102,8

0,3×87+(1-0,3) ⋅106,2

0,3⋅107+(1-0,3) ⋅100,4

0,3×85+(1-0,3) ⋅102,4

97,2+0,3× (85-97,2)

Исходный и сглаженный ряд представлены на рис. 4, расчет y - в табл. 6.

Рис. 4. Исходный и сглаженный ряд

Таблица 6

Прогнозное значение y на момент времени t =11

Следующий метод прогноза - это метод среднего абсолютного прироста Прогнозируемый уровень изучаемой величины изменяется в соответствии со средним абсолютным приростом этой величины в прошлом. Данный метод применяется, если общая тенденция в динамике линейна (для случая, приведенного на рис. 1, график Б)

где ; y0 - базовый уровень экстраполяции выбирается как среднее значение нескольких последних значений исходного ряда; - средний абсолютный прирост уровней ряда; l - число интервалов прогнози рования.

В качестве базового уровня принято усредненное значение последних значений ряда, максимально трех.

Таблица 7

Данные временного ряда y(t)

Прогноз = y0+Δl

(60+75+70)/3=68,3

(75+70+103)/3=82,7

(70+103+100)/3=91

(103+100+115)/3=106

(100+115+125)/3=113,3

(115+125+113)/3=117,7

(125+113+138)/3=125,3

(113+138+136)/3=129

(138+136+145)/3=139,7

(136+145+150)/3=143,7

143,7+8,2⋅1=151,9

143,7+8,2⋅2=160,1

143,7+8,2⋅3=168,3

Исходный и сглаженный ряд представлены на рис. 5.

Рис. 5. Исходный и сглаженный ряд

Метод среднего темпа роста

Прогнозируемый уровень изучаемой величины изменяется в соответствии со средним темпом роста данной величины в прошлом. Данный метод применяется, если общая тенденция в динамике характеризуется показательной или экспоненциальной кривой (рис. 1В)

где - средний темп роста в прошлом; l - число интервалов прогнозирования.

Прогнозная оценка будет зависеть от того, в какую сторону от основной тенденции (тренда) отклоняется базовый уровень y0, поэтому рекомендуется рассчитывать y0 как усредненное значение нескольких последних значений ряда.

Таблица 8

Данные временного ряда y(t)

62,5⋅1,081 = 67,7

(70/60)1/2 =1,08

65⋅1,081 = 70,2

(65+70+68)/3=67,7

(68/60)1/3 =1,04

67,7⋅1,041 =70,5

(70+68+82)/3=73,3

(82/60)1/4 =1,08

73,3⋅1,081 =79,3

(68+82+80)/3=76,7

(80/60)1/5 =1,06

76,7⋅1,061 =81,2

(82+80+95)/3=85,7

(95/60)1/6 =1,08

85,7⋅1,081 =92,5

(80+95+113)/3=96

(113/60)1/7 =1,09

96⋅1,091 =105,1

(95+113+135)/3=114,3

(135/60)1/8 =1,11

114,3⋅1,111 =126,5

(113+135+140)/3=129,3

(140/60)1/9 =1,10

129,3⋅1,11 =142,1

(135+140+168)/3=147,7

(168/60)1/10 =1,11

147,7⋅1,111 =163,7

(140+168205)/3=171

(205/60)1/11 =1,12

171⋅1,121 =191,2

171⋅1,122 =213,8

171⋅1,123 =239,1

Исходный и сглаженный ряд представлены на рис. 6.

Рис. 6. Исходный и сглаженный ряд

На сегодняшний день наиболее распространенным методом прогнозирования является нахождение аналитического выражения (уравнения) тренда . Тренд экстраполируемого явления - это основная тенденция временного ряда, в некоторой мере свободная от случайных воздействий.

Разработка прогноза заключается в определении вида экстраполирующей функции y=f(t), которая выражает зависимость изучаемой величины от времени на основе исходных наблюдаемых данных. Первым этапом является выбор оптимального вида функции, дающей наилучшее описание тренда. Наиболее часто используются следующие зависимости:

Линейная ;

Параболическая ;

Показательная функция ;

Проблемы нахождения коэффициентов линейной функции и прогноз на ее основе рассматриваются в разделе статистики «регрессионный анализ». Если форма кривой, описывающей тренд, имеет нелинейный характер, то задача оценки функции y=f(t) усложняется, и в этом случае необходимо привлечь к анализу специалистов по биостатистике и воспользоваться компьютерными программами по статистической обработке данных.

В большинстве реальных случаев временной ряд представляет собой сложную кривую, которую можно представить как сумму или произведение трендовой, сезонной, циклической и случайной компонент.

Тренд представляет собой плавное изменение процесса во времени и обусловлен действием долговременных факторов. Сезонный эффект связан с наличием факторов, действующих с заранее известной периодичностью (например, времена года, лунные циклы). Циклическая компонента описывает длительные периоды относительного подъема и спада, состоит из циклов переменной длительности и амплитуды (например, некоторые эпидемии имеют длительный циклический характер). Случайная составляющая ряда отражает воздействие многочисленных факторов случайного характера и может иметь разнообразную структуру.

Заключение

Методы простой экстраполяции, метод скользящих средних, метод экспоненциального сглаживания являются простейшими, и в тоже время самыми приближенными - это видно из широких доверительных интервалов в приведенных примерах. Большая погрешность прогноза наблюдается в случае сильных колебаний уровней. Следует обратить внимание на то, что неправомерно использовать эти методы при наличии явной тенденции к росту (или падению) исходного временного ряда. Тем не менее, для краткосрочных прогнозов их применение бывает оправданным.

Анализ всех компонентов временного ряда и прогнозирование на их основе задача нетривиальная, рассматривается в разделе статистики «анализ временных рядов» и требует специальной подготовки.

Библиографическая ссылка

Койчубеков Б.К., Сорокина М.А., Мхитарян К.Э. МАТЕМАТИЧЕСКИЕ МЕТОДЫ ПРОГНОЗИРОВАНИЯ В МЕДИЦИНЕ // Успехи современного естествознания. – 2014. – № 4. – С. 29-36;
URL: http://natural-sciences.ru/ru/article/view?id=33316 (дата обращения: 30.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Последние материалы раздела:

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...