Как получается рентгеновское излучение. Принципы получения рентген-изображения

Огромную роль в современной медицине играет рентгеновское излучение, история открытия рентгена берет свое начало еще в 19 веке.

Рентгеновское излучение представляет собой электромагнитные волны, которые образуются при участии электронов. При сильном ускорении заряженных частиц создается искусственное рентгеновское излучение. Оно проходит через специальное оборудование:

  • ускорители заряженных частиц.

История открытия

Изобрел данные лучи 1895 году немецкий ученый Рентген: во время работы с катодолучевой трубкой он обнаружил эффект флуоресценции платино-цианистого бария. Тогда и произошло описание таких лучей и их удивительной способности проникать сквозь ткани организма. Лучи стали называться икс-лучами (х-лучи). Позже в России их стали именовать рентгеновскими.

Х-лучи способны проникать даже сквозь стены. Так Рентген осознал, что сделал величайшее открытие в области медицины. Именно с этого времени стали формироваться отдельные разделы в науке, такие как рентгенология и радиология.

Лучи способны проникать сквозь мягкие ткани, но задерживаются, длина их определяется препятствием твердой поверхности. Мягкие ткани в человеческом организме — это кожа, а твердые — это кости. В 1901 году ученому присудили Нобелевскую премию.

Однако еще до открытия Вильгельма Конрада Рентгена подобной темой были заинтересованы и другие ученые. В 1853 году французский физик Антуан-Филибер Масон изучал высоковольтный разряд между электродами в стеклянной трубке. Содержащийся в ней газ при низком давлении начал выпускать красноватое свечение. Откачивание лишнего газа из трубки привело к распаду свечения на сложную последовательность отдельных светящихся слоев, оттенок которых зависел от количества газа.

В 1878 году Уильям Крукс (английский физик) высказал предположение о том, что флуоресценция возникает вследствие ударения лучей о стеклянную поверхность трубки. Но все эти исследования не были нигде опубликованы, поэтому Рентген не догадывался о подобных открытиях. После опубликования своих открытий в 1895 году в научном журнале, где ученый писал о том, что все тела прозрачны для этих лучей, хотя и в весьма различной степени, подобными экспериментами заинтересовались и другие ученые. Они подтвердили изобретение Рентгена, и в дальнейшем начались разработки и усовершенствование икс-лучей.

Сам Вильгельм Рентген опубликовал еще две научные работы по теме икс-лучей в 1896 и 1897 годах, после чего занялся другой деятельностью. Таким образом, изобрели несколько ученых, но именно Рентген опубликовал научные труды по этому поводу.


Принципы получения изображения

Особенности этого излучения определены самой природой их появления. Излучение происходит за счет электромагнитной волны. К основным ее свойствам относятся:

  1. Отражение. Если волна попадет на поверхность перпендикулярно, то она не отразится. В некоторых ситуациях свойством отражения обладает алмаз.
  2. Способность проникать в ткани. Помимо этого, лучи могут проходить сквозь непрозрачные поверхности таких материалов, как дерево, бумага и т.п.
  3. Поглощаемость. Поглощаемость зависит от плотности материала: чем он плотнее, тем икс-лучи больше его поглощают.
  4. У некоторых веществ происходит флуоресценция, то есть свечение. Как только излучение прекращается, свечение тоже проходит. Если оно продолжается и после прекращения действия лучей, то этот эффект имеет название фосфоресценция.
  5. Рентгеновские лучи могут засветить фотопленку, так же как и видимый свет.
  6. Если луч прошел сквозь воздух, то происходит ионизация в атмосфере. Такое состояние называют электропроводным, и определяется оно с помощью дозиметра, которым устанавливается норма дозировки облучения.

Излучение — вред и польза

Когда было сделано открытие, ученый-физик Рентген не мог и представить, насколько опасно его изобретение. В былые времена все устройства, которые продуцировали излучение, были далеки от совершенства и в итоге получались большие дозы выпущенных лучей. Люди не понимали опасности такого излучения. Хотя некоторые ученые уже тогда выдвигали версии о вреде рентгеновских лучей.


Х-лучи, проникая в ткани, оказывают на них действие биологического характера. Единица измерения дозы радиации — рентген в час. Основное влияние оказывается на ионизирующие атомы, которые находятся внутри тканей. Действуют эти лучи непосредственно на структуру ДНК живой клетки. К последствиям неконтролируемого излучения можно отнести:

  • мутация клеток;
  • появление опухолей;
  • лучевые ожоги;
  • лучевая болезнь.

Противопоказания к проведению рентгенологических исследований:

  1. Больные в тяжелом состоянии.
  2. Период беременности из-за негативного влияния на плод.
  3. Больные с кровотечением или открытым пневмотораксом.

Как работает рентген и где применяется

  1. В медицине. Рентгенодиагностика применяется для просвечивания живых тканей с целью выявления некоторых нарушений внутри организма. Рентгенотерапия проводится для устранения опухолевых образований.
  2. В науке. Выявляется строение веществ и природа рентгеновских лучей. Этими вопросами занимаются такие науки, как химия, биохимия, кристаллография.
  3. В промышленности. Для выявления нарушений в металлических изделиях.
  4. Для безопасности населения. Рентгенологические лучи установлены в аэропортах и других общественных местах с целью просвечивания багажа.


Медицинское использование рентгенологического излучения. В медицине и стоматологии широко применяются рентгеновские лучи в следующих целях:

  1. Для диагностирования болезней.
  2. Для мониторинга метаболических процессов.
  3. Для лечения многих заболеваний.

Применение рентген-лучей в лечебных целях

Помимо выявления переломов костей, рентгеновские лучи широко применяются и в лечебных целях. Специализированное применение х-лучей заключается в достижении следующих целей:

  1. Для уничтожения раковых клеток.
  2. Для уменьшения размера опухоли.
  3. Для снижения болевых ощущений.

Например, радиоактивный йод, применяемый при эндокринологических заболеваниях, активно используется при раке щитовидной железы, тем самым помогая многим людям избавиться от этой страшной болезни. В настоящее время для диагностики сложных заболеваний рентгеновские лучи подключаются к компьютерам, в итоге появляются новейшие методы исследования, такие как и компьютерная осевая томография.

Такое сканирование предоставляет врачам цветные снимки, на которых можно увидеть внутренние органы человека. Для выявления работы внутренних органов достаточно небольшой дозы излучения. Также широкое применение рентгеновские лучи нашли и в физиопроцедурах.


Основные свойства рентгеновских лучей

  1. Проникающая способность. Все тела для рентгеновского луча прозрачны, и степень прозрачности зависит от толщины тела. Именно благодаря этому свойству луч стал применяться в медицине для выявления работы органов, наличия переломов и инородных тел в организме.
  2. Они способны вызывать свечение некоторых предметов. Например, если на картон нанести барий и платину, то, пройдя через сканирование лучами, он будет светиться зеленовато-желтым. Если поместить руку между трубкой рентгена и экраном, то свет проникнет больше в кость, чем в ткани, поэтому на экране высветится ярче всего костная ткань, а мышечная менее ярко.
  3. Действие на фотопленку. Х-лучи могут подобно свету делать пленку темной, это позволяет фотографировать ту теневую сторону, которая получается при исследовании рентгеновскими лучами тел.
  4. Рентгеновские лучи могут ионизировать газы. Это позволяет не только находить лучи, но и выявлять их интенсивность, измеряя ток ионизации в газе.
  5. Оказывают биохимическое воздействие на организм живых существ. Благодаря этому свойству рентгеновские лучи нашли свое широкое применение в медицине: они могут лечить как кожные заболевания, так и болезни внутренних органов. В этом случае выбирается нужная дозировка излучения и срок действия лучей. Длительное и чрезмерное применение такого лечения весьма вредно и губительно для организма.

Следствием использования рентгеновских лучей стало спасение множества человеческих жизней. Рентген помогает не только своевременно диагностировать заболевание, методики лечения с применением лучевой терапии избавляют больных от различных патологий, начиная с гиперфункции щитовидной железы и заканчивая злокачественными опухолями костных тканей.

Ученого из Германии Вильгельма Конрада Рентгена по праву можно считать основоположником рентгенографии и первооткрывателем ключевых особенностей рентгеновских лучей.

Тогда в далеком 1895 году он даже не подозревал о широте применения и популярности, открытых им Х-излучений, хотя уже тогда они подняли широкий резонанс в мире науки.

Вряд ли изобретатель мог догадываться, какую пользу или вред принесет плод его деятельности. Но мы с вами сегодня попробуем выяснить, какое воздействие проявляет эта разновидность излучения на человеческое тело.

  • Х-излучение наделено огромной проникающей способностью, но она зависит от длины волны и плотности материала, который облучается;
  • под воздействием излучения некоторые предметы начинают светиться;
  • рентгеновский луч влияет на живых существ;
  • благодаря Х-лучам начинают протекать некоторых биохимические реакции;
  • рентгена луч может забирать у некоторых атомов электроны и тем самым ионизировать их.

Даже самого изобретателя в первую очередь волновал вопрос о том, что конкретно из себя представляют открытые им лучи.

После проведения целой серии экспериментальных исследований, ученый выяснил, что Х-лучи – это промежуточные волны между ультрафиолетом и гамма-излучением, длина которых составляет 10 -8 см.

Свойства рентгеновского луча, которые перечислены выше, обладают разрушительными свойствами, однако это не мешает применять их с полезными целями.

Так где же в современном мире можно использовать Х-лучи?

  1. С их помощью можно изучать свойства многих молекул и кристаллических образований.
  2. Для дефектоскопии, то есть проверять промышленные детали и приборы на предмет дефектов.
  3. В медицинской отрасли и терапевтических исследованиях.

В силу малых длин всего диапазона данных волн и их уникальных свойств, стало возможным важнейшее применение излучения, открытого Вильгельмом Рентгеном.

Поскольку тема нашей статьи ограничена воздействием Х-лучей на организм человека, который сталкивается с ними лишь при походе в больницу, то далее мы будем рассматривать исключительно эту отрасль применения.

Ученый, изобретший рентгеновские лучи, сделал их бесценным даром для всего населения Земли, поскольку не стал патентовать свое детище для дальнейшего использования.

Начиная со времен Первой моровой войны портативные установки для рентгена спасли сотни жизней раненных. Сегодня рентгеновские лучи имеют два основных спектра применения:

  1. Диагностика с его помощью.

Рентгенологическая диагностика применяется при различных вариантах:

  • рентгеноскопия или просвечивание;
  • рентгенография или снимок;
  • флюорографическое исследование;
  • томографирование при помощи рентгена.

Теперь нужно разобраться, чем эти методы отличаются друг от друга:

  1. Первый метод предполагает, что обследуемый располагается между специальным экраном с флуоресцентным свойством и рентгеновской трубкой. Доктор на основе индивидуальных особенностей подбирает требуемую силу лучей и получает изображение костей и внутренних органов на экране.
  2. При втором методе пациента кладут на специальную рентгеновскую пленку в кассете. При этом аппаратура размещается над человеком. Данная методика позволяет получить изображение в негативе, но с более мелкими деталями, чем при рентгеноскопии.
  3. Массовые обследования населения на предмет заболевания легких позволяет провести флюорография. В момент процедуры с большого монитора изображение переноситься на специальную пленку.
  4. Томография позволяет получить изображения внутренних органов в нескольких вариантах сечения. Производиться целая серия снимков, которые в дальнейшем называются томограммой.
  5. Если к предыдущему методу подключить помощь компьютера, то специализированные программы создадут целостное изображение, сделанное при помощи рентгеновского сканера.

Все эти методики диагностики проблем со здоровьем основываются на уникальном свойстве Х-лучей засвечивать фотопленку. При этом проникающая способность у косных и других тканей нашего тела разная, что отображается на снимке.

После того, как было обнаружено еще одно свойство лучей рентгена влиять на ткани с биологической точки зрения, данная особенность стала активно применяться при терапии опухолей.


Клетки, особенно злокачественные, делятся очень быстро, а ионизирующее свойство излучения положительно сказывается при лечебной терапии и замедляет рост опухоли.

Но другой стороной медали является негативное влияние рентгена на клетки кроветворной, эндокринной и иммунной системы, которые также быстро делятся. В результате отрицательного влияния Х-луча проявляется лучевая болезнь.

Влияние рентгена на человеческий организм

Буквально сразу после такого громогласного открытия в научном мире, стало известно, что лучи Рентгена могут оказывать воздействие на тело человека:

  1. В ходе исследований свойств Х-лучей выяснилось, что они способны вызывать ожоги на кожном покрове. Очень схожие на термические. Однако глубина поражения была куда больше, чем бытовые травмы, а заживали они хуже. Многие учены, занимающиеся этими коварными излучениями теряли пальцы на руках.
  2. Методом проб и ошибок было установлено, что если уменьшить время и лозу облечения, то ожогов можно избежать. Позже стали применяться свинцовые экраны и дистанционный метод облучения пациентов.
  3. Долгосрочная перспектива вредности лучей показывает, что изменения состава крови после облучения приводит к лейкемии и раннему старению.
  4. Степень тяжести воздействия рентгеновских лучей на организм человека прямо зависит от облучаемого органа. Так, при рентгенографии малого таза может наступить бесплодие, а при диагностике кроветворных органов – болезни крови.
  5. Даже самые незначительные облучения, но на протяжении долгого времени, могут привести к изменениям на генетическом уровне.

Конечно, все исследования проводились на животных, однако учеными доказано, что патологические изменения будут распространяться и на человека.

ВАЖНО! На основе полученных данных были разработаны стандарты рентгеновского облучения, которые едины на весь мир.

Дозы рентгеновских лучей при диагностике

Наверное, каждый, кто выходит из кабинета доктора после проведенного рентгена, задается вопросом о том, как эта процедура повлияет на дальнейшее здоровье?

Радиационной облучение в природе также существует и с ним мы сталкиваемся ежедневно. Чтобы было проще понять, как рентген влияет на наш организм, мы сравним эту процедуру с получаемым природным облучением:

  • при рентгенографии грудной клетки человек получает дозу радиации, приравниваемой к 10 дням фонового облучения, а желудка или кишечника – 3 годам;
  • томограмма на компьютере брюшной полости или всего тела – эквивалент 3 годам облучения;
  • обследование на рентгене груди – 3 месяца;
  • конечности облучается, практически не принося вредя здоровью;
  • стоматологический рентген в силу точной направленности лучевого пучка и минимального времени воздействия – также не является опасным.

ВАЖНО! Несмотря на то, что приведенные данные, как бы пугающе они не звучали, отвечают международным требованиям. Однако пациент имеет полное право попросить дополнительные средства защиты в случае сильного опасения за свое самочувствие.

Все мы сталкиваемся с рентгеновским обследованием, причем неоднократно. Однако одна категория людей вне положенных процедур – это беременные женщины.

Дело в том, что Х-лучи чрезвычайно сказываются здоровье будущего ребенка. Эти волны способны вызвать пороки внутриутробного развития в результате влияния на хромосомы.

ВАЖНО! Наиболее опасным периодом для проведения рентгена является беременность до 16 недели. В этот период самыми уязвимыми являются тазовая, брюшная и позвоночная область малыша.

Зная о таком отрицательном свойстве рентгена, доктора всего мира стараются избегать назначения его проведения у беременных.

Но существуют и другие источники излучения, с которыми может столкнуться беременная женщина:

  • микроскопы, работающие на электричестве;
  • мониторы цветных телевизоров.

Те, кто готовиться стать мамой обязательно должны знаю про подстерегающую их опасность. В период лактации рентгеновские лучи не несут угрозы для организма кормящей и малыша.

Как быть после рентгена?

Даже самые незначительные последствия рентгеновского облучения можно свести к минимуму, если выполнить несколько простых рекомендаций:

  • сразу после процедуры выпить молока. Как известно, оно способно выводить радиацию;
  • такими же свойствами обладает белое сухое вино или сок винограда;
  • желательно в первое время кушать больше продуктов, содержащих йод.

ВАЖНО! Не стоит прибегать ни к каким медицинским процедурам или использовать лечебные методы после посещения рентген-кабинета.

Какими бы негативными свойствами не обладали, некогда открытые Х-лучи, все равно польза от их применения значительно превышает наносимый вред. В медицинских учреждениях процедура просвечивания проводиться быстро и с минимальными дозами.

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучениями и представляет собой электромагнитное излучение с длиной волны от 10 -14 до 10 -7 м. В медицине используется рентгеновское излучение с длиной волны от 5 х 10 -12 до 2,5 х 10 -10 м, то есть 0,05 – 2,5 ангсмтрема, а собственно для рентгенодиагностики – 0,1 ангстрема. Излучение представляет собой поток квантов (фотонов), распространяющихся прямолинейно со скоростью света (300 000 км/с). Эти кванты не имеют электрического заряда. Масса кванта со­ставляет ничтожную часть атомной единицы массы.

Энергию квантов измеряют в Джоулях (Дж), но на практике часто пользуются внесистемной единицей "электрон-вольт" (эВ) . Один электрон-вольт - это энергия, которую приобретает один электрон, пройдя в электриче­ском поле разность потенциалов в 1 вольт. 1 эВ = 1,6 10~ 19 Дж. Производными являются килоэлектрон-вольт (кэВ), равный тысяче эВ, и мегаэлектрон-вольт (МэВ), равный миллиону эВ.

Рентгеновские лучи получают с помощью рентгеновских трубок, линейных ускорителей и бетатронов. В рентгеновской трубке разность потенциалов между катодом и анодом-мишенью (десятки киловольт) ускоряет электроны, бомбардирующие анод. Рентгеновское излучение возникает при торможении быстрых электронов в электрическом поле атомов вещества анода (тормозное излучение) или при перестрой­ке внутренних оболочек атомов (характеристическое излучение ) . Характеристическое рентгеновское излучение имеет дискретный характер и возникает при переходе электронов атомов вещества анода с одного энергетического уровня на другой под воздействием внеш­них электронов или квантов излучения. Тормозное рентгеновское излучение имеет непрерывный спектр, зависящий от анодного напря­жения на рентгеновской трубке. При торможении в веществе анода электроны большую часть своей энергии расходуют на нагрев анода (99%) и лишь малая доля (1%) превра­щается в энергию рентгеновского излучения. В рентгенодиагностике чаще всего используется тормозное излучение.

Основные свойства рентгеновских лучей характерны для всех электромагнитных излучений, однако существуют некоторые особенности. Рентгеновские лучи обладают следующими свойствами:

- невидимость - чувствительные клетки сетчатки глаза человека не реа­гируют на рентгеновские лучи, так как длина их волны в тысячи раз меньше, чем у видимого света;

- прямолинейное распространение – лучи преломляются, поляризуются (распространяются в определенной плоскости) и дифрагируют, как и видимый свет. Коэффициент преломления очень мало отличается от единицы;



- проникающая способность - проникают без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Чем короче длина волны, тем большей проникающей способностью обладает рентгеновское излучение;

- способность к поглощению - обладают способностью поглощаться тканями организма, на этом основана вся рентгенодиагностика. Способность к поглощению зависит от удельного веса тканей (чем больше, тем больше поглощение); от толщины объекта; от жесткости излучения;

- фотографическое действие - разлагают галоидные соеди­нения серебра, в том числе находящиеся в фотоэмульсиях, что позволяет полу­чать рентгеновские снимки;

- люминесцирующее действие - вызывают люминесценцию ряда химических соединений (люминофоров), на этом осно­вана методика рентгеновского просвечивания. Интенсивность свечения зависит от строения флюоресцирующего вещества, его количества и расстояния от источника рентгеновского излучения. Люминофоры используют не только для получения изображения исследуемых объектов на рентгеноскопическом экране, но и при рентгенографии, где они позволяют увеличить лучевое воздействие на рентгенографическую пленку в кассете благодаря примене­нию усиливающих экранов, поверхностный слой которых выполнен из флюо­ресцирующих веществ;

- ионизационное действие - обладают способностью вызывать распад нейтральных атомов на положительно и отрицательно заряженные частицы, на этом основана дозиметрия. Эффект ионизации любой среды заключается в образовании в ней положительных и отрицательных ионов, а также свободных электронов из нейтральных атомов и молекул вещества. Ионизация воздуха в рентгеновском кабинете при работе рентгеновской трубки приводит к увеличению электрической проводимости воздуха, усилению статических электрических зарядов на предметах кабинета. С целью устранения такого нежелательного влияния их в рентгеновских кабинетах предусмотрена принудительная приточно-вытяжная вентиляция;

- биологическое действие - оказывают воздействие на биологические объекты, в большинстве случаев это воздействие является вредным;

- закон обратных квадратов - для точечного источника рентгеновского излучения интенсивность убывает пропорционально квадра­ту расстояния до источника.

Рентгеновское излучение - вид излучения с частотой в диапазоне от 3*10 16 до 3*10 20 Гц.

История открытия X-лучей

Рентгеновские лучи открыл в 1895 году немец Вильгельм Рентген. В конце 19 века ученые занимались исследованием газового разряда при малом давлении. При этом в газоразрядной трубке создавались потоки электронов, движущихся с большой скоростью. Исследованием этих лучей занялся и В.Рентген.

Он заметил, что если поместить рядом с газоразрядной трубкой фотопластинку, то она будет засвечена, даже если её завернуть в черную бумагу. Продолжая ставить опыты, Рентген обернул газоразрядную трубку бумагой смоченной в растворе платиносинеродистого бария. Бумага начала светиться.

Рентген был любопытный, и между бумагой и трубкой поместил свою руку, в надежде, наверное, на то, что и она начнет светиться, но этого не произошло. Зато на бумаге экране остались видны темные тени костей на фоне более светлых очертаний кисти руки. Рентген предположил, что это какое-то неизвестное излучение, которое обладает очень сильным проникающим эффектом.

  • Он назвал эти лучи Х-лучами. Впоследствии эти лучи стали называть рентгеновскими.

Свойства рентгеновского излучения

На рентгеновские лучи никакого воздействия не оказывает электромагнитное поле . При этом они практически не испытывали преломлений и не отражались. Появилось предположение, что рентгеновские лучи - это электромагнитные волны, которые излучаются при торможении электронов.

  • Они имеют очень маленькую длину волны , вследствие чего обладают такой высокой проникающей способностью.

Теперь внимание ученых было приковано к исследованию рентгеновских лучей. Пытались обнаружить дифракцию этих лучей. Пропускали их через щели в пластинках, но не обнаружили никакого эффекта. Спустя некоторое время, немец Макс Лауэ предложил пропускать рентгеновские лучи через кристаллы.

Обосновывал он это тем, что возможно длина волн рентгеновского излучения сравнима с размерами атомов, и поэтому на искусственных щелях дифракции добиться не удастся. Поэтому следует использовать кристаллы, у которых есть четкая структура и расстояние между атомами приблизительно равно размеру самих атомов. Предположения Лауэ были подтверждены.

После пропускания рентгеновских лучей через кристалл, на экране появлялась примерно следующая картина.

Появление дополнительных маленьких пятнышек можно было объяснить только явлением дифракции рентгеновских лучей на внутренней структуре кристалла. При дальнейшем исследовании оказалось, что длинна волны рентгеновского излучения по порядку величины действительно была равна размеру атомов.

Рентгеновские лучи получили широкое распространение на практике. В медицине, научных исследованиях, в технике. С помощью рентгеновских лучей проводят дефектоскопию различных конструкций, поиск черных дыр и переломов в костях людей.

Хотя ученые открыли эффект рентгена только начиная с 1890-х, применение рентгеновского излучения в медицине для этой природной силы прошло быстро. Сегодня на благо человечества рентгеновское электромагнитное излучение используется в медицине, научных кругах и промышленности, а также для генерации электроэнергии.

Кроме того излучение имеет полезные приложения в таких областях, как сельское хозяйство, археология, космос, работа на правоохранительные органы, геология (включая горнодобывающую промышленность) и многие другие виды деятельности, даже разрабатываются автомобили с применением явления ядерного деления.

Медицинское использование рентгеновского излучения

В медицинских учреждениях врачи и стоматологи используют различные ядерные материалы и процедуры для диагностики, мониторинга и лечения широкого ассортимента метаболических процессов и заболеваний в организме человека. В результате медицинские процедуры с использованием лучей спасли тысячи жизней путем выявления и лечения заболеваний, начиная от гиперфункции щитовидной железы до рака кости.

Наиболее распространенные из этих медицинских процедур включают использование лучей, которые могут пройти через нашу кожу. Когда выполняется снимок, наши кости и другие структуры как бы отбрасывают тени, потому что они плотнее, чем наша кожа, и эти тени могут быть обнаружены на пленке или экране монитора. Эффект похож на размещение карандаша между листом бумаги и светом. Тень от карандаша будет видна на листе бумаги. Разница заключается в том, что лучи невидимы, так что необходим регистрирующий элемент, что-то типа фотоплёнки. Это позволяет врачам и стоматологам оценить применение рентгеновского излучения увидев сломанные кости или проблемы с зубами.

Применение рентгеновского излучения в лечебных целях

Применение рентгеновского излучения целевым образом в лечебных целях не только для обнаружения повреждений. При специализированном использовании, оно предназначено, чтобы убить раковые ткани, уменьшить размер опухоли или уменьшить боль. Например, радиоактивный йод (в частности йод-131) часто используется для лечения рака щитовидной железы, от заболевания от которой страдает много людей.

Аппараты использующие это свойство также подключаются к компьютерам и сканируют, называясь: компьютерная осевая томография или компьютерная томография.

Эти инструменты обеспечивают врачам цветное изображение, которое показывает очертания и детали внутренних органов. Это помогает врачам обнаруживать и идентифицировать опухоли, размер аномалий или другие проблемы физиологических или функциональных органов.
Кроме того больницы и радиологические центры выполняют миллионы процедур ежегодно. В таких процедурах врачи запускают слегка радиоактивные вещества в тело пациентов, чтобы посмотреть некоторые внутренние органы, например, поджелудочную железу, почки, щитовидную железу, печень или головной мозг, для диагностики клинических условий.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...