Германий физические и химические свойства. В медицине изучают некоторые органические соединения германия, предполагая, что они могут быть биологически активными и способствовать задержанию развития злокачественных опухолей, понижению артериального давлени

ГЕРМАНИЙ, Ge (от лат. Germania — Германия * а. germanium; н. Germanium; ф. germanium; и. germanio), — химический элемент IV группы периодической системы Менделеева, атомный номер 32, атомная масса 72,59. Природный германий состоит из 4 стабильных изотопов 70 Ge (20,55%), 72 Ge (27,37%), 73 Ge (7,67%), 74 Ge (36,74%) и одного радиоактивного 76 Ge (7,67%) с периодом полураспада 2.10 6 лет. Открыт в 1886 немецким химиком К. Винклером в минерале аргиродите; был предсказан в 1871 Д. Н. Менделеевым (экасилиций).

Германий в природе

Германий относится к . Распространённость германия в (1-2).10 -4 %. В качестве примеси встречается в минералах кремния, в меньшей степени в минералах и . Собственные минералы германия очень редки: сульфосоли — аргиродит, германит, реньерит и некоторые другие; двойной гидратированный оксид германия и железа — штоттит; сульфаты — итоит, флейшерит и некоторые др. Промышленного значения они практически не имеют. Германий накапливается в гидротермальных и осадочных процессах, где реализуется возможность отделения его от кремния. В повышенных количествах (0,001-0,1%) встречается в , и . Источниками германия являются полиметаллические руды, ископаемые угли и некоторые типы вулканогенно-осадочных месторождений . Основное количество германия получают попутно из подсмольных вод при коксовании углей, из золы энергетических углей, сфалеритовых и магнетитовых . Германий извлекается кислотным , возгонкой в восстановительной среде, сплавлением с едким натром и др. Концентраты германия обрабатываются соляной кислотой при нагревании, конденсат очищается и подвергается гидролитическому разложению с образованием диоксида; последний восстанавливается водородом до металлического германия, который очищается методами фракционной и направленной кристаллизации, зонной плавки.

Применение германия

Германий применяют в радиоэлектронике и электротехнике как полупроводниковый материал для изготовления диодов и транзисторов. Из германия изготовляют линзы для ИК оптики, фотодиоды, фоторезисторы, дозиметры ядерных излучений, анализаторы рентгеновской спектроскопии, преобразователи энергии радиоактивного распада в электрическую и т.д. Сплавы германия с некоторыми металлами, отличающиеся повышенной стойкостью к кислым агрессивным средам, используют в приборостроении, машиностроении и металлургии. Некоторые сплавы германия с другими химическими элементами — сверхпроводники.

Германий - чрезвычайно ценный для человека элемент таблицы Менделеева. Его уникальные свойства, как полупроводника, позволили создать диоды, широко используемые в различных измерительных приборах и радиоприемниках. Он нужен для производства линз и оптического волокна.

Однако технические успехи - это только часть достоинств этого элемента. Органические соединения германия обладают редкими терапевтическими свойствами, оказывая широкое биологическое воздействие на здоровье и самочувствие человека, а эта особенность дороже любых драгоценных металлов.

История открытия германия

Дмитрий Иванович Менделеев, анализируя свою периодическую таблицу элементов, в 1871 году предположил, что в ней не хватает еще одного элемента, принадлежащего к IV группе. Он описал его свойства, подчеркнул сходство с кремнием и назвал экасилиций.

Через несколько лет, в 1886 году, в феврале, профессор горной академии города Фрейберг открыл аргиродит - новое соединение серебра. Его полный анализ было поручено сделать Клеменсу Винклеру, профессору технической химии и лучшему аналитику академии. После изучения нового минерала, он выделил из него 7% веса, как отдельное неопознанное вещество. Тщательное изучение его свойств показало, что перед ними экасилиций, предсказанный Менделеевым. Важно, что способ выделения экасилиция, использованный Винклером, до сих пор применяется при его промышленном получении.

История названия германия

Экасилиций в периодической таблице Менделеева занимает 32 позицию. Сначала Клеменс Винклер хотел дать ему имя Нептун.в честь планеты, которую тоже сначала предсказали, а обнаружили после. Однако выяснилось, что один ложно открытый компонент уже так называли и могла возникать ненужная путаницы и споры.

В результате, Винклер выбрал для него имя Германий в честь своей страны, чтобы снять все разногласия. Это решение Дмитрий Иванович поддержал, закрепив такое название за своим "детищем".

Как выглядит германий

Этот дорогой и редкий элемент, как стекло, хрупкий. Стандартный германиевый слиток выглядит, как цилиндр диаметром от 10 до 35 мм. Цвет германия зависит от обработки его поверхности и может быть черным, похожим на сталь или серебристым. Его внешний вид легко перепутать с кремнием – его самым ближайшим родственником и конкурентом.

Чтобы разглядеть мелкие германиевые детали в приборах нужны специальные средства увеличения.

Применение органического германия в медицине

Органическое соединение германия синтезировал японец, доктор К. Асаи в 1967 году. Он доказал наличие у него противоопухолевых свойств. Продолжение исследований доказало, что разные соединения германия обладают такими важными свойствами для человека, как обезболивание, снижение артериального давления, снижение риска анемии, укрепление иммунитета и уничтожения вредоносных бактерий.

Направления влияния германия в организме:

  • Способствует насыщению тканей кислородом и ,
  • Ускоряет заживление ран,
  • Способствует очищению клеток и тканей от токсинов и ядов,
  • Улучшает состояние центральной нервной системы и ее функционирование,
  • Ускоряет восстановление после тяжелой физической нагрузки,
  • Повышает общую работоспособность человека,
  • Усиливает защитные реакции всей иммунной системы.

Роль органического германия в иммунной системе и в переносе кислорода

Способность германия переносить кислород на уровне тканей организма особенно ценна для предупреждения гипоксии (кислородной недостаточности). Это также снижает вероятность развития кровяной гипоксии, которая возникает при уменьшении количества гемоглобина в эритроцитах. Доставка кислорода в любую клетку позволяет снизить опасность кислородного голодания и спасти от гибели наиболее чувствительные к нехватке кислорода клетки: головного мозга, тканей почек и печени, мышц сердца.

В 1870 году Д.И. Менделеев на основании периодического закона предсказал еще неоткрытый элемент IV группы, назвав его экасилицием, и описал его основные свойства. В 1886 году немецкий химик Клеменс Винклер, при химическом анализе минерала аргиродита обнаружил этот химический элемент. Первоначально Винклер хотел назвать новый элемент «нептунием», но это название уже было дано одному из предполагаемых элементов, поэтому элемент получил название в честь родины учёного - Германии.

Нахождение в природе, получение:

Германий встречается в сульфидных рудах, железной руде, обнаруживается почти во всех силикатах. Основные минералы содержащие германий: аргиродит Ag 8 GeS 6 , конфильдит Ag 8 (Sn,Ce)S 6 , стоттит FeGe(OH) 6 , германит Cu 3 (Ge,Fe,Ga)(S,As) 4 , рениерит Cu 3 (Fe,Ge,Zn)(S,As) 4 .
В результате сложных и трудоёмких операций по обогащению руды и её концентрированию германий выделяют в виде оксида GeO 2 , который восстанавливают водородом при 600°C до простого вещества.
GeO 2 + 2H 2 =Ge + 2H 2 O
Очистку германия проводят методом зонной плавки, что делает его одним из самых химически чистых материалов.

Физические свойства:

Твёрдое вещество серо-белого цвета, с металлическим блеском(tпл 938°C, tкип 2830°С)

Химические свойства:

При нормальных условиях германий устойчив к действию воздуха и воды, щелочей и кислот, растворяется в царской водке и в щелочном растворе перекиси водорода. Степени окисления германия в его соединениях: 2, 4.

Важнейшие соединения:

Оксид германия(II) , GeO, серо-чёрн., слабо раств. в-во, при нагревании диспропорционирует: 2GeO = Ge + GeO 2
Гидроксид германия(II) Ge(OH) 2 , крас.-оранж. крист.,
Йодид германия(II) , GeI 2 , желт. кр., раств. в воде, гидрол. по кат.
Гидрид германия(II) , GeH 2 , тв. бел. пор., легко окисл. и разлаг.

Оксид германия(IV) , GeO 2 , бел. крист., амфотерн., получают гидролизом хлорида, сульфида, гидрида германия, или реакцией германия с азотной кислотой.
Гидроксид германия(IV), (германиевая кислота) , H 2 GeO 3 , слаб. неуст. двухосн. к-та, соли германаты, напр. германат натрия , Na 2 GeO 3 , бел. крист., раств. в воде; гигроскопичен. Существуют также гексагидроксогерманаты Na 2 (орто-германаты), и полигерманаты
Сульфат германия(IV) , Ge(SO 4) 2 , бесцв. кр., гидролизуются водой до GeO 2 , получают нагреванием при 160°C хлорида германия(IV) с серным ангидридом: GeCl 4 + 4SO 3 = Ge(SO 4) 2 + 2SO 2 + 2Cl 2
Галогениды германия(IV), фторид GeF 4 - бесц. газ, необр. гидрол., реагирует с HF, образуя H 2 – германофтористоводородную кислоту: GeF 4 + 2HF = H 2 ,
хлорид GeCl 4 , бесцв. жидк., гидр., бромид GeBr 4 , сер. кр. или бесцв. жидк., раств. в орг. соед.,
йодид GeI 4 , желт.-оранж. кр., медл. гидр., раств. в орг. соед.
Сульфид германия(IV) , GeS 2 , бел. кр., плохо раств. в воде, гидрол., реагирует со щелочами:
3GeS 2 + 6NaOH = Na 2 GeO 3 + 2Na 2 GeS 3 + 3H 2 O, образуя германаты и тиогерманаты.
Гидрид германия(IV), "герман" , GeH 4 , бесцв. газ, органические производные тетраметилгерман Ge(CH 3) 4 , тетраэтилгерман Ge(C 2 H 5) 4 - бесцв. жидкости.

Применение:

Важнейший полупроводниковый материал, основные направления применения: оптика, радиоэлектроника, ядерная физика.

Соединения германия мало токсичны. Германий – микроэлемент, который в организме человека повышает эффективность иммунной системы организма, борется с онкозаболеваниями, уменьшает болевые ощущения. Отмечается также, что германий способствует переносу кислорода к тканям организма и является мощным антиоксидантом – блокатором свободных радикалов в организме.
Суточная потребность организма человека – 0,4–1,5 мг.
Чемпионом по содержанию германия среди пищевых продуктов является чеснок (750 мкг германия на 1 г сухой массы зубков чеснока).

Материал подготовлен студентами ИФиХ ТюмГУ
Демченко Ю.В., Борноволоковой А.А.
Источники:
Германий//Википедия./ URL: http://ru.wikipedia.org/?oldid=63504262 (дата обращения: 13.06.2014).
Германий//Allmetals.ru/URL: http://www.allmetals.ru/metals/germanium/ (дата обращения: 13.06.2014).

Супоненко А. Н. к.х.н.,

Генеральный директор ООО «Гермацентр»

Органический германий. История открытия.

Химик Винклер, открыв в 1886 году в серебряной руде новый элемент таблицы Менделеева германий, и не подозревал, какое внимание ученых-медиков привлечет этот элемент в ХХ веке.

Для медицинских нужд наиболее широко германий первыми начали применять в Японии. Испытания различных германийорганических соединений в опытах на животных и в клинических испытаниях на людях показали, что они в разной степени положительно влияют на организм человека. Прорыв наступил в 1967 г., когда доктор К. Асаи обнаружил, что органический германий, способ синтеза которого был ранее разработан в нашей стране, обладает широким спектром биологического действия.

Среди биологических свойств органического германия можно отметить его способности:

· обеспечивать перенос кислорода в тканях организма;

· повышать иммунный статус организма;

· проявлять противоопухолевую активность

Так японскими учеными был создан первый препарат с содержанием органического германия «Германий – 132», использующийся для коррекции иммунного статуса при различных заболеваниях человека.

В России биологическое действие германия изучалось давно, но создание первого российского препарата «Гермавит» стало возможным только в 2000 г., когда финансы в развитие науки и, в частности, медицины стали вкладывать российские бизнесмены, понимающие, что здоровье нации требует самого пристального внимания, а его укрепление является важнейшей социальной задачей нашего времени.

Где содержится германий.

Следует отметить, что процессе геохимической эволюции земной коры произошло вымывание значительного количества германия с большей части поверхности суши в океаны, поэтому в настоящее время количество этого микроэлемента, содержащегося в почве – крайне незначительно.

Среди немногих растений, способных абсорбировать германий и его соединения из почвы, лидером является женьшень (до 0.2 %), широко применяемый в тибетской медицине. Германий также содержат в себе чеснок, камфара и алоэ, традиционно используемые для профилактики и лечения различных заболеваний человека. В растительном сырье органический германий находится в форме полуоксид карбоксиэтила. В настоящее время синтезированы органические соединения германия – сесквиоксаны с пиримидиновым фрагментом. Это соединение близко по структуре к природному соединению германия, содержащемуся в биомассе корня женьшеня.

Германий относится к редким микроэлементам, присутствует во многих пищевых продуктах, но в микроскопических дозах. Рекомендуемая суточная доза германия в органической форме – 8 - 10 мг.

Оценка количества германия, поступающего с пищей, проведенная путем анализа 125 видов пищевых продуктов, показала, что ежедневно с пищей поступает 1.5 мг германия. В 1 г сырых продуктов его обычно содержится 0.1 – 1.0 мкг. Этот микроэлемент содержится в томатном соке, бобах, молоке, лососине. Однако для обеспечения суточной потребности организма в германии необходимо выпивать, например, до 10 л томатного сока в день или съедать до 5 кг лососины, что нереально по физическим возможностям организма человека. Кроме того цены на данные продукты делают невозможным регулярное употребление для большей части населения нашей страны.

Территории нашей страны слишком обширна и на 95 % ее территории недостаток германия составляет от 80 до 90 % от необходимой нормы, поэтому возник вопрос о создании германийсодержащего препарата.

Распределение органического германия в организме и механизмы его воздействия на организм человека.

В экспериментах, определяющих распределение органического германия в организме через 1.5 часа после его перорального введения, были получены следующие результаты: большое количество органического германия содержится в желудке, тонком кишечнике, костном мозге, селезенке и крови. Причем высокое его содержание в желудке и кишечнике показывает, что процесс его всасывания в кровь имеет пролонгированное действие.

Высокое содержание органического германия в крови позволило выдвинуть доктору Асаи следующую теорию механизма его действия в организме человека. Предполагаются, что в крови органический германий ведет себя аналогично гемоглобину, также несущему в себе отрицательный заряд и подобно гемоглобину участвует в процессе переноса кислорода в тканях организма. Тем самым предупреждается развитие кислородной недостаточности (гипоксии) на тканевом уровне. Органический германий предотвращает развитие так называемой кровяной гипоксии, возникающей при уменьшении количества гемоглобина, способного присоединить кислород (уменьшении кислородной ёмкости крови), и развивающейся при кровопотерях, отравлении окисью углерода, при радиационных воздействиях. Наиболее чувствительны к кислородной недостаточности центральная нервная система, мышца сердца, ткани почек, печени.

В результате опытов было также установлено, что органический германий способствует индукции гамма интерферонов, которые подавляют процессы размножения быстро делящихся клеток, активируют специфические клетки (Т-киллеры). Основными направлениями действия интерферонов на уровне организма является антивирусная и противоопухолевая защита, иммуномодулирующие и радиозащитные функции лимфатической системы.

В процессе изучения патологических тканей и тканей с первичными признаками заболеваний было установлено, что они всегда характеризуются недостатком кислорода и присутствием положительно заряженных радикалов водорода Н+. Ионы Н+ оказывают крайне негативное воздействие на клетки организма человека, вплоть до их гибели. Ионы кислорода, обладая способностью объединяться с ионами водорода, позволяют выборочно и локально компенсировать повреждения клеток и тканей, которые наносят им ионы водорода. Действие германия на ионы водорода обусловлено его органической формой – формой сесквиоксида.

Несвязанный водород очень активен, поэтому легко взаимодействует с атомами кислорода, находящимися в германиевых сесквиоксидах. Гарантией нормального функционирования всех систем организма должна быть беспрепятственная транспортировка кислорода в тканях. Органический германий обладает ярко выраженной способностью доставлять кислород в любую точку организма и обеспечивать его взаимодействие с ионами водорода. Таким образом, в основе действия органического германия при взаимодействии его с ионами Н+ лежит реакция дегидрации (отщепление водорода от органических соединений), а кислород, принимающий участие в этой реакции, можно сравнить с «пылесосом», вычищающим организм от положительно заряженных ионов водорода, органический германий – со своего рода «внутренней люстрой Чижевского».

Последние материалы раздела:

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...