Что такое микромир в информатике. Макромир - это что такое? Список использованной литературы

Материя - это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.

Современная наука выделяет в мире три структурных уровня.

Микромир - это молекулы, атомы, элементарные частицы -- мир предельно малых, непосредственно не наблю-даемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни -- от бесконечно-сти до 10 -24 с.

Макромир -- мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соот-носима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время -- в секундах, минутах, часах, годах.

Мегамир -- это планеты, звездные комплексы, галактики, метагалактики - мир огромных космических масштабов и скоро-стей, расстояние в котором измеряется световыми годами, а время существования космических объектов -- миллионами и мил-лиардами лет.

И хотя на этих уровнях действуют свои специфические зако-номерности, микро-, макро - и мегамиры теснейшим образом взаи-мосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир.

Демокритом в античности была выдвинута Атомистическая гипотеза строения материи. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свой-ства атома. В XIX в. Д. И. Менделеев построил систему хими-ческих элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элемен-тов. В 1895 г. Дж. Томсон открыл электрон - отрица-тельно заряженную частицу, входящую в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Существовало несколько моделей строения атома.

Выявлены специфические качества микрообъектов, выражающиеся в наличии у них как корпускулярных (частицы), так и световых (волны) свойств. Элементарные частицы - простейшие объекты микромира, взаимодействующие как единое целое. Известно более 300 разновидностей. В первой половине ХХ в. были открыты фотон, протон, нейтрон, позднее - нейтрино, мезоны и другие. Основные характеристики элементарных частиц: масса, заряд, среднее время жизни, квантовые числа. Все элементарные частицы, абсолютно нейтральны, имеют свои античастицы - элементарные частицы, обладающие теми же характеристиками, но отличающиеся знаками электрического заряда. При столкновении частиц происходит их уничтожение (аннипиляция).

Стремительно возрастает количество открытых элементарных частиц. Их объединяют в «семейства» (мультиплеты), «роды» (супермультиплеты), «племена» (адроны, лептоны, фотоны и т.п.). Некоторые частицы группируются по принципу симметрии. Например, триплет из трёх частиц (кварков) и триплет из трёх античастиц (антикварков). К концу ХХ века физика приблизилась к созданию стройной теоретической системы, объясняющей свойства элементарных частиц. Предложены принципы, позволяющие дать теоретический анализ многообразия частиц, их взаимопревращений, построить единую теорию всех видов взаимодействий.

Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с.

Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.

Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир. Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Существовало несколько моделей строения атома.

В 1902 г. английский физик У. Томсон (лорд Кельвин) предложил первую модель атома - положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».

В 1911 г. Э. Резерфорд предложил модель атома, которая напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Постнеклассическая физическая картина мира - обобщённое физическое представление о природе, включающее в себя понятия, принципы, гипотезы, теории физики, сформировавшееся в последние три десятилетия XX века и первые два десятилетия XXI века.

Материальность мира и его единство

Окружающий нас мир представляет собой обладающую неисчерпаемым множеством свойств материю, существующую в многообразных, взаимосвязанных и взаимопревращающихся формах. В едином материальном мире можно выделить три основные структурные области, различающиеся между собой по пространственной протяженности их физических объектов и процессов, преимущественным типам фундаментальных взаимодействий, основным образующим их структурным элементам материи и по характеру их основных физических закономерностей. Это микромир, макромир и мегамир.

Микромир

Пространственная протяжённость порядка м; основные типы взаимодействия -электромагнитное, сильное (ядерное), слабое; основные структурные уровни материи — молекулы, атомы, ядра атомов, элементарные частицы; описывается законами квантовой механики и теории относительности.

В диапазоне расстояний м свойства микромира изучает молекулярная и атомная физика; явления на расстояниях изучают ядерная физика и физика частиц низких энергий; физика высоких энергий изучает явления на расстояниях м.

Макромир

Пространственная протяжённость порядка м; основные виды взаимодействия – электромагнитное, гравитационное; основные структурные уровни материи – макротела, макрополя, космические объекты (планеты солнечной системы и их спутники); при малых скоростях описывается законами классической механики и при больших скоростях – законами теории относительности.

На уровне макромира выделяют два основных вида материи – вещество и поле. Электромагнитное и гравитационное поля в отличие от вещества не имеют массы покоя и могут распространяться лишь с одной определённой скоростью – скоростью света. Структурными элементами вещества и поля являются элементарные частицы, основной чертой которых является их взаимопревращаемость. Общей чертой всех объектов макромира является корпускулярно-волновой дуализм, единство прерывности и непрерывности (двойственная природа света, волновые свойства частиц и т.д.).

Мегамир

Пространственная протяжённость более м (100 млн.

Микро, макро и мегамиры

световых лет); основные типы взаимодействия — тёмная энергия и гравитационное; основные структурные уровни материи — звёздные скопления и ассоциации, межзвёздная материя, галактики, метагалактики, чёрные дыры, тёмная материя, тёмная энергия; описывается законами общей теории относительности. Мегамир изучается космологией.

Согласно теории раздувающейся Вселенной, после Большого взрыва наступила фаза почти мгновенного раздувания, сопровождавшаяся расщеплением Правселенной на множество отдельных Вселенных, различающимися всеми фундаментальными константами, которые определяют свойства мира. Согласно квантовой космологии, изучающей физические явления сразу после Большого взрыва, и физики чёрных дыр, свойства микромира и мегамира взаимосвязаны законами физики элементарных частиц.

Физика чёрных дыр является междисциплинарным научным направлением, объединяющим концепции общей теории относительности, физики элементарных частиц, космологии, термодинамики.

Движение материи

Материи в любой форме присуще движение. Формы движения материи многообразны (механическая, тепловая, электромагнитная, ядерная, взаимопревращение элементарных частиц), взаимопревращаемы, но не сводимы друг к другу, так как каждая из форм обладает своей спецификой. Движение материи несотворимо и неуничтожимо, как и сама материя, что выражается в существовании законов сохранения массы, импульса, энергии, заряда и др. Движение материи влияет на свойства материальных объектов. Каждой форме движения присущи свои специфические закономерности. Например, законы движения макротел неприменимы к движению микрочастиц.

Пространство и время

Пространство и время — это не самостоятельные субстанции, а лишь формы существования материи и неотделимы от неё. Пространство и время имеют ряд свойств (однородность пространства и времени, изотропность пространства, необратимость времени и т.д.). Пространственно-временные характеристики относительны и определяются движением материи, что вытекает из специальной теории относительности (преобразования Лоренца). Пространство и время связаны друг с другом (инвариантность интервала СТО), образуя единую форму существования материи. Свойства пространства и времени определяются материей (влияние поля тяготения на геометрию пространства и ритм времени, определяемое уравнениями Эйнштейна ОТО).

Причинность и закономерность

В мире все явления причинно обусловлены и протекают в соответствии с объективными физическими законами. Причинность в физике может проявляться в механистической и вероятностной формах. Соответственно и закономерности в физике могут быть динамическими (классическая физика) и статистическими (квантовая физика, термодинамика).

См. также

Примечания

Литература

  • Мощанский В. Н. Формирование мировоззрения учащихся при изучении физики. - М.: Просвещение, 1976. - 157 с. - 80 000 экз.
  • Голубинцев В. А., Данцев А. А. , Любченко В. С. Философия для технических вузов. - Ростов-на-Дону: Феникс, 2003. - 640 с. - 5000 экз. - ISBN 5-222-03736-3.
  • Кузнецов Б.Г. Идеалы современной науки. - М: Наука, 1983. - 254 с. - 6150 экз.
  • М.А. Ельяшевич, Д.Н. Трифонов, В.И. Гольданский. Физика XX века. Развитие и перспективы. - М: Наука, 1984. - 336 с. - 4750 экз.
  • ред. Мелюхин С.Т. Философские проблемы естествознания. - М.: Высшая школа, 1985. - 400 с. - 16 000 экз.

CC© wikiredia.ru

1.ВВЕДЕНИЕ

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком ма-териальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы че-ловеческого восприятия и несоизмеримых с объектами повседнев-ного опыта. Применяя системный подход, естествознание не просто выде-ляет типы материальных систем, а раскрывает их связь и соот-ношение.

В науке выделяются три уровня строения материи:

    Макромир мир макрообъектов, размерность которых со-относима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километ-рах, а время - в секундах, минутах, часах, годах.

    Микромир - мир предельно малых, непосредственно не на-блюдаемых микрообъектов, пространственная разномерность ко-торых исчисляется от десяти в минус восьмой степени до десяти в минус шестнадцатой степени см, а время жизни — от бесконечности до десяти в минус двадцать четвертой степени сек.

    Мегамир - мир огромных космических масштабов и скоро-стей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и мил-лиардами лет.

И хотя на этих уровнях действуют свои специфические зако-номерности, микро-, макро- и мегамиры теснейшим образом взаи-мосвязаны.

2.МАКРОМИР: концепции классического естествознания.

В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватываем период oт античности до становления экспериментального естествознания в XVI-XVI1 вв. В этот период учения о природе носили чисто натурфилософский характер, наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен-ных наук была концепция дискретного строения материи - атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц.

Античный атомизм был первой теоретической программой объяснения целого как суммы отдельных составляющих его час-тей. Исходными началами в атомизме выступали атомы и пус-тота. Сущность протекания природных процессов объяснилась на основе механического взаимодействия атомов, их притяже-ния и отталкивания. Механическая программа описания при-роды, впервые выдвинутая в античном атомизме, наиболее полно реализовалась в классической механике, со становления которой начинается научный этап изучения природы.

Поскольку современные научные представления о струк-турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи-нать исследование нужно с концепций классической физики.

Формирование научных взглядов на строение материи от-носится к XVI в., когда Г.Галилеем была заложена основа пер-вой в истории науки физической картины мира - механиче-ской. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методо-логию нового способа описания природы - научно-теорети-ческого. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, кото-рые становились предметом научного исследования. Выделение отдельных характеристик объекта позволяло строить теоретические модели и проверять их в условиях научного эксперимента. Эта методологическая концепция, впервые сформулированная Галилеем в труде "Пробирные весы", оказала решающее влияние на становление классического естествознания.

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес-ных тел, и движение земных объектов одними и теми же зако-нами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсо-лютно постоянно и всегда пребывает в покое. Время представ-лялось как величина, не зависящая ни от пространства, ни от материи.

Философское обоснование механическому пониманию при-роды дал Р. Декарт с его концепцией абсолютной дуальности (независимости) мышления и материи, из которой следовало, что мир можно описать совершенно объективно , без учета чело-века-наблюдателя. Это убеждение, глубоко созвучное взглядам Ньютона, на десятилетия вперед определило направленность развития естественных наук.

Итогом ньютоновской картины мира явился образ Все-ленной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий. Отсюда и вера в то, что теоретически можно точно реконструировать любую про-шлую ситуацию во Вселенной или предсказать будущее с аб-солютной определенностью. И.Р.Пригожин назвал эту веру в безграничную предсказуемость "основополагающим мифом классической науки".

Механистический подход к описанию природы оказался не-обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам-ках механистической картины мира.

Разрабатывая оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц - кор-пускул. В корпускулярной теории света И. Ньютона утвер-ждалось, что светящиеся тела излучают мельчайшие части-цы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютоном было дано объяснение законам отра-жения и преломления света.

Наряду с механической корпускулярной теорией, осуществ-лялись попытки объяснить оптические явления принципиально иным путем, а именно на основе волновой теории, сформули-рованной X.Гюйгенсом. Волновая теорияустанавливала анало-гию между распространением света и движением волн на по-верхности воды или звуковых волн в воздухе. В ней предпола-галось наличие упругой среды, заполняющей все пространство, светоносного эфира Распространение света рассматривалось как распространение колебаний эфира, каждая отдельная точка эфира колеблется в вертикальном направлении, а колебания всех точек создают картину волны, которая перемещается в пространстве от одного момента времени к другому. Главным аргументом в пользу своей теории X. Гюйгенс считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде.

Согласно же корпускулярной теории, между пучками изу-ченных частиц, каковыми является свет, возникали бы столк-новения или, по крайней мере, какие-либо возмущения. Исхо-дя из волновой теории X. Гюйгенс успешно объяснил отраже-ние и преломление света.

Однако против нее существовало одно важное возражение. Как известно, волны обтекают препятствия. А луч света, рас-пространяясь по прямой, обтекать препятствия не может. Если на пути луча света поместить непрозрачное тело с резкой гра-нью, то его тень будет иметь резкую границу. Однако эго воз-ражение вскоре было снято благодаря опытам Гримальди. При более тонком наблюдении с использованием увеличительных линз обнаруживалось, что на границах резких теней можно ви-деть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов. Это явление было на-звано дифракциейсвета. Именно открытие дифракции сделало X. Гюйгенса ревностным сторонником волновой теории света. Однако авторитет И. Ньютона был настолько высок, что кор-пускулярная теория воспринималась безоговорочно даже не-смотря на то, что на ее основе нельзя было объяснить явление дифракции

Волновая теория света была вновь выдвинута в первые де-сятилетия XIX в. английским физикомТ. Юнгоми французским естествоиспытателем О.Ж. Френелем. Т.Юнг дал объясне-ние явлению интерференции, т.е. появлению темных полосок при наложении света на свет. Суть ее можно описать с помо-щью парадоксального утверждения, свет, добавленный к свету, не обязательно дает более сильный свет, но может давать более слабый и даже темноту. Причина этого заключается в том, что согласно волновой теории, свет представляет собой не поток материальных частиц, а колебания упругой среды среды, или волно-вое движение. При наложении друг на друга цепочек волн в противоположных фазах, где гребень одной волны совмещается со впадиной другой, они уничтожают друг друга, в результате чего появляются темные полосы.

Другой областью физики, где механические модели оказа-лись неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М.Фарадеяи теоретические работы английского физика Дж.К. Максвеллаокончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и по-ложили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоис-пытатель Х.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М.Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. Ос-мысливая свои эксперименты, он ввел понятие "силовые ли-нии". М.Фарадей, обладавший талантом экспериментатора и богатым воображением, с классической ясностью представ-лял себе действие электрических сил от точки к точке в их "силовом поле". На основе своего представления о силовых ли-ниях он предположил, что существует глубокое родство элек-тричества и света, и хотел построить и экспериментально обос-новать новую оптику, в которой свет рассматривался бы как колебания силового поля. Эта мысль была необычайно смела для того времени, но она была достойна исследователя, кото-рый считал, что только тот находит великое, кто исследует ма-ловероятное.

Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую пунктом исследований Дж.К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Используя высоко-развитые математические методы, Максвелл "перевел" модель силовых линий Фарадея в математическую формулу. Понятие "поле сил" первоначально складывалось как вспомогательное математическое понятие. Дж.К. Максвелл придал ему физиче-ский смысл и стал рассматривать поле как самостоятельную физическую реальность. "Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, нахо-дящиеся в электрическом или магнитном состоянии"1. Обоб-щив установленные ранее экспериментальным путем законы электромагнитных явлений (Кулона, Ампера, Био-Савара) и открытое М. Фарадеем явление электромагнитной индукции, Максвелл чисто математическим путем нашел систему диффе-ренциальных уравнений, описывающих электромагнитное поле. Эта система уравнений дает в пределах своей применимости полное описание электромагнитных явлений и представляет собой столь же совершенную и логически стройную теорию, как и система ньютоновской механики.

Из уравнений следовал важнейший вывод о возможности самостоятельного существования поля, не "привязанного" к электрическим зарядам. В дифференциальных уравнениях Мак-свелла вихри электрического и магнитного полей определяются производными по времени не от своих, а от чужих полей: элек-трическое - от магнитного и, наоборот, магнитное - от элек-трического.

14. Структурные уровни организации материи (микро-, макро- и мегамир).

Поэтому если меняется со временем магнитное по-ле, то существует и переменное электрическое поле, которое в свою очередь ведет к изменению магнитного поля. В результате происходит постоянное изменение векторов напряженности электрического и магнитного полей, т.е. возникает переменное электромагнитное поле, которое уже не привязано к заряду, а отрывается от него, самостоятельно существуя и распространя-ясь в пространстве. Вычисленная им скорость распространения электромагнитного поля оказалась равна скорости света. А ис-ходя из этого Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж.К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцом в 1888 г.

Страницы: следующая →

1234Смотреть все

  1. Структурные уровни организации материи (2)

    Реферат >> Биология

    Структурные уровни организации материи В самом общем виде материя … собой. Границы микро — и макромира … в макро -, ни в мегамире . 2. Развитие структурной химии Многочисленные … литературы: 1. Горелов А.А. «Концепции современного естествознания », М.: Высшее …

  2. Структурные уровни организации живой материи

    Реферат >> Биология

    Структурные уровни организации живой материи Живой мир чрезвычайно многообразен. Обычно выделяют следующие структурные уровни … всех известных структурных уровнях (микро , макро , и мегамир ) трёхмерным. … две последние концепции . Концепция панспермии, согласно …

  3. Концепции современного естествознания (33)

    Реферат >> Биология

    … Она включает объекты микро -, макро — и мегамиров . В более популярном … знание от псевдонаучного. Структурные уровни организации материи . Развитие – это … с концепцией иерархии качественно своеобразных структурных уровней материальной организации , выступающих …

  4. Концепции современного естествознания (27)

    Лекция >> Биология

    … проблему с разных сторон. Современные концепции – это освещение наиболее перспективных направлений … к фундаментальным наукам: Поддержка высокого уровня знаний в данной области науки. … научных результатов. На каждом уровне научного познания свой метод: …

  5. Концепции современного естествознания (28)

    Реферат >> Биология

    … ; корпускулярная и континуальная концепция описания природы; порядок и беспорядок в природе; хаос; структурные уровни организации материи ; микро -, макро — и мегамиры ; пространство, время …

Хочу больше похожих работ…

МАКРОМИР И МИКРОМИР – две основные области материального мира, кардинально различающиеся характером своих закономерностей.

Микро, Макро, Мега миры

Противопоставление макромира и микрокосмоса восходит к древнейшим натурфилософским концепциям макрокосмоса и микрокосмоса . Современные представления о макромире и микромире сложились в ходе становления квантовой теории и ее осмысления: объекты исследования доквантовой физики составляют макромир, а объекты, на базе которых разрабатывается квантовая теория, составляют микромир. Квантовая теория создавалась как теория структуры и свойств атома и процессов атомного масштаба; ныне же она лежит в основе физики элементарных частиц. С точки зрения представлений классической физики, законы квантовой теории оказались весьма странными и парадоксальными, что и определило становление концепции об особом своеобразном физическом мире. Высказывается мнение, что квантовая теория представляет такой «плод человеческой мысли, который более всякого другого научного достижения углубил и расширил наше понимание мира» (Вайскопф В. Физика в двадцатом столетии. М., 1977, с. 34). Важнейшими особенностями квантовых представлений, позволяющими говорить об особом мире физических явлений, являются корпускулярно-волновой дуализм, принципиально вероятностный характер процессов микромира и относительность свойств микрообъекта, фиксируемых на макроуровне.

Исторически проникновение науки в область микропроцессов приводило к разработке научных теорий большой степени общности. Проникновение в структуру вещества привело к разработке классической статистической физики, а анализ глубинных структур наследственности – к созданию генной теории. Познание атома породило квантовую теорию – наиболее фундаментальную в современной физике. «Микрофизика вчера, сегодня и, нужно думать, завтра, – как отметил отечественный физик В.Гинзбург, – была, есть и будет передним краем физики и всего естествознания» (Гинзбург В. О перспективах развития физики и астрофизики в конце 20 в. – Физика 20 в. Развитие и перспективы. М., 1984, с. 299). Представления о макромире и микромире взаимодополняют и взаимообусловливают друг друга. Знание свойств и законов микромира позволяет раскрыть свойства и структуры объектов макромира, а знание макромира позволяет раскрыть богатство внутренних возможностей объектов микромира.

Развитие физики микромира преобразует и основные формы теоретического выражения знаний. В частности, при переходе от классической физики к физике микромира произошли изменения в нашем понимании элементарного – переход от представлений о бесструктурных атомах (материальных точек) к представлениям об элементарных событиях как о некоторых далее неразложимых (бесструктурных) актах взаимодействия. И теория относительности, и особенно квантовая теория в своих построениях исходят из понятия события, представляющего собою бесструктурный элементарный объект.

Как сказал отечественный физик А.Д.Александров, имея в виду структуру теории относительности: «Простейший элемент мира – это то, что называется событием. Оно представляет собою «точечное» явление вроде мгновенной вспышки точечной лампы или, пользуясь наглядными представлениями о пространстве и времени, явление, протяжением которого в пространстве и во времени можно пренебречь. Словом, событие аналогично точке в геометрии, и, подражая определению точки, данному Эвклидом, можно сказать, что событие – это явление, часть которого есть ничто, оно есть «атомарное» явление. Всякое явление, всякий процесс представляется как некоторая связная совокупность событий. С этой точки зрения весь мир рассматривается как множество событий» (Александров А.Д. О философском содержании теории относительности. – Эйнштейн и философские проблемы физики 20 в. М., 1979, с. 113). Анализу перехода от языка объектов к языку событий в ходе становления современной физики принципиальное значение придавал Б.Рассел (см.: Рассел Б. Человеческое познание. М., 1957. с. 358 и 497). Можно, т.о., утверждать, что мир макрофизики есть мир, построенный из объектов, а мир микрофизики есть мир, образованный из событий.

В современной физике проблема элементарной сущности (как далее неразложимого, бесструктурного элемента) во многом остается открытой. Можно предположить, что при дальнейшем проникновении науки на глубинные уровни строения материи вопрос о простейшем, бесструктурном элементе изменит свой смысл. Исходные явления физического мира с самого начала следует рассматривать как нечто сложное, т.е. системным образом; при этом само понятие системы выступает как первичное, фундаментальное. Тем самым изменится и характер теоретических построений в фундаментальных областях физики.

Их главные характеристики следующие. 1) Микромир. Его объекты (реальные и виртуальные элементарные частицы, отдельные атомы и молекулы) имеют микроскопические размеры, т.е. в целом несоизмеримо меньше человека и социальных систем, живых организмов на планете и их сообществ- систем.

2) Макромир. Его объекты представлены биотическими и социальными системами Земли, начиная от отдельных организмов микробов,

растений, животных, человека и т.п. и до наиболее сложных систем - биосферы и социосферы. 3) Мегамир. Включает объекты, несоизмеримо больших размеров, чем биотические и социальные системы. Это планеты, звезды, галактики, их разнообразные скопления, а также вся обозримая (к настоящему времени) Вселенная, или Метагалактика. Данная типология Мира-Системы довольно широко распространена в научной и философской литературе по НКМ и по философии . Кроме этого, в ряде случаев выделяются и некоторые другие формы Миров на аналогичной основе, например, Мидимир, Мезомир (о которых пойдет речь ниже). Следует подчеркнуть, что метрические формы Мира отличаются друг от друга не просто размерами, но и характерными метрическими, т.е пространственно-временными параметрами и связанными с этим свойствами. Это, например, хорошо показано в монографии A.M. Мосте-паненко «Пространство и аремя в макро-, мега- и микромире» .

На первый взгляд, объекты, которые могут познаваться сегодня наукой, не сопоставимы. Своим пытливым взором человек проникает в миры молекул, атомов, элементарных частиц, размеры которых, по сравнению с человеком меньше в 10 IS -10 IS раз. С другой стороны, изучает космические просторы и объекты Космоса - планеты, звезды, галактики, их скопления, обозримую Вселенную, которая примерно в 10 2 S -1Q 26 раз больше самого исследователя и общества. Сравнивая познавательные возможности современной науки, известный астроном Б А. Воронцов-Вельяминов в своей книге «Очерки о Вселенной» (М., 1980, с. 598) пишет. «Изучая системы., человек дошел до атомного ядра, имеющего диаметр 10~ 13 см, т.е. примерно в 10 IS раз меньшего, чем он сам. Изучая системы, частью которых он является сам, он встречает в 10 15 раз большую систему уже в виде Солнечной системы (известный нам сейчас диаметр нашей Солнечной системы, строго говоря... только 10 15 см). Диаметр известной нам сейчас части Метагалактики составляет около 10 28 см. В области Космоса мы проникли, другими словами, в 100 миллионов раз дальше, чем в области Микромира мельчайших частиц. Тем не менее, свойства величайших мировых систем делаются доступными астрономам лишь на основе изучения мельчайших частиц, исследуемых физикой. Но и в деле изучения этого Микромира огромную помощь приносит наблюдение процессов в Космосе, заменяющих неосуществимые в лаборатории опыты. Великое и малое слиты в единстве природы».

Пространственные масштабы Вселенной и размеры основных познаваемых систем Мира можно представить таблицей, где размеры даны в метрах, с использованием приближенных чисел в пределах одного порядка (Карпен-ковС.Х. Концепции современного естествознания. М., 1997, с. 65 и др источники):

Радиус видимой нами Вселенной,

или космологического горизонта 10 26

Диаметр нашей Галактики 10 21

Расстояние от Земли до Солнца 10 11

Диаметр Солнца 10 9

ДиаметрЗемли 10 7

Размер человека 10 0

Диаметр клетки 10 -4 -10 -5

Длина волн видимого света 10 -6 -10 -7

Размер вирусов 10 -6 -10 -8

Диаметр атома водорода 10 -10

Диаметр атомного ядра 10 -15

Минимальное расстояние, доступное

сегодня нашим измерениям 10 -18

Таким образом, отношение самого большого к самому малому размеру, доступному сегодняшнему научному наблюдению, составляет 44 порядка. С отмеченных пространственных позиций, Макромир как мир соизмеримых с человеком объектов - биотических и социальных систем - представляет собой весьма неоднородное, широкое образование. Он включает биосистемы от клеток до биоценозов и биосферы как поверхностной сферы всей Земли, а также социальные системы от человека до государств и социосферы. Следовательно, только в Макромире расстояния оказываются сравнимыми, с одной стороны, с размерами клеток или даже вирусов (живых органических кристаллов), а с другой - с диаметром Земли (биосфера и социосфера), и простираются от 10" -10" 6 до 10 7 м, т.е. включают примерно 12 порядков. Для Микромира отношения самого большого (начиная с 1(Г 5 м, т.е. размера клетки) и самого малого (Ю~ 18) составляют 13 порядков, а в Мегамире, соответственно, от 10 до 10 26 м-19 порядков!

Для столь различающихся микро-, макро- и мега-расстояний используются соответствующие меры длины. Так, в мире микрообъектов используются миллиметры, микроны, ангстремы. Если миллиметр составляет 0,001 м, то микрон - это 0,001 мм или Iff* м. Ангстрем же составляет 10""° м. В Макромире используются в основном миллиметры, метры и километры. А в мире космических объектов применяются такие единицы расстояний, как астрономическая единица, световой год и парсек. Астрономическая единица (а.е.), используемая чаще при изучении Солнечной системы, представляет собой расстояние от Земли до Солнца, равное 149 600 000 км, или примерно 1,5 10 1 " м. Световой год - это такое расстояние, которое световой луч, двигаясь со скоростью 300 000 км/сек, проходит за год, что соответствует 9,46 10 17 км, или примерно 10 000 млрд. км, или 10 16 м. Парсек (пс) - единица космологических измерений, равная 3,26 светового года (Физика Космоса. М., 1986).

Для примера, диаметр нашей Галактики, называемой Млечный путь, составляет около 100 000 световых лет, а толщина ее в 10-15 раз меньше В нее входит около 150 млрд. звезд. В этих масштабах наша Солнечная система предстает лишь мельчайшей клеточкой подобной космической суперсистемы. Количество звезд в Галактике в целом сопоставимо с количеством клеток в многоклеточном организме, например, человека. Поэтому с данных позиций Галактика может рассматриваться как огромный космический суперорганизм,

а различные скопления галактик - как популяции и космоценозы (сообщества) таких суперорганизмов. В хорошо исследованной области пространства, на расстояниях до 1500 Мпк, находится несколько миллиардов галактик (для сравнения, человечество по количеству людей в конце XX в. приближается к 6 миллиардам человек)

Очень широко изменяются диапазоны времени в изучаемых системах, которое может измеряться в секундах, минутах, часах, годах, веках, миллионах и миллиардах лет. Если время жизни человека измеряется несколькими десятками лет, микроба - десятками минут, то возраст обозримой Вселенной определяется примерно в 20 миллиардов лет, а срок существования многих элементарных частиц составляет примерно 10 -6 - 10 - "° сек. С другой стороны, в Микромире времена жизни разных элементарных частиц имеют колоссальные различия. Среди них есть очень короткоживушие частицы, например, группа резонансных элементарных частиц. Время их существования - 10 - 3 сек. За это время они успевают пролететь расстояние порядка 10- 13 см. (что соответствует размеру протона), а затем гибнут. Время жизни нейтрона - несколько минут (около %0 с). Протон считается долгоживущей стабильной частицей, его время жизни оказывается более 10 31 лет. А фотон - стабильная частица - проходит в Космосе огромные расстояния и позволяет астрономам получить информацию о космических объектах, существовавших миллиарды лет тому назад Как правило, срок существования частицы «определяется природой сил, вызывающих распад, и зависит от величины энерговыделения в распаде Чем слабее взаимодействие, вызывающее распад, тем больше время жизни частицы Так, мезоны и барионы. распадающиеся за счет процессов сильного взаимодействия, имеют аномально малое время жизни – 10 -22 -10 -23 с. Время жизни частиц, распадающихся за счет электромагнитного взаимодействия - 10- 16 -10- 20 с. Время жизни частиц, распадающихся по слабому взаимодействию, еще больше - 10-"° - 10- 8 с, мюона 2"10 6 с, а нейтрона -- 10 3 с» (Физика космоса, с. 186).

Наши органы чувств без помощи приборов способны воспринимать лишь очень малую часть Мира-Системы, преимущественно в виде окружающих веществ Земли и излучений видимой части солнечного спектра. Так, А.В. Светлов пишет: «Успехи таких наук, как квантовая физика и физика элементарных частиц в исследовании Микромира дают основание ученым с полной уверенностью заявить, что наиболее компактным из всех агомов вещества является атом водорода. Для того, чтобы представить себе соотношение размеров этой структуры, увеличим ее в 1 000 миллиардов раз! Тогда в центре будет гипотетический шарик диаметром 16 мм, а второй «шарик», отождествляющий собой электрон (центральную плотную часть электронного облака -Е.У.), будет иметь диаметр 5,6 мм и «облетать» ядро по орбите радиусом 53 метра. Выходит, что на 99,999. % атом состоит из пустоты. И это самый «плотный», если можно так выразиться, атом. Следовательно, плотность и непроницаемость, окружающих нас предметов не более чем иллюзия (Майя), создаваемая особым устройством наших органов чувств» . Дифференцированные органы чувств устроены так, что каждый из них настроен на

вибрации среды определенной частоты, работая по принципу камертона. Наука прекрасно знает, что существует большое число вибраций (флуктуации) выше и ниже этих групп волн, частот и т л

Следовательно, есть много света, которого мы не можем видеть, много звуков, которые не воспринимает наше ухо, а также множество других не воспринимаемых нашими органами чувств сигналов и мировых сущностей разного порядка. «Таким образом, мы начинаем понимать, что вибрации, с помощью которых мы видим и слышим, подобны двум маленьким группам небольшого количества струн, взятых из огромной арфы, величина которой бесконечна: и когда мы подумаем, как много мы смогли узнать и скочько мы сделали выводов с помощью этих небольших отрывков, мы смутно представим себе, какие возможности могли бы лежать перед нами, если мы были б в состоянии пользоваться обширным и чудесным целым. . Опыты с рентгеновскими лучами дакл нам примеры тех поразительных результатов, которые получаются, когда даже очень немногие из этих добавочных вибраций становятся доступны человеку Научиться видеть с помощью рентгеновских лучей в добавление к тем, которыми мы обычно пользуемся достаточно для того, чтобы дать возможность каждому сделать магический фокус в этом роде» [там же, с. 25] Или, например, наличие у человека свойства эхолокации, присущего летучим мышам, или чувства инфракрасного видения, имеющегося у ряда рептилий, позволило бы ему свободно ориентироваться и активно действовав в полной темноте.

При постижении новых возможностей проникновения в неизведанные еще области Универсума перед взором человека открываются удивительные миры, называемые исследователями по-разному (в том числе «параллельные», виртуальные, «анти-миры» и пр.) Но, как отмечает Ч Лидбитер. «Мы не должны, думая о них, воображать себе какой-ниб\дь новый и странный вид материи, но должны просто представить себе обыкновенную физическую материю, которая так разряжена и действует так быстро, что вводит нас в совершенно новые условия и свойства» [цит по 254, с. 25].

В качестве общей специфики Микро-, Макро- и Мегамира следует отметить, что они изучают разные части и состояния Мира-Системы, а потому, если проблемы каждого такого Мира рассматривать «изнутри», с узких позиций, то на первый план выступает явная противоречивость, несоизмеримость выводов о свойствах разных метрических Миров, абсолютная невозможность интеграции, на первый взгляд, несопоставимого материала. Как отмечает А.В. Светлов, в качестве иллюстрации этой мысли можно привести известную притчу о трех слепых, которые пытались описать, что такое слон, подойдя к нему с трех разных сторон Первый подошел к ноге животного и ощупывая его сказал: «Слон - это нечто массивное, подобное колонне!» Второй подошел к хоботу и заме!ил «Слон - это нечто гибкое и подвижное, подобное змее!» А третий, потрогав хвост, воскликнул: «Друзья, вы оба не правы. Слон - это веревочка» . Если же проблему рассматривать в целом, с системно-синтетических позиций, то оказывается, что в разных науках, с различных сторон познавались отдельные части, участки Единого Мира-Системы. А

главная задача сегодня состоит в философско-научной интеграции разрозненных частей в Целое.

При этом следует подчеркнуть, что специфика Микромира и Макромира заключается в следующем. Знания о Микромире вышли в основном в область познания Мира энергий, или Рассеянной материи, Бестелесной субстанции (в объективном и субъективном плане). Здесь действуют законы Мира энергий. Напротив, в Макромире изначально изучался Мир веществ (причем, исходно в пассивном варианте, в виде механицизма) своими способами и методами, что наложило естественный отпечаток на все полученные при этом знания. Но исходя из признания неразрывности, целостности Универсума следует признать, что между разными сторонами Единого существуют многочисленные взаимопереходы Активной Мировой субстанции, взаимодействия частей. Наука все более проникает в эти пограничные, стыковые области, выявляет инвариантные формы в преобразовании знаний. Именно эти пограничные области и оказываются наиболее эвристичными, формируют основу всеобщей интеграции в ОНКМ и в Синтетической КМ.

Специфика Мегамира заключается в том, что здесь почти в статичном (по нашим земным меркам) состоянии познаются огромные части обозреваемого Универсума. Но если принять, что в большом и малом познается Единое, данная специфика оказывается не препятствием, а еще одной плодотворной ступенью в раскрытии Великих тайн Космоса. При этом возможная динамика суперструктуры Мегамира подсказывается Макромиром, а Микромир в своих мельчайших вакуумных (пра-энергийных) структурах, в их совокупности, вновь «выходит» на Мегамир и определяет часть свойств огромного Универсума, показывая, как «чистая» энергия закономерно превращается в «чистое» вещество и наоборот. Поэтому все более эвристичными и плодотворными становятся не исследования «борьбы» направлений «до победного (т.е. гибельного в своей односторонности) конца», а познавательные синтетические направления. Последние являются исходно гуманными и терпимыми. Здесь исследователи не опускаются до взаимного охаивания даже при творческом анализе противоположных взглядов, учитывают познавательную ценность драгоценных зерен аномальных фактов, из которых, как известно, наиболее вероятно рождение нового знания Отметим очень кратко особенности выделенных Миров.

В Микромире пространства существования отдельных систем (микро-объектов) имеют предельно малые, микроскопические размеры. Скорости же их распространения чрезвычайно велики н сравнимы со скоростью света -300000 км/сек, а согласно некоторым научным гипотезам, могут существовать и движения со скоростями еще большими (так называемые сверхсветовые движения тахионов и т.п. частиц, в том числе, сверхсветовые скорости перемещения в мировой энергетической среде - физическом вакууме). Здесь не действуют классические законы физики (механики и др.) Макромира, а существование микрообъектов - энергетических волн, отдельных элементарных частиц, атомов, молекул описываются законами релятивистской физики, квантовой физики, физики элементарных частиц и ядерной физики. В Микромире,

в отличие от Макромира и Мегамира, действует принцип Гейзенберга, согласно которому для микрообъекта невозможно сразу точно определить его основные параметры - импульс, скорость, координаты. Чем точнее определяется даже один из двух параметров, тем неопределеннее становится другой и наоборот. По-видимому, данный парадокс определяется тем, что в микрообъектах интегральная материя значительно более, чем в Макро- и Мегамире, представляет собой неразрывное единство, с одной стороны, массовой части (телесной субстанции, или концентрированной материи с выраженной массой покоя), но в исчезаюше малых количествах, а с другой - энергетической безмассовой части (бестелесной субстанции, рассеянной материи с отсутствующей или почти отсутствующей массой покоя). Указанное динамическое единство (с околосветовыми скоростями изменения состояний и параметров) приводит к тому, что в «точечных» участках Микромира непрерывно массовое переходит в безмассовое и наоборот. Именно поэтому невозможно в исследовании применять характеристики «чисто массовые» (например, импульс) или «чисто безмассовые» (например, пространственные - вакуумные характеристики) Здесь эти характеристики постоянно переходят друг в друга, взаимно изменяя крайние полярные «классические» параметры.

Поэтому в подобных исследуемых точках Микромира, по-видимому, нельзя четко определить отдельно пространство и отдельно время, поскольку они отчасти сливаются в динамическом взаимодействии. Само пространство микрочастицы (соответствующий ей участок физического вакуума) может настолько плавно, без четко выраженной границы, переходить в пространство окружающей энергетической среды (физического вакуума), что становится весьма проблематичным определение границы раздела фаз «микрочастица -энергетическая среда» А там, где удается относительно определенно рассчитать импульс частицы, теряет смысл пространственная определенность, и наоборот. Часть пространства (безмассовой энергии физического вакуума) концентрируется, переходит из виртуального состояния в реальное и включается микроквантами в потенциальную энергию микрочастицы, т.е. в массовую, телесную часть, а также идут обратные процессы. Поэтому по необходимости нарушаются законы «чисто» концентрированной (массовой, вещества) и «чисто» рассеянной (безмассовой, энергии) материи. Например, массовая часть субстанции вдруг «ниоткуда» получает дополнительную энергию. Создается впечатление, что «из ничто рождается нечто». На самом деле, общая энергия интегральной материи не исчезает и не появляется ниоткуда. Она просто переходит из одной качественной формы в другую альтернативную форму (бестелесное переходит в телесное и наоборот). На макроскопическом уровне это выражается универсальной формулой Е = mс 2 .

Таким образом, кажущееся нарушение законов сохранения на микроуровне объясняется несостоятельностью соответствующего гносеологического подхода к явлениям Микромира. А именно, в исследовании учитывается лишь одна сторона существования объективного мира - массовой материи, но неявно постулируется отсутствие другой (безмассовой материи). Последняя совершенно неправомерно (явно или неявно) приравнивается в основном к «пус-

тоге» или к нулю, что приводит к алогичным результатам. По-видимому, этот пробел начинает преодолеваться в современных концепциях физического вакуума.

Кроме того, принципиальное значение имеет корпускулярно-волновая двойственность объектов. Для познания микрообьектов сформировались такие науки, как квантовая и волновая физика. У элементарных частиц трудно различимы или вовсе не различимы (с помощью современных методик) система и среда, где отсутствует четкий раздел фаз, как в Макромире. Например, электрон лишь в некоторых моделях (Бора и т.п.) представлен четко отграниченной частицей. На самом деле он существует в виде постоянно перемещающегося (даже на электронных орбитах атома) электронного облака, с разной степенью плотности его частей, где наибольшая плотность и характеризует в целом местопребывание данного микрообъекта. Тем более почти не представляется возможным зафиксировать точные координаты микрообъектов в излучениях. Поэтому в основном физика для их познания применяет не динамические методы (как в большинстве случаев в Макромире или Мегамире), а вероятностно-статистические.

Совсем по-иному предстает проблема наблюдаемости явлений. Даже с помощью совершенных методик, используемых в Микромире, непосредственно не только наблюдать, но даже обнаружить отдельные частицы (например, всепроникающее нейтрино или резонансные частицы) представляется весьма сложным. Чаще всего, обнаружение и изучение микрообъектов происходит с помощью косвенных методов (например, в виде отпечатков на фотографиях). Поэтому очень сильное влияние в эксперименте оказывает методика наблюдения, используемая аппаратура и исследовательские действия самого наблюдателя, которые могут кардинально изменять объективные характеристики природных микрообъектов и значительно уводить познание от истины. Возникает специфическая для Микромира проблема чистоты наблюдения и эксперимента, возможности выявить истинные, не искаженные характеристики наблюдаемого предмета.

Кроме того, в нашем обычном «макроскопическом» понимании реальности, Микромир - это мир парадоксов. С одной стороны, для него характерны микрообъекты колоссальной плотности, как нейтрон и протон, а также состоящие из них ядра атомов. С другой стороны - это предельно рассеянная субстанция - физический вакуум, о котором шла речь выше и свойства которого еще во многом не ясны. С одной стороны, в Микромире существуют предельно малые объекты - атомы, элементарные частицы, а с другой - его рассеянная материя распространяется в виде Мировой энергетической среды по всему Универсуму, заполняя его и смыкаясь таким образом с Мегамиром.

Но именно в данном мире парадоксов появилась возможность объединять, казалось бы, «не объединнмое». Квантово-релятивистские представления показали классический пример синтеза полярных корпускулярной и волновой теорий света в концепции корпускулярно-волнового дуализма.

Именно с Микромиром связан ряд современных синтетических направлений объединения некогда не сопоставимых взаимодействий - объе-

динения электромагнитного и слабого взаимодействий в концепцию электрослабых взаимодействий, далее - творческие поиски Великого объединения с гравитационными и сильными взаимодействиями, а в самые последние годы -Великого Синтеза всех взаимодействий в теориях Физического Вакуума,

В отличие от Микромира, Макромир, в силу того, что он соизмерим с познающим субъектом - человеком, наиболее полно изучен наукой. Он включает природные и социальные объекты, размеры которых колеблются от величины до-клеточных форм (например, вирусов), живой клетки и одноклеточного организма до биосферы и социосферы как целостных планетарных образований. Большинство предметов Макромира можно отражать с помощью непосредственных наблюдений (за исключением одноклеточных и субклеточных структур). Это области преобладания концентрированной материн на планете, или Мира веществ. Поэтому основу здесь составляет вещественная структура объектов, а специфические энергии также связаны с определенным качественным состоянием вещества. Область Макромира - это область органической природы на поверхности Земли, сферы биотической и социальной жизни.

Хотя для всех органических веществ характерно атомно-молекулярпое строение (как проявление единой физико-химической основы Микромира), здесь формируется специфическая молекулярная основа из органических веществ, неметаллов - углерода, водорода, кислорода, азота, серы и др. За счет свойства атомов углерода образовывать разнообразные, прямые или разветвленные цепи, кольцевые структуры и т.п., органические молекулы достигают гигантских (по масштабам Микромира) размеров, некоторые из них (например, длина «нити» молекулы жизни ДНК) оказываются соизмеримыми с субклеточными структурами - органоидами, например, клеточным ядром, особенно в периоды наибольшей активности (например, в фазе деления клетки). В результате биотические (биологические) молекулы становятся специфическими носителями биотической и социальной активности - органической жизни.

Обладая высокой активностью, биомолекулы приобретают способность аккумулировать в разных формах солнечную космическую энергию и преобразовывать ее в особые виды энергии разнообразных живых организмов, а также в биотическую энергию молекул ДНК и РНК, определяющую деление клеток, размножение биотических и социальных организмов, а в целом - биотическую и социальную жизнь. Прогрессивное развитие механизмов поглощения свободных видов энергий внешней среды у животных, а затем социальных организмов формирует особый энергообмен живых организмов со средой, определяет появление энергетически насыщенных структур в виде нервных клеток и нервной системы животных и человека, а за счет этого, активное перемещение биосистем в пространстве . В нервной системе образуются наиболее сложные виды энергии - психическая (у животных) н психическая и духовная (у человека). Психическая и духовная энергия человека определяют сознательно-практическую деятельность в обществе [там же, с.230-275] и в целом - новые качества социальной материи .

Органические системы биосферы (а затем и социосферы) выполняют особую космическую роль на планете, поскольку, наряду с другими поверхностными геосферами трансформируют разнообразные космические энергии окружающего космического пространства (космической среды) в «земные» вещественные и энергетические формы и представляют особые воспринимающие подсистемы Земли . Временные параметры систем Макромира также в целом соизмеримы с жизнью человека, могут измеряться годами (шире - столетиями, тысячелетиями, миллионами лет) или, напротив, более короткими промежутками - сутками, минутами, секундами.

Изучение эволюционных филогенетических процессов в органической природе в виде эволюционного учения проводится в науке уже около двух столетий. За это время формировались разные концептуальные взгляды, которые в целом исходили из двух различных позиций. С одной стороны, важное значение в эволюции придавалось взаимодействию организмов с окружающей средой - как первичному (начиная с учения Ламарка, а в современных концепциях - экологические представления). С другой стороны, главная роль придавалась внутренним факторам организмов - их изменчивости и наследственности (начиная с учения Дарвина, а в современных условиях - генетические представления). В целом следует отметить, что оба направления страдали односторонностью, каждое из них шло к пониманию целого - эволюционного процесса - преимущественно со своей стороны, отрицая другую. С этим была связана многолетняя дискуссия, переходящая порой а «ожесточенную борьбу», особенно, когда верх одерживали не научные, а политические интересы. Данным вопросам посвящена очень обширная литература как в нашей стране, так и за рубежом. В частности, анализ данного явления в нашей стране провел американский исследователь Л.Р. Грэхэм . Теоретические аспекты разных подходов и их системный анализ даны нами в .

Биологической наукой на рубеже XXI в. накоплен обширный материал по обоим направлениям - генетическому и экологическому, а также важные результаты системного синтетического характера. Поэтому, по-видимому, наступает время не конфронтации и конфликтогенеза, а широкого системного синтеза лучших достижений эволюционно-генетического, эволюционно-экологического направлений и системных биологических концепций (структурной организации, системности, самоорганизации биосистем и т.п.) в единую системно-синтетическую экогенетическую концепцию филогенеза. Предпосылки и главные ориентиры для такого синтеза показаны, например, в монографии Г.А. Югая «Общая теория жизни» (М., 1985). Важной особенностью Макромира является также то, что метрические характеристики его объектов позволяют подробно исследовать структуру систем, функции их частей, общую динамику и онтогенетические циклы систем. Данные результаты играют неоценимую роль в развитии общих системных представлений, а также позволяют экстраполировать, с помощью метода аналогий, часть наиболее важных результатов в другие области познания.

В отличие от первых двух Миров, Мегямир - это Мир огромных космических объектов, где действуют свои метрики. Расстояния измеряются по-

рядками ~ 10 7 ~10 М метров, а время - миллионами и миллиардами лет. Также, как и в Микромире, необычные, с позиций обыденных представлений, метрические свойства Мегамира раскрывают особые законы Космоса, всей обозримой Вселенной. Первые субъективные представления об объектах Мегамира давали выводы еб их неподвижности и об отсутствии различий в расстояниях до разных звезд и галактик (например, в созвездия, выделенные древними наблюдателями, с современных позиций, попадают светящиеся объекты, находящиеся на огромных расстояниях друг от друга, из разных звездных или галактических ассоциаций). То, что в Мегамире обычно называется космической эволюцией, в целом представляет собой не филогенез (по сравнению с биологией или социологией, в виде множественных смен видов аналогичных систем - в течение сотен тысяч и миллионов лет), а онтогенез, т.е. в основном описание циклов саморазвития и самораспада отдельных космических систем - звезд, планет, галактик. Именно онтогенетические циклы космических систем и их отдельные фазы длятся миллионы и миллиарды лет, а филогенез разных видов таких систем занимает многие миллиарды лет и становится предметом особой области космогонии - эволюции Метагалактики, обозримой Вселенной. Таким образом, если проводить широкие научно-философские аналогии в познании систем Макромира и Мегамира, то космическая эволюция звезд и планет предстает здесь как онтогенез космических систем и сравнима с онтогенетическими циклами биотических и социальных систем, а не с филогенезом. Следовательно, именно онтогенез системы (ее самоорганизация, саморазвитие, самополяризация и самораспад, с последующей вторичной самоорганизацией и новыми циклами) становится базой для научно-философского сравнения и выявления всеобщих системных закономерностей в различных Мирах и в целом в Универсуме.

Несопоставимые- (в первых формах научного знания) метрики Макромира и Мегамира привели к разным способам их познания и к принципиально несопоставимым первым научным выводам. Так, еще в Новое время на Космос были распространены представления классической механики: единственной формой движения казалась механическая, а силой - гравитационная («неживые» механические силы притяжения и отталкивания). Данные представления легли в основу механистической космологической картины Мира, где Космос представал как неживая природа, в отличие от живой органической природы - Биоты, а также Социума. Данное принципиальное различие легло в основу космогенеза, где главными (исходными) силами космической эволюции оказались «пассивные, неживые» гравитационные взаимодействия, т.е. не внутренние, собственные силы космической системы, характеризующие ее собственную активность, а внешние по отношению к ней силы взаимодействия системы с окружающей пространственной средой. Такие космогонические представления о Неживом Космосе легли в основу всех традиционных космологических концепций и просуществовали вплоть до наших дней. Они же послужили основой расхожему представлению о разделении всей природы на «неживую» (Космос, Земля) и живую (Биота, Социум).

Иное же, гениальное интуитивное представление древних мудрецов об Активном Мире-Системе с едиными законами самодвижения (концентрирования и рассеивания) мировой интегральной материи, в том числе, об Активном Живом Космосе в принципе противоречило механистическим «традиционным» физикалистским представлениям и потому отвергалось физикой. Однако в XX в уже на базе нового накопившегося эмпирического и теоретического материала вновь возник рад идей, которые по существу строились на новой научной парадигме, которая в целом, как показывают исследования последних лет, наиболее близка взглядам об Активном Космосе (Активной неорганической природе). Результаты, получаемые в рамках новой научной парадигмы, основа которой в астрономии заложена бюраканской концепцией, были в целом противоположны традиционным космогоническим представлениям (Амбарцумян, Маркарян, Джвджян, Казютинский, Дмитриев и др. ). Данная (бюраканская) концепция в астрономии была обозначена В.А, Амбарцумяном как нетрадиционная космогоническая концепция. И действительно, асе более глубокие исследования показывают, что многие выводы нетрадиционных космологических взглядов соотносятся с традиционными с точностью «до наоборот». Поэтому в большинстве источников научной, учебной и научно-популярной астрономической литературы, как правило, описываются лишь традиционные взгляды, а противоположные или вообще не упоминаются, или очень кратко даются в основном лишь в плане критики.

Так, всеобщие представления об Активной (живое) космической, биотической и социальной материи, с универсальными мировыми законами самоорганизации, саморазвития, самораспада (с «размножением», т.е. появлением новых поколений аналогичных систем) и новыми онтогенетическими циклами никак не вписывались в традиционные космогонические представления. И лишь новые научные достижения в XX в. позволили по-новому взглянуть на динамику Космоса. В первую очередь, это общенаучные достижения, показывающие универсальное единство структурно-динамической организации материи, ее разных структурных уровней (космических, биотических и социальных систем Микромира, Макромира и Мегамира). Это результаты общенаучного синергетического направления, показавшие универсальность природных и социальных процессов самоорганизации космических, биотических и социальных систем и, следовательно, единство законов их самодвижения. Кроме того, в наблюдательной астрономии накопилось большое количество фактического материала, начиная с фундаментальных исследований школы пулковских астрономов (Санкт-Петербург), затем школы Амбарцумяна и других астрономов-исследователей в разных странах, который оказался прямо противоположным выводам традиционных космогонических построений (рождение звездных скоплений, активность ядер галактик, взрывающиеся и разбегающиеся галактики, движения токов материи в рукавах галактик в направлениях, противоположных предсказаниям традиционных теорий и пр.). Более подробно, с научно-философских позиций данная проблема рассмотрена нами в .

Таким образом, на новой современной научной основе достижений XX в. возродились представления о самодвижении Мировой субстанции и об Активном Космосе, об Активной (живой) неорганической природе Мегамира и Микромира. Формируются нетрадиционные космогонические взгляды, которые, по-видимому, по сравнению с традиционными построениями, являются более адекватными современным научно-философским представлениям. Но это отнюдь не значит, что, в случае наибольшего признания концепций Активного Космоса весь научный багаж традиционных взглядов будет «подвергнут уничтожающей критике» и отброшен. Напротив, следует подчеркнуть, что в рамках «традиционной» астрономии и астрофизики накоплен богатейший эмпирический и теоретический материал. Значительная часть его, в случае применения иного, более широкого методологического подхода, прекрасно «работает» и в нетрадиционной парадигме. Поэтому скорее всего в недалеком будущем предстоит диалектический синтез альтернативных взглядов на природу и динамику Космоса и Мегамира на новой, более широкой методологической основе. Как уже не раз отмечалось, науке известен целый ряд некогда альтернативных взглядов, которые затем оказались взаимодополнительными частями более широкой концептуальной целостности. Вспомним хотя бы лапласовский детерминизм и вероятностные представления, синтезированные в современных детерминистских взглядах; альтернативные представления о корпускулярной и волновой сущности микрообъектов, интегрированные в концепции корпускулярно-аолнового дуализма; противоборство генетических и экологических взглядов на биологическую эволюцию, которые все более интегрируются в новых экогенетических представлениях и т.п.

В целом можно сказать, что несмотря на кардинальное различие метрических характеристик Микромира, Макромира и Мегамира, они, вероятнее всего, подчиняются единым законам самодвижения Универсума.

Кроме отмеченной и в целом общепринятой типологии Миров, можно отметить, как нам кажется, плодотворные и весьма актуальные идеи некоторых авторов о несколько более дифференцированном подходе к данному вопросу. Например, Б.М. Кедров, а также другие ученые, следующие в русле данных идей, при описании основных форм движения материи предлагали особо выделять геологическую форму движения, связанную с совокупным движением нашей планеты . В комплексных исследованиях биологов, экологов, геологов и географов выделяются системно-структурные комплексы, отражающие не только характеристики биосистем, но и разных частей геосистем (например, биогеоценозы, социобиогеоценозы; уровни организации геосистем; поверхностные и внутренние концентрические слои планеты, или геосферы - ядро, мантия, лито-, гидро-, био-, социо-, атмосфера и т.д., в целом отражающие ее структурно-функциональную организацию, и т.п.)- Реальные исследования процессов и механизмов эволюции биотических и социальных систем возможны лишь с учетом того, что известная нам биотическая и социальная жизнь появилась и развилась на особой космической системе - планете Гее или Земле, за счет животворной энергии Солнца в процессе

солнечно-земных взаимодействий Кроме того, научные результаты последних лет показывают возможность исследования планет и звезд как открытых систем Космоса, в которых активно проявляются механизмы космической эволюции и космической жизни (в соответствующих пространственно-временных масштабах)

На базе отмеченных идей, теоретической и практической значимости познания особых (материнских для Биоты и Социума) космических систем -космических мегасистем планет и звезд, в первую очередь, Земли и Солнца, А Н Дмитриевский, И А. Володин и Г И Шипов предлш-ают выделять дополнительную градацию при изучении Вселенной А именно, дифференцировать не только макси-Вселенную (как совокупность всех наблюдаемых космических мега-объектов), мини-Вселенную (чикрообъекты Космоса), но также и мнди-Вселенную, в первую очередь, нашу планету Авторы обосновывают данную дифференциацию развитием нового эволюционного подхода, в котором планета может играть роль не пассивного, но активного космического объекта, системно преобразующегося в соответствии с законами космической эволюции и законами системного движения материи (СДМ, как обозначают их авторы ).

Так, авторы пишут, что в представлениях об изменении Земли как целостного космического тела традиционно применялись две развитые в современной физике теории - астрофизики и квантовой теории поля «Действительно, с точки зрения астрофизики Земля была объектом неинтересным, так как, согласно традиционным представлениям, ее масса мала для возникновения существенных релятивистских эффектов общей теории относительности, лежащих в основе астрофизических моделей» [там же, с 124]. «Однако в последние годы получен целый ряд новых синергетических эффектов, позволяющих по-новому, с учетом квантовых релятивистских процессов, рассматривать геодинамику и структурные преобразования Земли В современной физике существуют разделы, изучающие макси-Вселенную (космология и астрофизика) и мини-Вселенную (микромир, квантовая теория поля) Здесь мы пытаемся сформулировать некоторые основы будущего раздела физики, изучающего «миди-Вселенную», включающую планетологию (в частности, строение и динамику Земли)» [там же, с 124]

«Следует заметить, что в науках о Земле начали широко применяться физические теории Главной проблемой для их применения является отсутствие фундаментальных физических основ и, в частности, отсутствие модели Земли как целого на основе современной нелинейной теории поля Это открыло бы дорогу к применению системного подхода к изучению Земли (курсив наш - Е У) на более глубоком теоретическом уровне Попытка построения такой модели (см ) потребовала формулирования целого ряда принципиально новых положений При этом выводы из них хорошо согласуются с экспериментальными данными и создают довольно стройную картину, которую можно положить в основу системных представлений о геодинамике» [там же, с 125] Полагаем, что целый пласт разнообразных специальных научных исследований о Земле и Солнечной системе (Володин, Дмитриев, Дмит-

риевский, Казначеев, Шипов и др) в последние годы подтверждает правомерность подобных высказываний о необходимости выделения особой формы реальности, подлежащей глубокому всестороннему изучению

На основе изложенного, в общей градации Миров можно выделить еще один - Мидимнр, отражающий мир отдельных космических мегасистем звезд и планет, а в их числе - Земли (Геи) и Солнца, имеющих наиболее важное теоретическое и практическое значение в жизни человека Познанием Мидимира как системного образования (Геи как целостности и Солнечной системы как целого) занимается большая группа геолого-географических наук, астрономических наук (планетология, планетная космогония, гелиоастрономия), экологических наук (учение о солнечно-земных связях, геоэкологические проблемы и т п.), а также целый ряд прикладных знаний (поиск, разработка и добыча полезных ископаемых - минеральных, органических ресурсов, разнообразное практическое использование осадочных, магматических и метаморфических пород, использование ресурсов и энергии воды, ветра, Солнца и т д)

С учетом описанного, общую типологию Миров можно представить следующим образом Микромир - Мндимир - Макромир - Мегамнр (или то же примерно в обратном порядке, в зависимости от целей познания Мега-мир - Мидимир Макромир - Микромир)

Значение представленных типологий частей Мира заключается в том, что они, во-первых, помогают в определенной мере систематизировать бесконечное количество объектов общества и природы Во-вторых, выявить определенные соотношения Микро-, Макро- и Мегамира (или более подробно, Микро-, Миди-, Макро- и Мегамира). В этом случае Микромир, по отношению к Макромиру, раскрывает глубокое структурное содержание последнего Мега-мир представляет, в самом широком смысле, геологическую и космическую среду (ближний и дальний Космос) бытия живых организмов, человека и общества, А Миднчир позволяет более предметно познать тот непосредственный космический базис, на котором сформировалась биотическая и социальная жизнь Земли и Солнечной системы В-третьих, уже в данных метрических соотношениях просматривается не только бесконечное многообразие, но связь и взаимодействие, казалось бы, на первый взгляд, несопоставимых объектов Мира.

Кроме того, в ряде системных исследований выделяется также Мезо-мир (Каган, Клир, Кузьмин, Малиновский, Рапопорт, Садовский, Урманцев и др) Он рассматривается как промежуточный между Микромиром (элементарных частиц, атомов и т п) и Макромиром окружающих человека и сравнимых с ним по величине биотических и социальных систем То есть к Мезомиру, как правило, относят крупные молекулы, например, биополимеры белков, нуклеиновых кислот, органоиды клетки, микроскопические (одноклеточные) формы и организмы Но наибольшую эври-стичность представляет рассмотрение мировых частей - Микромира, Макромира и Мегамира, а также Мидимира или Мезомира не только само по себе, а во взаимодействии с иерархическими частями Мира и с соответствующей структурной организацией Мира, в виде структурных уровней организации

материи . Поэтому вопросу общей иерархии Мира-Системы посвящен специальный, следующий раздел главы.

Введение

1 Объекты микромира

2 Концепции микромира и квантовая механика

Заключение

Список использованной литературы

Введение

Становление теории атомно-молекулярного строения мира приходится на начало 19 века, хотя еще Демокрит предполагал, что Вселенная слагается из мельчайших неделимых частиц, однако доказать экспериментально, что каждый химический элемент состоит из одинаковых атомов, удалось лишь в 1808 году. Сделал это английский химик и физик Дж.Дальтон - создатель химического атомизма, а в 1811 году итальянский физик и химик А.Авогадро выдвинул гипотезу молекулярного строения веществ (в частности, простых газов).

В конце XIX - начале XX вв. физика вышла на новый уровень исследований. Понятия и принципы классической физики оказались неприменимыми не только к изучению свойств пространства и времени, но еще в большей мере к исследованию физических свойств мельчайших частиц материи или микрообъектов, таких, как электроны, протоны, нейтроны, атомы и подобные им объекты, которые часто называют атомными частицами. Они образуют невидимый нами микромир.

В первое время физики были поражены необычными свойствами тех мельчайших частиц материи, которые они изучали в микромире. Попытки описать, а тем более объяснить свойства микрочастиц с помощью понятий и принципов классической физики потерпели явную неудачу. Поиски новых понятий и методов объяснения, в конце концов, привели к возникновению новой квантовой механики, к окончательному построению и обоснованию которой значительный вклад внесли Э. Шредингер (1887 – 1961), В. Гейзенберг (1901 – 1976), М. Борн (1882 – 1970). В самом начале эта механика была названа волновой в противоположность обычной механике, которая рассматривает свои объекты как состоящие из корпускул, или частиц. В дальнейшем для механики микрообъектов утвердилось название квантовой механики.

Все вышесказанное обосновывает актуальность данной темы.

Цель работы: всестороннее изучение и анализ микромира и его объектов.

Работа состоит из введения, двух глав, заключения и списка использованной литературы. Общий объем работы 14 страниц.

1 Объекты микромира

Все многообразие известных человечеству объектов и свойственных им явлений обычно разделяется на три качественно различные области - микро-, макро- и мегамиры (см. таблицу).

Понятие «Микромир» охватывает фундаментальные и элементарные частицы, ядра, атомы и молекулы.

Элементарные частицы – это частицы, входящие в состав прежде «неделимого» атома. К ним относят также и те частицы, которые получают при помощи мощных ускорителей частиц. Есть элементарные частицы, которые возникают при прохождении через атмосферу космических лучей, они существуют миллионные доли секунды, затем распадаются, превращаются в другие элементарные частицы или испускают энергию в форме излучения. К наиболее известным элементарным частицам относятся электрон, фотон, пи-мезон, мюон, нейтрино. В строгом смысле слова элементарные частицы не должны содержать в себе какие-либо другие частицы. Однако далеко не все из наиболее известных элементарных частиц удовлетворяют этому требованию. Было обнаружено, что элементарные частицы могут взаимно превращаться, т.е. не являются «последними кирпичиками» мироздания. В настоящее время уже известны сотни элементарных частиц, хотя согласно теории их число не должно быть особенно большим. Новейшие исследования, в частности, подтверждают выдвинутую ранее гипотезу о существовании еще «более элементарных» частиц – кварков.

Первой элементарной частицей, открытой в физике, стал электрон, который в 1897 году, изучая газовые разряды открыл английский физик Джозеф Томсон и измерил отношение его заряда к массе. Электрон - один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств твердых тел.

В обычном употреблении физики называют элементарными такие частицы, которые не являются атомами и атомными ядрами, за исключением протона и нейтрона. После установления сложной структуры многих элементарных частиц потребовалось ввести новое понятие – фундаментальные частицы, под которыми понимаются микрочастицы, внутреннюю структуру которой нельзя представить в виде объединения других свободной частиц.

Во всех взаимодействиях элементарные частицы ведут себя как единое целое. Характеристиками элементарных частиц являются, кроме массы покоя, электрического заряда, спина, также такие специфические характеристики (квантовые числа), как барионный заряд, лептонный заряд, гиперзаряд, странность и т.п.

В настоящее время достаточно много известно об атомарном строении вещества и элементарных частицах. Поскольку элементарные частицы способны к взаимным превращениям, это не позволяет рассматривать их, так же как и атом, в качестве простейших, неизменных «кирпичиков мироздания». Число элементарных частиц очень велико. Всего открыто более 350 элементарных частиц, из которых стабильны лишь фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы (каждая элементарная частица, за исключением абсолютно нейтральных, имеет свою античастицу). Остальные элементарные частицы самопроизвольно распадаются за время от 10 3 с (свободный нейтрон) до 10 -22 - 10 -24 с (резонансы).

Существует несколько групп элементарных частиц, различающихся по своим свойствам и характеру взаимодействия, которые принято делить на две большие группы: фермионы и бозоны (см. рисунок).

Фермионы составляют вещество, бозоны переносят взаимодействие.

Лептоны (от греч. легкий) - частицы со спином 1/2, не участвующие в сильном взаимодействии и обладающие сохраняющейся внутренней характеристикой - лептонным зарядом, могут быть нейтральными. Заряженные лептоны могут, как и электроны (относящиеся к их числу) вращаться вокруг ядер, образуя атомы. Лептоны, не имеющие заряда могут проходить беспрепятственно через вещество (хоть через всю Землю) не взаимодействуя с ним. У каждой частицы есть античастица, отличающаяся только зарядом.

Адроны - элементарные частицы, участвующие во всех фундаментальных взаимодействиях, включая сильное; характерным для адронов сильным взаимодействиям свойственно максимальное число сохраняющихся величин (законов сохранения). Адроны делятся на барионы и мезоны. По современным представлениям, адроны имеют сложную внутреннюю структуру: барионы состоят из трех кварков; мезоны - из кварка и антикварка.

Отдельную «группу» составляет фотон.

При столкновениях элементарных частиц происходят всевозможные превращения их друг в друга (включая рождение многих дополнительных частиц), не запрещаемые законами сохранения.

Атомом (от греч. atomos - неделимый) называют часть вещества микроскопических размеров и массы, мельчайшую частицу химического элемента, сохраняющую его свойства. Атомы состоят из элементарных частиц и имеют сложную внутреннюю структуру, представляя собой целостную ядерно-электронную систему. В центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома; вокруг движутся электроны, образующие электронные оболочки, размеры которых (~10-8 см) определяют размеры атома. Ядро атома состоит из протонов и нейтронов. Число электронов в атоме равно числу протонов в ядре (заряд всех электронов атома равен заряду ядра), число протонов равно порядковому номеру элемента в периодической системе. Атомы могут присоединять или отдавать электроны, становясь отрицательно или положительно заряженными ионами. Химические свойства атомов определяются в основном числом электронов во внешней оболочке; соединяясь химически, атомы образуют молекулы.

Важная характеристика атома - его внутренняя энергия, которая может принимать лишь определенные (дискретные) значения, соответствующие устойчивым состояниям атома, и изменяется только скачкообразно путем квантового перехода. Поглощая определенную порцию энергии, атом переходит в возбужденное состояние (на более высокий уровень энергии). Из возбужденного состояния атом, испуская фотон, может перейти в состояние с меньшей энергией (на более низкий уровень энергии). Уровень, соответствующий минимальной энергии атома, называется основным, остальные - возбужденными. Квантовые переходы обусловливают атомные спектры поглощения и испускания, индивидуальные для атомов всех химических элементов.

Под ядром атома понимается его центральная часть, в которой сосредоточена практически вся масса атома и весь его положительный заряд. Ядро состоит из нуклонов – протонов и нейтронов (обозначение p и n). Масса протона m P = 1,673×10 -27 =1,836m e , m n = 1,675×10 -27 = 1835,5m e . Масса ядра не равна сумме масс протонов и нейтронов, входящих в него (т.н. «дефект масс»). Протон несет элементарный положительный заряд, нейтрон – частица незаряженная. Число электронов в атоме равно порядковому номеру Z элемента в таблице Менделеева, а число протонов, поскольку в целом атом нейтрален, равно числу электронов. Тогда число нейтронов в ядре определяется следующим образом: N P = A – Z , где А – массовое число, т.е. целое число, ближайшее к атомной массе элемента в таблице Менделеева, Z – зарядовое число (число протонов). Для обозначения ядер применяется запись Z X A , где Х – символ химического элемента в таблице Менделеева. Ядра с одинаковыми Z, но разными А называются изотопами. Сейчас известно более 300 устойчивых и более 1000 неустойчивых изотопов. С неустойчивыми изотопами связано явление радиоактивности – ядерного распада.

Наша Вселенная разделена человеком на различные составляющие объективной реальности, распределена на ряд миров. Для удобства принято использовать такие понятия, как мегамир, макромир и микромир.

Для полного понимания значения этих терминов необходимо перевести слова в понятную нам лексику. Приставка "мега" - происходит от греческого μέγας , что обозначает "большой". Макро - в переводе с греческого μάκρος (макрос) — "большой", "длинный". Микро - происходит от греческого μικρός и означает "маленький".

Различные миры восприятия

К мегамиру относятся объекты космических размеров. Например: галактика, солнечная система, туманность.

Макромир - это то привычное для нас пространство, осязаемое и воспринимаемое естественным путём. Где мы можем видеть, воспринимать обычные физические объекты: автомобиль, дерево, камень. В нем также существуют такие привычные для нас понятия, как секунда, минута, день, год.

Интерпретируя по-другому, можно сказать, что макромир - это обычный мир, в котором живёт человек.

Существует второе определение. Макромир - это мир, в котором мы жили до появления квантовой физики. С возникновением новых знаний и понимания строения материи произошло деление на макромир и микромир.

Ввела человека в новые представления о мире и его составляющих частях. Установила ряд определений, уточнив, какие объекты характерны для микро- и макромира.

К определению объектов микромира отнесено все, что находится на атомном и субатомном уровне. Кроме своих размеров, этой зоне свойственны совершенно другие законы физики и философии её понимания.

Корпускула или волна?

Это область, где стандартные для нас законы лишены какого-либо применения. на этих уровнях пребывают сугубо в виде Анализируя утверждения некоторых учёных, что этой области мира присуще корпускулярное (в переводе означает "частица") проявление элементарных частиц, можно сказать, что не может быть однозначного видения в этих вопросах.

В некоторой степени они правы, с позиции макромира. При наличии наблюдателя они ведут себя как частицы. При отсутствии их поведение становится волновым.

В реальности территория области микромира представлена волнами энергии, зацикленными в кольцах и спиралях. Что касается нашей привычной зоны восприятия, то объекты макромира представлены в виде корпускулярной (предметы, объекты) составляющей и волновых процессов.

Пять различных миров

На сегодня существует пять типов нашего мира, в том числе и указанные ранее три (обычно используемые).

Рассмотрим более углублённо все составляющие части нашей объективной реальности.

Гипермир

Первым считается гипермир, но на данный момент нет конкретного доказательства его существования. К нему гипотетически относят множественные Вселенные.

Мегамир

Следующим считают ранее упомянутый мегамир. К нему причисляют мегагалактики, звезды, планетарные подсистемы, планеты, спутники звёздных систем, кометы, метеориты, астероиды, диффузную материю пространства и открытую не так давно «тёмную материю и её составляющие».

Линейное пространство может измеряться в астрономических единицах, и парсеках. Время - в миллионах и миллиардах лет. Основной силой является гравитационный тип взаимодействия.

Макромир

Третий мир - это часть реальной объективности мира, в котором существует человек. То, как вы определите понятие "макромир" и его отличие от других составляющих Вселенной, не является сложностью. Нет необходимости утруждать собственное понимание.

Оглянитесь вокруг, макромир - это все, что вы видите, и все, что окружает вас. В нашей части объективной реальности существуют как объекты, так и целые системы. Они включают также живые, неживые и искуственные объекты.

Некоторые примеры макрообъектов и макросистем: оболочки планеты (водная, газообразная, твёрдая), города, машины и здания.

Геологические и биологические макросистемы (леса, горы, реки, океаны).

Пространство измеряется в микромиллиметрах, миллиметрах, сантиметрах, метрах и километрах. Что касается времени, то оно измеряется в секундах, минутах, днях, годах и эрах.

Присутствует в основном электромагнитное поле взаимодействия. Квантовое проявление - фотоны. Имеется также гравитационный вид взаимодействия.

Микромир

Микромир - это область микрообъектов и микросостояний. Является частью реальности, где объекты предельно малых размеров, экспериментального масштаба. Для наблюдения обычным человеческим глазом они недоступны.

Рассмотрим некоторые примеры микрообъектов и микросистем. К ним относят: микромолекулы, атомы, составляющие атомов (протоны, электроны) и более мелкие элементарные частицы. А также кванты (переносчики) энергий и «физический» вакуум.

Пространство измеряется от 10 в минус десятой степени до 10 в минус восемнадцатой степени метров, а время - от «бесконечности» до 10 в минус двадцать четвёртой степени.

Преобладают в микромире следующие силы: слабое межатомное взаимодействие, квантовые поля - тяжёлые промежуточные бозоны; сильное межъядерное взаимодействие, квантовый тип полей - глюонов и p-мезонов; электромагнитный тип взаимодействия, благодаря которому существуют атомы и молекулы.

Гипомир

Последний мир весьма специфичен. Существует на сегодня не более чем теоретически.

Гипомир - это гипотетический мир внутри микромира. Он ещё более мал по своим размерам. В нем предположительно существуют объекты и системы.

Примеры гипообъектов и гипосистем: планкеон (все, что меньше размеров Планка - 10 в минус тридцать пятой степени метров), «пузырьковая сингулярность», а также присущ «физический» вакуум с предположительными элементами меньше микрочастиц и вполне допустимо существование гипочастиц «тёмной материи».

Пространство и время дискретны, находятся в пределах представленной модели планкеона:

Линейные параметры - 10-35 метров.
- Время планктеона - 10-43 секунды.
- Плотность гипомира - 1096 кг/м 3 .
- Энергия планктеона - 1019 ГэВ.

К базовым взаимодействиям в микромире, возможно, в будущем добавятся новые силы гипомира или они будут объединены в одно целое.

В процессе познания этого мира учёные для полного понимания делили все изучаемое на области, сферы, разделы, группы, части и многое другое. Именно этот способ позволяет чётко классифицировать и понимать суть окружающего мира.

Примерно шестьсот лет назад любой учёный назывался естествоиспытателем. На то время не было деление науки на какие-либо направления. Естествоиспытатель изучал физику, химию, биологию и все, с чем сталкивался.

Попытка понять и изучить мир привела к продуктивному и эффективному разделению. Но все же не забываем, что этот подход применил человек. Природа и окружающий мир являются целостными и неизменными, независимо от наших представлений о них.

Последние материалы раздела:

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...