Лазерная локация космических объектов. Лазерная локация, доплеровские изображения и синтез апертуры

  • Физика ,
  • Лазеры
  • Угловая разрешающая способность – важнейшая характеристика любой телескопической системы. Оптика утверждает, что это разрешение однозначно связано с длиной волны, на которой осуществляется наблюдение, и с диаметром входной апертуры телескопа. С большими диаметрами, как известно, большая проблема. Вряд ли когда-нибудь будет построен телескоп больше этого .
    Одним из способов значительного увеличения разрешающей способности является применяемый в радиоастрономии и радиолокации метод синтезирования больших и сверхбольших апертур. В миллиметровом диапазоне самую большую апертуру - 14 км - обещают формировать 66-ю антеннами проекта ALMA в Чили.

    Перенос методов апертурного синтеза в оптическую область, где длины волн на несколько порядков меньше, чем у радиолокаторов, связан с развитием техники лазерного гетеродинирования .

    1.Физические основы формирования изображений.

    Не будет ошибкой сказать, что изображение в любом оптическом устройстве формируется дифракцией света на входной апертуре, и более ничем. Посмотрим на изображение объекта из центра апертуры. Угловое распределение яркости изображения бесконечно удаленного точечного источника света (как, впрочем, и любого другого) будет одинаково для линзы и камеры-обскуры равного диаметра. Отличие линзы от обскуры заключается лишь в том, что линза переносит формируемое своей апертурой изображение из бесконечности в свою фокальную плоскость. Или, говоря иначе, производит фазовое преобразование входного плоского волнового фронта в сферически сходящийся. Для удаленного точечного источника и круглой апертуры изображение - это всем известная картина Эйри с кольцами .


    Угловой размер диска Эйри можно в принципе уменьшить и как будто увеличить разрешение (по рэлеевскому критерию), если задиафрагмировать апертуру специальным образом. Существует такое распределение пропускания по радиусу, при котором центральный диск теоретически можно сделать произвольно малым. Однако при этом световая энергия перераспределяется по кольцам и контраст сложного изображения падает до нуля.

    С математической точки зрения процедура формирования дифракционного изображения сводится к двухмерному преобразованию Фурье от входного светового поля (в скалярном приближении поле описывается комплексной функцией координат и времени). Любое изображение, регистрируемое глазом, экраном, матрицей или другим квадратичным по интенсивности приемником – не что иное, как двухмерный амплитудный спектр ограниченного апертурой светового поля, испускаемого объектом. Легко получить ту же самую картинку Эйри, если взять квадратную матрицу из одинаковых комплексных чисел (имитирующих плоский волновой фронт от удаленной точки), «вырезать» из нее круглую «апертуру», обнулив края, и сделать Фурье-преобразование всей матрицы.

    Короче говоря, если каким-то образом записать поле (синтезировать апертуру) на достаточно большой области без потери амплитудной и фазовой информации, то для получения изображения можно обойтись без гигантских зеркал современных телескопов и мегапиксельных матриц, просто вычисляя Фурье-образ полученного массива данных.

    2. Локация спутников и сверхразрешение.

    Будем наблюдать движущийся поперек луча зрения стабилизированный объект, подсвеченный непрерывным когерентным лазерным источником. Регистрация отраженного от него излучения производится гетеродинным фотоприемником с небольшой апертурой. Запись сигнала в течение времени t эквивалентна реализации одномерной апертуры длиной vt, где v – тангенциальная скорость движения объекта. Легко оценить потенциальную разрешающую способность такого метода. Посмотрим на околоземный спутник в верхней элонгации, летящий на высоте 500 км со скоростью 8 км/сек. За 0,1 секунды записи сигнала получим «одномерный телескоп» размером 800 метров, теоретически способный рассмотреть в видимом диапазоне детали спутника величиной в доли миллиметра. Неплохо для такого расстояния.

    Разумеется, отраженный сигнал на таких расстояниях ослабевает на много порядков. Однако гетеродинный прием (когерентное смешивание с опорным излучением) в значительной степени компенсирует это ослабление. Ведь, как известно, выходной фототок приемника в этом случае пропорционален произведению амплитуд опорного излучения и приходящего сигнала. Будем увеличивать долю опорного излучения и тем самым усиливать весь сигнал.

    Можно посмотреть с другой стороны. Спектр записанного сигнала с фотоприемника представляет собой набор доплеровских компонент, каждая из которых есть сумма вкладов от всех точек объекта, имеющих одинаковую лучевую скорость. Одномерное распределение отражающих точек на объекте определяет распределение спектральных линий по частоте. Полученный спектр и является по сути одномерным «изображением» объекта по координате «доплеровский сдвиг». Две точки нашего спутника, расположенные на расстоянии 1 мм друг от друга в плоскости, перпендикулярной лучу зрения, имеют разность лучевых скоростей порядка 0,01-0,02 мм/сек. (Отношение этой разности к скорости спутника равно отношению расстояния между точками к расстоянию до спутника). Разность доплеровских частот этих точек для видимой длины волны 0,5 мк составит (f=2V/λ) порядка 100 Гц. Спектр (доплеровское изображение) от всего микроспутника, скажем, размером 10 см, уложится в диапазон 10 кГц. Вполне измеримая величина.

    Можно посмотреть и с третьей стороны. Эта технология представляет собой не что иное, как запись голограммы, т.е. интерференционной картины, возникающей при смешивании опорного и сигнального полей. Она содержит в себе амплитудную и фазовую информацию, достаточную для восстановления полного изображения объекта.

    Таким образом, подсвечивая спутник лазером, регистрируя отраженный сигнал и смешивая его с опорным лучом от того же лазера, получим на фотоприемнике фототок, зависимость которого от времени отражает структуру светового поля вдоль «одномерной апертуры», длину которой, как уже было сказано, можно сделать достаточно большой.

    Двухмерная апертура, конечно, гораздо лучше и информативнее. Расставим равномерно несколько фотоприемников поперек движения спутника и запишем таким образом отраженное поле на площади vt*L, где L – расстояние между крайними фотоприемниками, которое в принципе ничем не ограничено. Например, те же 800 метров. Тем самым мы синтезируем апертуру «двухмерного телескопа» размером 800*800 метров. Разрешение по поперечной координате (L) будет зависеть от количества фотоприемников и расстояния между ними, по другой, «временной» координате (vt) – от ширины полосы излучения лазера и частоты оцифровки сигнала с фотоприемника.

    Итак, мы имеем записанное световое поле на очень большой площади и можем делать с ним все, что угодно. Например, получить двухмерное изображение очень маленьких объектов на очень большом расстоянии без всяких телескопов. Или можно восстановить трехмерную структуру объекта путем цифровой перефокусировки по дальности.

    Разумеется, реальная трехмерная конфигурация отражающих точек на объекте не всегда совпадает с их «доплеровским» распределением по лучевым скоростям. Совпадение будет, если эти точки находятся в одной плоскости. Но и в общем случае из «доплеровского изображения» можно извлечь много полезной информации.

    3. Что было раньше.

    Американская DARPA некоторое время назад финансировала программу , суть которой состояла в реализации подобной технологии. Предполагалось с летящего самолета лоцировать со сверхвысоким разрешением объекты на земле (танки, например), были получены некие обнадеживающие данные. Однако эту программу то ли закрыли, то ли засекретили в 2007 году и с тех пор про нее ничего не слышно. В России тоже кое-что делалось. Вот можно посмотреть картинку, полученную на длине волны 10,6 мк.

    4.Трудности технической реализации на длине волны 1,5 мк.

    По зрелом размышлении я решил здесь ничего не писать. Слишком много проблем.

    5. Кое-какие первичные результаты.

    Пока с трудом удалось «рассмотреть» с расстояния 300 метров детали плоского диффузно отражающего металлического объекта размером 6 на 3 мм. Это был кусочек какой-то печатной платы, вот фотка:


    Объект вращался вокруг оси, перпендикулярной лучу зрения, регистрация отраженного сигнала происходила примерно в момент максимального отражения (блика). Пятно от лазера, освещающее объект, имело размер около 2 см. Использовались всего 4 фотоприемника, разнесенные на 0,5 метра. Размер синтезированной апертуры оценивается величиной 0,5 м на 10 м.
    Собственно, на всякий случай сами записанные сигналы (слева) и их спектры (справа) в относительных единицах:


    Из предыдущей фотки объекта фотошопом выделены только интересующие нас освещаемые и отражающие участки, которые требуется увидеть:


    Изображение, восстановленное двухмерным фурье-преобразованием из 4 сигналов и смасштабированное для сравнения:


    Эта картинка вообще-то состоит всего из 4 строк (и около 300 столбцов), вертикальное разрешение изображения, соответственно, около 0,5 мм, однако темный уголок и обе круглые дырки вроде как видны. Горизонтальное разрешение – 0,2 мм, такова ширина токопроводящих дорожек на плате, видны все пять штук. (Обычный телескоп должен быть двухметрового диаметра, чтобы увидеть их в ближнем ИК).

    По правде говоря, полученное разрешение пока далеко от теоретического предела, так что неплохо бы довести до ума эту технологию. Дьявол, как известно, кроется в деталях, а деталей здесь очень много.

    Спасибо за внимание.

    Введение

    К настоящему времени сложились основные направления, по которым идет внедрение лазерной техники в военное дело. Этими направлениями являются:

    • 1. Лазерная локация (наземная, бортовая, подводная) .
    • 2. Лазерная связь.
    • 3. Лазерные навигационные системы.
    • 4. Лазерное оружие.
    • 5. Лазерные системы ПРО и ПКО.

    Ускоренными темпами идет внедрение лазеров в военную технику США, Франции, Англии, Японии, Германии, Швейцарии. Государственные учреждения этих стран всемерно поддерживают и финансируют работы в данной области.

    ЛАЗЕРНАЯ ЛОКАЦИЯ

    Лазерной локацией в зарубежной печати называют область оптикоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемых лазерами. Объектами лазерной локации могут стать танки, корабли, ракеты, спутники, промышленные и вооруженные сооружения. Принципиально лазерная локация осуществляется активным методом.

    В основе лазерной локации, так же как и в радиолокации лежат три основных свойства электромагнитных волн:

    1. Способность отражаться от объектов. Цель и фон, на котором она расположена, по-разному отражают упавшее на них излучение.

    Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем короче волна, тем она выше. Поэтому-то и проявлялась по мере развития радиолокации тенденция к перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны становилось все труднее и труднее, а затем вовсе и зашло в тупик. Создание лазеров открыло новые перспективы в технике локации.

    2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым проводится просмотр пространства, позволяет определить направление на объект (пеленг цели) Это направление находят по расположению оси оптической системы, формирующей лазерное излучение. Чем уже луч, тем с большей точностью может быть определен пеленг.

    Простые расчеты показывают - чтобы получить коэффициент направленности около 1.5, при использовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

    Угловой раствор луча лазера, изготовленного с помощью твердотельного активного вещества, как известно составляет всего 1.0... 1.5 градуса и при этом без дополнительных оптических систем.

    Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогичного радиолокатора. Использование же незначительных по габаритам оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

    3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение: L = ct/2, где L - расстояние до объекта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.

    Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем короче импульс, тем лучше.

    Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них.

    Прежде всего, зона действия. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальностями действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

    Другим параметром является время обзора. Под ним понимается время, в течении которого лазерный луч производит однократный обзор заданного объема пространства.

    Следующим параметром локатора является определяемые координаты.

    Они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и подводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Будем пользоваться таким понятием как разрешающая способность. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей.

    Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как помехозащищенность. Это способность лазерного локатора работать в условиях естественных и искусственных помех. И весьма важной характеристикой локатора является надежность. Это свойство локатора сохранять свои характеристики в установленных пределах в заданных условиях эксплуатации.


    Осенью 1965 г. группа советских ученых выполнила уникальный эксперимент: определила расстояние до Луны с точностью до 200 м.

    Ученые использовали лазер на рубине, генерировавший гигантские импульсы длительностью 5 10“8 с. Для посылки лазерных импульсов к Луне и последующего приема импульсов, отраженных лунной поверхностью, применялся оптический телескоп Крымской обсерватории с диаметром главного зеркала 260 см. В 1969 г. на поверхность Луны высадились американские астронавты с «Аполлона-11», а в 1970 г. на лунную поверхность опустился управляемый с Земли советский космический аппарат «Луноход-1». Астронавты и луноход доставили на Луну специальные светоотража- тели-катафоты. Катафот, или, иначе, уголковый отражатель предназначен для того, чтобы возвращать падающий на него световой луч назад-в направлении, строго параллельном первоначальному направлению луча. Такой способностью обладает, например, уголок, образованный тремя плоскими зеркалами, ориентированными под прямыми углами друг к другу. Используя отражение посылаемых с Земли коротких лазерных импульсов от уголковых отражателей, находящихся на лунной поверхности, ученые смогли определить расстояние от Земли до Луны (точнее говоря, от зеркала земного телескопа до лунного отражателя) с погрешностью, не превышающей нескольких десятков сантиметров. Чтобы представить себе, насколько высока такая точность, надо вспомнить, что Луна находится на расстоянии 380000 км от

    Установленный на поверхности Луны лазерный отражатель представляет собой квадрат с длиной стороны 45 см, состоящий из 100 отдельных уголковых отражателей. Предусмотрена возможность изменения ориентации плоскости квадрата - с учетом местоположения отражателя на лунной поверхности
    Земли. Погрешность измерения дальности, равная 40 см, в 109 раз меньше указанного расстояния!
    Но зачем измерять расстояние до Луны со столь огромной точностью? Неужели это делается только из «спортивного интереса»? Конечно, нет. Такие измерения выполняют не для того, чтобы поточнее узнать расстояние от земного телескопа до лунного отражателя, а для того, чтобы поточнее определить изменения этого расстояния в течение некоторого промежутка времени, например в течение недели, месяца, года. Исследуя графики, описывающие изменение расстояния со временем, ученые получают информацию для ответа на ряд вопросов, имеющих большую научную важность: как распределена масса в недрах Луны? С какой скоростью сближаются или расходятся земные континенты? Как изменяется со временем положение магнитных полюсов Земли?
    Вот поэтому и существуют в мире несколько десятков лазерно-локационных систем космического назна
    чения. Они осуществляют локацию Луны, а также искусственных спутников Земли геодезического назначения. В качестве примера укажем лазерно-локационную систему Физического института имени П. Н. Лебедева АН СССР, предназначенную для локации Луны. Лазер на рубине генерирует гигантские световые импульсы длительностью 10“8 с и с энергией порядка 0,1 Дж. Импульсы проходят через квантовый усилитель, после чего их энергия увеличивается до 3 Дж. Затем световые импульсы попадают на 260-см зеркало телескопа и отправляются к Луне. Погрешность измерения расстояния до Луны составляет в данном случае 90 см. За счет сокращения длительности импульса до * 10“ 9 с погрешность уменьшена до 25 см. В качестве еще одного примера отметим лазерно-локационную систему Космического центра в США, предназначенную для локации искусственных спутников Земли. В ней используется импульсный рубиновый лазер, генерирующий импульсы длительностью 4* 10" 9 с и с энергией 0,25 Дж. Погрешность измерения расстояния составляет 8 см.
    Упрощенная оптическая схема лазерно-локационной системы Физического института АН СССР: 7 - лазер на рубине, 2 - квантовый усилитель света, 3 - главное зеркало телескопа диаметром 260 см

    Лазерные локаторы устанавливают не только на земной поверхности, но и на летательных аппаратах. Представим себе, что происходит сближение двух космических кораблей и предстоит их автоматическая стыковка. Необходимо точно контролировать взаимное положение кораблей, точно измерять расстояние между ними. Для этого на одном из кораблей устанавливают лазерный локатор. В качестве примера рассмотрим локатор на основе С02-лазера, генерирующего регулярную последовательность световых импульсов с частотой следования 50 кГц. Лазерный луч сканируется построчно (подобно электронному лучу в телевизионной трубке) в пределах телесного угла 5 х 5°; время обзора лучом этого сектора пространства составляет 10 с. Лазерный локатор осуществляет поиск и опознавание стыкуемого аппарата в указанном секторе пространства, непрерывное измерение его угловых координат и дальности, обеспечивает точное маневрирование - вплоть до момента стыковки. Всеми операциями локатора управляет бортовая ЭВМ.
    Лазерные локаторы сегодня используют как в космонавтике, так и в авиации. В частности, они могут выполнять роль точных измерителей высоты. Заметим, что лазерный высотомер применялся на космических кораблях «Аполлон» для картографирования поверхности Луны.
    Основное назначение лазерных локаторов-такое же, как и радиолокаторов: обнаружение и опознавание удаленных от наблюдателя объектов, слежение за перемещением этих объектов, получение информации о характере объектов и их движении. Как и в радиолокации, в оптической локации для обнаружения объекта и получения информации о нем используются импульсы излучения, отраженные объектом. При этом у оптической локации есть ряд преимуществ перед радиолокацией. Лазерный локатор позволяет более точно определять координаты и скорость объекта. Более того, он дает возможность выявлять размеры объекта, его форму, ориентацию в пространстве. На экране лазерного локатора можно наблюдать видеоизображение объекта.
    Преимущества лазерной локации связаны с острой направленностью лазерных пучков, высокой частотой оптического излучения, исключительно малой длительностью световых импульсов. Действительно, ост- 66
    ронаправленным лучом можно буквально «ощупать» объект, «просмотреть» разные участки его поверхности. Высокая частота оптического излучения позволяет более точно измерить скорость объекта. Напомним, что если объект движется на наблюдателя (от наблюдателя), то отраженный им световой импульс будет иметь уже не исходную частоту, а более высокую (более низкую) частоту. Это есть хорошо известный как в оптике, так и в акустике эффект Доплера; этот эффект лежит в основе обсуждавшихся ранее лазерных анемометров. Изменение частоты отраженного импульса (доплеровское смещение частоты) пропорционально скорости объекта (точнее, проекции скорости на направление от наблюдателя к объекту) и частоте излучения. Чем выше частота излучения, тем больше измеряемое локационной аппаратурой доплеровское смещение частоты и, следовательно, тем точнее может быть определена скорость объекта. Наконец, отметим важность использования в локации достаточно коротких импульсов излучения. Ведь измеряемое с помощью локатора расстояние до объекта пропорционально промежутку времени от отправления зондирующего импульса до приема отраженного импульса. Чем короче сам импульс, тем более точно можно определить этот промежуток времени, а значит, и расстояние до объекта. Недаром в космической лазерной локации используются световые импульсы длительностью порядка 10“8 с и меньше. Напомним, что при длительности импульса 10“8 с погрешность при локации Луны составила 90 см, а при длительности импульса 2 10_9с погрешность уменьшилась до 25 см.
    Впрочем, у оптических локационных систем есть и недостатки. Конечно, довольно удобно «осматривать» объект с помощью узкого остронаправленного луча лазера. Однако не так-то просто с помощью такого луча обнаружить объект; время обзора контролируемой области пространства оказывается в данном случае относительно большим. Поэтому оптические локационные системы часто используют в комплексе с радиолокационными. Последние обеспечивают быстрый обзор пространства, быстрое обнаружение цели, а оптические системы затем измеряют параметры обнаруженной цели, осуществляют слежение за целью. Кроме того, при распространении оптического излуче
    ния через естественную среду - атмосферу или воду- возникают проблемы, связанные с воздействием среды на световой луч. Во-первых, свет частично поглощается в среде. Во-вторых, по мере распространения излучения по трассе происходит непрерывно нарастающее искажение волнового фронта светового пучка вследствие турбулентности атмосферы, а также рассеяния света на частицах среды. Все это ограничивает дальность действия наземных и подводных оптических локационных систем и ставит их работу в зависимость от состояния среды и, в частности, от погодных условий.

    Лазерной локацией называют область оптикоэлектроники, занимающегося обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемого лазерами. Объектами лазерной локации могут быть танки, корабли, ракеты, спутники, промышленные и военные сооружения. Принципиально лазерная локация осуществляется активным методом. Нам уже известно, что лазерное излучение отличается от температурного тем, что оно является узконаправленным, монохраматичным, имеет большую импульсивную мощность и высокую спектральную яркость. Все это делает оптическую локацию конкурентноспособной в сравнении с радиолокаций, особенно при ее использовании в космосе (где нет поглощающего воздействия атмосферы) и под водой (где лоя ряда волн оптического диапазона существуют окна прозрачности).

    В основе лазерной локации, так же как и радиолокации, лежат три основных свойства электромагнитных волн:

    1. Способность отражаться от объектов. Цель и фон на котором она расположена, по разному отражают упавшее на них излучение. Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем, короче волна, тем она выше. Поэтому-то проявлялась по мере развития радиолокации тенденция перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны, становилось все более трудным делом, а затем и зашло в тупик.

    Создание лазеров открыло новые перспективы в технике локации.

    2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым производиться просмотр пространства, позволяет определить направление на объект (пеленг цели).

    Это направление находят по расположению оси оптической системы, формирующей лазерное излучение (в радиолокации - по направлению антенны). Чем уже луч, тем с большей точностью может быть определен пеленг. Определим коэффициент направленного действия и диаметр антенны по следующей простой формуле,

    G = 4п * S

    где G - коэффициент направленного действия, S - площадь антенны, м2, / - длина волны излучения мкм.

    Простые расчеты показывают - чтобы получить коэффициент направленности около 1,5 при пользовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

    Угловой раствор луча лазера, изготовленного с использованием твердотельного активного вещества, как известно, составляет всего 1,0 - 1,5 градуса и при этом без дополнительных оптических фокусирующих систем (антенн). Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогического радиолокатора. Использование же незначительных по габарита м оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

    3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так. при импульсном методе дальнометрирования используется следующее соотношение:

    L = ct и

    где L - расстояние до объекта, км, С - скорость распространения излучения км/с, t и -время прохождения импульса до цели и обратно, с.

    Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем, короче импульс, тем лучше (при наличии хорошей полосы пропускания, как говорят радисты). Но нам уже известно, что самой физикой лазерного излучения заложена возможность получения импульсов с длительностью 10-7 - 10-8 с. А это обеспечивает хорошие данные лазерному локатору.

    Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них,см.рис.

    Прежде всего з о н а д е й с т в и я. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальности действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

    Другим параметром локатора является в р е м я о б з о р а. Под ним понимается время, в течение которого лазерный луч приводит однократный обзор заданного объема пространства.

    Следующим параметром локатора являются о п р е д е л я е м ы е к о о р д и н а т ы. они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и надводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Их рассмотрение выходит за рамки данной книги. Однако будем пользоваться таким понятием, как р а з р е ш а ю щ а я с п о с о б н о с т ь. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей. Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как п о м е х о з а щ ищ е н н о с т ь. Это способность лазерного локатора работать в условиях естественных (Солнце, Луна) и искусственных помех.

    И весьма важной характеристикой локатора является н а д е ж н н о с т ь. Это свойство локатора сохранять свои характеристики и установленных пределах в заданных условиях эксплуатации.

    Схема лазерного локатора, предназначенного для измерения четырех основных параметров объекта (дальности, азимута, угла места и скорости) см. рис. на стр. 17. Хорошо видно, что конструктивно такой локатор состоит из трех блоков: передающего, приемного и индикаторного. Основное назначение передающего лока-тора - генерирование лазерного излучения, формирование его в пространстве, во времени и направлении в район объекта. Передающий блок состоит из лазера с источником возбуждения, модулятора добротности, сканирующего устройства, обеспечивающего посылку энергии в заданной зоне по заданному закону сканирования, а также передающей оптической системы.

    Основное назначение приемного блока - прием излучения отраженного объектом, преобразование его в электрический сигнал и обработка для выделения информации об объекте. Оно состоит из приемной оптической системы, интерференционного фильтра, приемника излучения, а также блоков измерения дальности, скорости и угловых координат.

    Индикаторный блок служит для указания в цифровой форме информации о параметрах цели.

    В зависимости от того, для какой цели служит локатор, различают: дальномеры, измерители скорости (допплеровские локаторы), собственно локаторы(дальность, азимут, и угол места).

    CХЕМА ЛАЗЕРНОГО ЛОКАТОРА

    приемник

    излучения

    оптический фильтр

    приемная оптическая система

    ИНДИКАТОРНЫЙ БЛОК

    ПРИЕМНЫЙ БЛОК

    блок измерения дальности

    блок измерения скорости

    блок измерения угловых координат

    Угол места

    Скорость

    Блок питания

    Cтраница 1


    Лазерная локация относится к дистанционным методам исследований.  

    Лазерной локацией в зарубежной печати называют область оптикоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диа - пазона, излучаемых лазерами. Объектами лазерной локации могут быть танки, корабли, ракеты, спутники, промышленные и военные сооружения.  

    Применение лазерной локации для исследований и контроля качества воздушного бассейна дает возможность оперативных измерений загрязнения атмосферы в неограниченно больших объемах, повышения точности и достоверности исходной информации для проектирования.  

    В лазерной локации, когда принимаемая информация имеет ярко выраженный статистический характер, подобный подход оказывается особенно оправданным. Действительно, в данном случае отдельные коэффициенты определяются лишь с некоторой точностью, так что увеличение их числа приводит к увеличению информации о регистрируемом сигнале лишь до некоторого предела, после которого прирост информации нивелируется возрастанием флук-туационных ошибок.  

    В лазерной локации модель полностью известного сиг-нала нереальна, так как знание отраженного сигнала с точностью до фазы равносильно знанию расстояния до цели с точностью до длины волны.  

    В методе лазерной локации используются уголковые отражатели.  

    С точки зрения лазерной локации все атмосферные эффекты могут быть (хотя в некоторых случаях и весьма условно) разделены на две группы. В первую группу входят те явления, которые вызывают изменение суммарной интенсивности направляющегося к цели светового потока. Во вторую - те, которые вызывают изменение геометрических параметров подсвечивающего пучка (его расширение и отклонение) и перераспределение энергии в зоне цели.  

    Изложена общая теория лазерной локации и принципы построения лазерных локационных средств, предназначенных для решения широкого круга практических задач. С единых позиций теории статистических решений рассмотрены основные вопросы оптимального приема лазерных локационных сигналов. Проанализированы методы обработки траекторных измерений, различные способы получения некоординатной информации, включая голо-графическую, интерферометрическую и адаптивную. На конкретных примерах рассмотрены основные принципы построения экспериментальных лазерных средств.  

    Помимо исследований общего характера для лазерной локации оказываются весьма важны исследования, относящиеся к Искажениям конкретных изображений. Это позволит, с одной стороны, приучить оператора к восприятию подобных изображений, а с другой - установить предельные параметры фазовых искажений, при которых качество изображений не выходит за рамки допустимых норм.  

    В монографии изложены общая теория лазерной локации и принципы построения лазерных локационных средств, предназначенных для решения широкого круга практических задач. С позиций теории статистических решений рассмотрены основные вопросы оптимального приема лазерных локационных сигналов, измерения параметров. Проанализированы методы обработки траекторных измерений, различные способы получения некоординатиой информации, включая голографическую, интерфе-рометрическую и адаптивную.  

    К началу 80 - х годов лазерная локация оформилась в самостоятельное научно-техническое направление.  

    Для большинства представляющих интерес с точки зрения лазерной локации длин волн коэффициенты молекулярного и корпускулярного рассеяния увеличиваются обратно пропорционально величине длины волны в четвертой степени. Молекулярное (релеев-ское) рассеяние света неизбежно имеет место и оно почти не меняется во времени, но практически не препятствует прохождению света видимых и инфракрасных длин волн. Например, излучение с длиной волны 0 5 мкм, направленное вертикально с уровня моря в зенит будет ослаблено в толще атмосферы за счет релеевского рассеяния всего на 13 %; в дальнем инфракрасном диапазоне (10 6 мкм) релеевским рассеянием вообще можно пренебречь.  

    Рассмотрим предварительно вопрос о нелинейных поправках в уравнении лазерной локации для традиционных схем аэрозольного зондирования.  


    Из всего большого класса твердотельных лазеров в современной лазерной локации наиболее широко используются три типа: лазеры на рубине, на стекле с неодимом и на гранате, работающие в импульсно-периодическом режиме. Первый тип дает излучение на длине волны Я-0 69 мкм, второй и третий - на К 1 06 мкм. Импульсные мощности, реализуемые этими лазерами, доходят до 109 Вт при длительности импульса 10 - 8 с и частоте следования импульсов до 10 Гц и выше.  

    Последние материалы раздела:

    Реферат: Школьный тур олимпиады по литературе Задания
    Реферат: Школьный тур олимпиады по литературе Задания

    Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

    Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
    Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

    Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....

    Кир II Великий - основатель Персидской империи
    Кир II Великий - основатель Персидской империи

    Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

    © Справочники. Учебная литература EVGENPOL.RU, 2024

    Все статьи, расположенные на сайте, несут лишь ознакомительный характер.