Объем отсеченной треугольной призмы равен 5. Через среднюю линию основания треугольной призмы

Эту темa будет интереснa учащимся 10-11 классов в рaмкaх подготовки к ЕГЭ. Формулу Пикa можно применять при вычислении площади фигуры, изобрaжённой на клетчaтой бумаге (это зaдaние предложенно в контрольно-измерительных мaтериaлaх ЕГЭ).

Ход урока

"Предмет математики настолько серьезен,

что полезно не упускать случая

сделать его немного занимательным"

(Б. Паскаль)

Учитель: Есть задачи, которые необыкновенные и не похожи на задачи из школьных учебников? Да, это задачи на клетчатой бумаге. Такие задачи есть в контрольно-измерительных материалах ЕГЭ. В чём же зaключaется особенность тaких задач, кaкие методы и приёмы используются для решения зaдaч нa клетчатой бумaге? Нa этом зaнятии мы исследуем зaдaчи нa клетчaтой бумaге, связaнные с нaхождением площади изображённой фигуры, и научимся вычислять площади многоугольников, нарисованных на клетчатом листке.

Учитель: Объектом исследовaния будут задачи на клетчатой бумаге.

Предметом нашего исследования будут задачи нa вычиcление площади многоугольников на клетчатой бумаге.

И целью исcледования будет формула Пика.

В - количеcтво целочисленных точек внутри многоугольника

Г - количество целочисленных точек на границе многоугольника

Это удобная формула, с помощью которой можно вычислить площадь любого многоугольника без самопересечений с вершинами в узлах клетчатой бумаги.

Кто же такой Пик? Пик Георг Алекcандров (1859-1943 гг.) - австрийский математик. Открыл формулу в 1899 году.

Учитель: Сформулируем гипотезу: площадь фигуры, вычисленная по формуле Пика, равна площади фигуры, вычисленной по формулам геометрии.

При решении задач на клетчатой бумаге нам понадобится геометрическое воображение и достаточно проcтые сведения, которые нам известны:

Площадь прямоугольника равна произведению смежных сторон.

Площадь прямоугольного треугольника равна половине произведения cторон, образующих прямой угол.

Учитель: Узлы cетки - точки, в которых пересекаются линии сетки.

Внутренние узлы многоугольника - синие. Узлы на границах многоугольника - коричневые.

Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги.

Учитель: Проведём исследования для треугольника. Сначала посчитаем площадь треугольника по формуле Пика.

В + Г /2 − 1 , где В Г — количество целочиcленных точек на границе многоугольника.

В = 34 , Г = 15 ,

В + Г /2 − 1 = 34 + 15 :2 − 1 = 40, 5 Ответ: 40, 5

Учитель : Теперь посчитаем площадь треугольника по формулам геометрии. Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как cумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника. Учащиеся выполняют вычисления в тетрадях. Затем проверяют свои результаты с вычислениями на доске.

Учитель: Сравнив результаты исследований, сделайте вывод. Получили, что площадь фигуры, вычисленная по формуле Пика, равна площади фигуры, вычисленной по формулам геометрии. Итак, гипотеза оказалась верной.

Далее учитель предлагает вычислить площадь «своего» произвольного многоугольника по формулам геометрии и по формуле Пика и сравнить полученные результаты. «Поиграть» с формулой Пика можно на сайте математических этюдов.

В заключение статьи предлагается одна из работ по теме «Вычисление площади произвольного многоугольника с помощью формулы Пика» .

Еще п ример:

Площадь многоугольника с целочисленными вершинами равна В + Г /2 − 1 , где В есть количество целочисленных точек внутри многоугольника, а Г — количество целочисленных точек на границе многоугольника.

В = 10 , Г = 6 ,

В + Г /2 − 1 = 10 + 6 :2 − 1 = 12 ОТВЕТ: 12

Учитель : Предлагаю вашему вниманию еще решить следующие задачи:

Ответ: 12

Ответ: 13

Ответ: 9

Ответ: 11,5

Ответ: 4

Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см ×1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

1

Гибадуллина Г.И. (Нурлат, МАОУ СОШ №1)

1. Бунимович Е.А., Дорофеев Г.В., Суворова С.Б. и др. Математика. Арифметика. Геометрия. 5 класс: учебн. для общеобразоват. организаций с прил. на электрон. носителе -3–е изд. – М.: Просвещение, 2014. – 223, с. : ил. – (Сферы).

2. Бунимович Е.А., Кузнецова Л.В., Минаева С.С. и др. Математика. Арифметика. Геометрия. 6 класс: учебн. для общеобразоват. организаций. 5-е изд. – М.: Просвещение, 2016. – 240 с.: ил. – (Сферы).

3. Васильев Н.Б. Вокруг формулы Пика // Квант. – 1974. – №2. – С. 39–43.

4. Рассолов В.В. Задачи по планиметрии. 5–е изд., испр. и доп. – М.: 2006. – 640 с.

5. Ященко И.В. ОГЭ. Математика: типовые экзаменационные варианты: О-39 36 вариантов – М.: Изд-во «Национальное образование», 2017. – 240 с. – (ОГЭ. ФИПИ – школе).

6. Решу ОГЭ: математика. Обучающая система Дмитрия Гущина. ОГЭ-2017: задания, ответы, решения [Электронный ресурс]. – Режим доступа: https://oge.sdamgia.ru/test?id=6846966 (дата обращения 02.04.2017).

Я ученик 6 класса. Изучать геометрию начал ещё с прошлого года, ведь занимаюсь я в школе по учебнику «Математика. Арифметика. Геометрия» под редакцией Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и другие.

Наибольшее мое внимание привлекли темы «Площади фигур», « Составление формул». Я заметил, что площади одних и тех же фигур можно находить различными способами. В быту мы часто сталкиваемся с задачами нахождения площади. Например, найти площадь пола, который придется покрасить. Любопытно ведь, чтобы купить необходимое количество обоев для ремонта, нужно знать размеры комнаты, т.е. площадь стен. Вычисление площади квадрата, прямоугольника и прямоугольного треугольника не вызывало у меня затруднений.

Заинтересовавшись этой темой, я начал искать дополнительный материал в Интернете. В результате поисков я натолкнулся на формулу Пика- это формула для вычисления площади многоугольника, нарисованного на клетчатой бумаге. Вычисление площади по этой формуле мне показалось доступным любому ученику. Именно поэтому я решил провести исследовательскую работу.

Актуальность темы . Данная тема является дополнением и углублением изучения курса геометрии.

Изучение данной темы поможет лучше подготовиться к олимпиадам и экзаменам.

Цель работы:

1. Ознакомиться с формулой Пика.

2. Овладеть приемами решений геометрических задач с использованием формулы Пика.

3. Систематизировать и обобщить теоретический и практический материалы.

Задачи исследования:

1. Проверить эффективность и целесообразность применения формулы при решении задач.

2. Научиться применять формулу Пика в задачах разной сложности.

3. Сравнить задачи, решенные с помощью формулы Пика и традиционным способом.

Основная часть

Историческая справка

Георг Александр Пик - австрийский математик , родился 10 августа года. Он был одарённым ребёнком, его обучал отец, возглавлявший частный институт. В 16 лет Георг закончил школу и поступил в Венский университет. В 20 лет получил право преподавать физику и математику. Всемирную известность ему принесла формула для определения площади решетки полигонов. Свою формулу он опубликовал в статье в 1899 году. Она стала популярной, когда польский ученый Хьюго Штейнгауз включил ее в 1969 году в издание математических снимков.

Георг Пик получил образование в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско- Фердинандском университете в Праге. Там же он стал преподавателем. Он оставался в Праге до своей отставки в 1927 году, а затем вернулся в Вену.

Пик возглавлял комитет в немецком университете Праги, который назначил Эйнштейна профессором кафедры математической физики в 1911 году.

Он был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги.

Когда нацисты вошли в Австрию 12 марта 1938 года, он вернулся Прагу. В марте 1939 года нацисты вторглись в Чехословакию. 13 июля 1942 года Пик был депортирован в созданный нацистами в северной Чехии лагерь Терезиенштадт, где умер две недели спустя в возрасте 82 лет.

Исследование и доказательство

Свою исследовательскую работу я начал с выяснения вопроса: площади каких фигур я смогу найти? Составить формулу для вычисления площади различных треугольников и четырехугольников я мог. А как же быть с пяти-, шести-, и вообще с многоугольниками?

В ходе исследования на различных сайтах я увидел решения задач на вычисление площади пяти-, шести-, и других многоугольников. Формула, позволяющая решать данные задачи, называлась формулой Пика. Она выглядит так: S=B+Г/2-1, где В - количество узлов, лежащих внутри многоугольника, Г - количество узлов, лежащих на границе многоугольника. Особенность данной формулы состоит в том, что её можно применять только для многоугольников, нарисованных на клетчатой бумаге.

Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны ½, а следовательно, площадь многоугольника равна половине их числа Т.

Чтобы найти это число, обозначим через n число сторон многоугольника, через В - число узлов внутри него, через Г - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна 180°. Т.

Теперь найдем сумму другим способом.

Сумма углов с вершиной в любом внутреннем узле составляет 2.180°, т.е. общая сумма углов равна 360°. В; общая сумма углов при узлах на сторонах, но не в вершинах равна (Г - n)180°, а сумма углов при вершинах многоугольника будет равна (Г - 2)180°. Таким образом, Т=2.180°. В+(Г-n)180°+(n-2)180°. Выполнив раскрытие скобок и разделив на 360°, получаем формулу для площади S многоугольника, известную как формула Пика.

Практическая часть

Эту формулу решил проверить на заданиях из сборника ОГЭ-2017. Взял задачи на вычисление площади треугольника, четырехугольника и пятиугольника. Решил сравнить ответы, решая двумя способами: 1) дополнил фигуры до прямоугольника и из площади полученного прямоугольника вычел площадь прямоугольных треугольников; 2) применил формулу Пика.

S = 18-1,5-4,5 = 12 и S = 7+12/2-1= 12.

S = 24-9-3 = 12 и S = 7+12/2-1 = 12.

S = 77-7,5-12-4,5-4 =49 и S = 43+14/2-1 = 49.

Сравнив полученное, делаю вывод, что обе формулы дают один и тот же ответ. Найти площадь фигуры по формуле Пика, оказалось быстрее и легче, ведь вычислений было меньше. Легкость решения и экономия времени на вычислениях мне пригодятся в будущем при сдаче ОГЭ.

Это подтолкнуло меня на проверку возможности применения формулы Пика на более сложных фигурах.

S = 0 + 4/2 -1 = 1

S = 5+11/2-1 = 9,5

S = 4+16/2-1 = 1

Заключение

Формула Пика проста в понимании и удобна в применении. Во-первых, достаточно уметь считать, делить на 2, складывать и вычитать. Во-вторых, можно найти площадь и сложной фигуры, не затратив много времени. В-третьих, эта формула работает для любого многоугольника.

Недостаток в том, что Формула Пика применима только для фигур, которые нарисованы на клетчатой бумаге и вершины лежат на узлах клеток.

Я уверен, что при сдаче выпускных экзаменов, задачи на вычисление площади фигур не будут вызывать затруднения. Ведь я уже знаком с формулой Пика.

Библиографическая ссылка

Габбазов Н.Н. ФОРМУЛА ПИКА // Старт в науке. – 2017. – № 6-1. – С. 130-132;
URL: http://science-start.ru/ru/article/view?id=908 (дата обращения: 02.03.2019).

Старкова Кристина, ученица 8Б класса

В работе рассмотрена теорема Пика и ее доказательство.

Рассмотрены задачи на нахождение площади многоугольников

Скачать:

Предварительный просмотр:

УПРАВЛЕНИЕ ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

АДМИНИСТРАЦИИ ЧАЙКОВСКОГО МУНИЦИПАЛЬНОГО РАЙОНА

ПЕРМСКОГО КРАЯ

VI МУНИЦИПАЛЬНАЯ КОНФЕРЕНЦИЯ ИССЛЕДОВАТЕЛЬСКИХ РАБОТ
УЧАЩИХСЯ

Муниципальное автономное общеобразовательное учреждение

«средняя общеобразовательная школа №11»

СЕКЦИЯ: МАТЕМАТИКА

Применение формулы Пика

Учащаяся 8 «Б» класса

МАОУ СОШ №11Чайковский

Руководитель:Батуева Л,Н.,

Учитель математики МАОУ СОШ№11

г. Чайковский

2012 год

I. Введение……………………………………………………. 2

II. Формула Пика

2.1.Решетки.Узлы………………………………………… .4

2.2.Триангуляция многоугольника………………………5

2.3. Доказательство теоремы Пика………………………6

2.4 Исследование площадей многоугольников…………9

2.5. Вывод…………………………………………………..12

III.Геометрические задачи с практическим содержанием…13

IV. Заключение………………………………………………..14

V. Список используемой литературы………………………..16

  1. Введение

Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» встал вопрос есть ли задачи, отличные от задач рассмотренных в учебники геометрии. Это задачи на клетчатой бумаге. У нас возникали вопросы: в чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. Увидев такие задачи в контрольно – измерительных материалах ЕГЭ и ГИА, решила обязательно исследовать задачи на клетчатой бумаге, связанные с нахождением площади изображённой фигуры.

Я приступила к изучению литературы, Интернет-ресурсов по данной теме. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики? Не судите поспешно. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке. Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.

Мы определили:

Объект исследования : задачи на клетчатой бумаге

Предмет исследования : задач на вычисление площади многоугольника на клетчатой бумаге, методы и приёмы их решения.

Методы исследования : моделирование, сравнение, обобщение, аналогии, изучение литературных и Интернет-ресурсов, анализ и классификация информации.

  1. Цель исследования: Вывести и проверить формулы вычисления площадей геометрических фигур с помощью формулы Пика

Для достижения поставленной цели предусматриваем решение следующих задач:

  1. Подобрать необходимую литературу
  2. Отобрать материал для исследования, выбрать главную, интересную, понятную информацию
  3. Проанализировать и систематизировать полученную информацию
  4. Найти различные методы и приёмы решения задач на клетчатой бумаге
  5. Создать электронную презентацию работы для представления собранного материала одноклассникам

многообразие задач на бумаге в клеточку, их «занимательность», отсутствие общих правил и методов решения вызывают у школьников затруднения при их рассмотрении

  1. Гипотеза :. Площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по формуле планиметрии.

При решении задач на клетчатой бумаге нам понадобится геометрическое воображение и достаточно простые геометрические сведения, которые известны всем.

II. Формула Пика

2.1.Решетки.Узлы.

Рассмотрим на плоскости два семейства параллельных прямых, разбивающих плоскость на равные квадраты; множество всех точек пересечения этих прямых называется точечной решеткой или просто решеткой, а сами точки –узлами решетки.

Внутренние узлы многоугольника - красные.

Узлы на гранях многоугольника - синие.

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S – площадь многоугольника, В - число клеток, которые целиком лежат внутри многоугольника, и Г - число клеток, которые имеют с внутренностью многоугольника хоть одну общую точку.

Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги – в таких, где пересекаются линии сетки.

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника.

2.2.Триангуляция многоугольника

Любой многоугольник с вершинами в узлах сетки может быть триангулирован – разбит на «простые» треугольники.

Пусть на плоскости задан некоторый многоугольник и некоторое конечное множество К точек, лежащих внутри многоугольника и на его границе (причём все вершины многоугольника принадлежат множеству К ).

Триангуляцией с вершинами К называется разбиение данного многоугольника на треугольники с вершинами в множестве К такое, что каждая точка из К служит вершиной каждому из тех треугольников триангуляции, которым эта точка принадлежит (то есть точки из К не попадают внутрь или на стороны треугольников, рис. 1.37).

Рис. 1.37

Теорема 2 . а) Любой n -угольник можно разрезать диагоналями на треугольники, причём количество треугольников будет равно n – 2 (это разбиение – триангуляция с вершинами в вершинах n -угольника).

Рассмотрим невырожденный простой целочисленный многоугольник (т.е. он связный - любые две его точки могут быть соединены непрерывной кривой, целиком в нем содержащейся, и все его вершины имеют целые координаты, его граница - связная ломаная без самопересечений, и он имеет ненулевую площадь).

Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

2.3. Доказательство теоремы Пика.

Пусть В - число целочисленных точек внутри многоугольника, Г - количество целочисленных точек на его границе, - его площадь. Тогда справедлива формула Пика : S=В+Г2-1

Пример. Для многоугольника на рисунке В=23 (желтые точки), Г=7, (синие точки, не забудем о вершинах!), поэтому квадратных единиц.

Сначала заметим, что формула Пика верна для единичного квадрата. Действительно, в этом случае мы имеем В=0, Г=4 и .

Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны и . Имеем в этом случае,В=(а-1)(b-1) , Г=2a+2b, тогда по формуле Пика,

Рассмотрим теперь прямоугольный треугольник с катетами, лежащими на осях координат. Такой треугольник получается из прямоугольника со сторонами и , рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат целочисленных точек. Тогда для этого случая В=а-1)b-1 , 2 Г= Г=2a+2b 2 +с-1 и получаем, что 4)Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников и, возможно, прямоугольник (см. рисунки). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

Остается сделать последний шаг: перейти от треугольников к многоугольникам. Любой многоугольник можно разбить на треугольники (например, диагоналями). Поэтому нужно просто доказать, что при добавлении любого треугольника к произвольному многоугольнику формула Пика остается верной. Пусть многоугольник и треугольник имеют общую сторону. Предположим, что для формула Пика справедлива, докажем, что она будет верна и для многоугольника, полученного из добавлением . Так как и имеют общую сторону, то все целочисленные точки, лежащие на этой стороне, кроме двух вершин, становятся внутренними точками нового многоугольника. Вершины же будут граничными точками. Обозначим число общих точек через и получим B=MT=BM+BT+c-2 - число внутренних целочисленных точек нового многоугольника, Г=Г(М)+Г(T)-2(с-2)-2 - число граничных точек нового многоугольника. Из этих равенств получаем: BM+BT+c-2 , Г=Г(М)+Г(T)-2(с-2)-2 . Так как мы предположили, что теорема верна для и для по отдельности, то S(MT)+S(M)+S(T)=(В(М)+ ГМ2 -1)+В(T)+ ГT2 -1)=(В(М)+ В(T))+( ГМ2+ГT2)-2 =Г(MT)-(c-2)+ B(MT)+2(c-2)+22 -2= Г(MT)+ B(MT)2-1 .Тем самым, формула Пика доказана.

2.4 Исследование площадей многоугольников.

2) На клетчатой бумаге с клетками размером 1 см х 1 см изображен

треугольник.Найдите его площадь в квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S=12ah

Sтр.ABD=1/2 AD ∙ BD=1/2 ∙ 2 ∙ 1=1

Sтр.BDC=1/2 DC ∙ BD=1/2 ∙ 3 ∙ 1=1,5

Sтр.ABC=Sтр.BDC-Sтр.ABD=

1,5-1=0,5

S= В+Г2-1

Г=3 ;В=0.

S=0+3/2-1=0,5

3)На клетчатой бумаге с клетками размером 1 см х 1 см изображен четырех- угольник. Найдите его площадь в квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S=a∙b

Sкв.KMNE=7 ∙ 7=49

Sтр.AKB=1/2 ∙ KB ∙ AK=1/2 ∙ 4 ∙ 4=8

Sтр.AKB=Sтр.DCE=8

Sтр.AND= 1/2 ∙ ND ∙ AN=1/2 ∙ 3 ∙ 3=4,5

Sтр.AND=Sтр.BMC=4,5

Sпр.= Sкв.KMNE- Sтр.AKB- Sтр.DCE- Sтр.AND- Sтр.BMC=49-8-8-4,5-4,5=24

S= В+Г2-1

Г=14;В=19.

S=18+14/2-1=24

4)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

Рисунок

По формуле геометрии

По формуле Пика

S1= 12a∙ b=1/2 ∙ 7 ∙1= 3,5

S2= 12a∙ b=1/2 ∙ 7 ∙ 2=7

S3= 12a∙ b=1/2 ∙ 4 ∙ 1=2

S4= 12a∙ b=1/2 ∙ 5 ∙ 1=2,5

S5=a²=1²=1

Sкв.= a²=7²=49

S=49-3.5-7-2-2,5-1=32см²

S= В+Г2-1

Г=5;В=31.

S=31+ 42 -1=32см²

5)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах.

S= a ∙b

a=36+36=62

b=9+9=32

S= 62∙32 =36 см 2

S= В+Г2-1

Г=18, В=28

S=28+ 182 -1=36см 2

6)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

S1= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S2= 12a∙ b=1/2 ∙ 6 ∙ 6=18

S3= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S=4,5+18+4,5=27 см²

S= В+Г2-1

Г=18;В=28.

S=28+ 182 -1=36см²

7)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

S1= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S2= 12a∙ b=1/2 ∙ 6 ∙ 6=18

S3= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S4= 12a∙ b=1/2 ∙ 6 ∙ 6=18

Sкв.=9²=81см²

S=81-4,5-18-4,5-18=36см²

S= В+Г2-1

Г=18;В=28.

S=28+ 182 -1=36см²

8)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

S1= 12a∙ b=1/2 ∙ 2 ∙ 4=4

S2= 12ah =1/2 ∙ 4 ∙ 4=8

S3= 12ah =1/2 ∙ 8 ∙ 2=8

S4= 12ah =1/2 ∙ 4 ∙ 1=2

Sпр.= a∙ b=6 ∙ 8=48

S5=48-4-8-8-2=24 см²

S= Г+В2-1

Г=16;В=17.

S=17+ 162 -1=24 см²

Вывод

  1. Сравнив результаты в таблицах и доказав теорему Пика,я пришла к выводу,что площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по выведенной формуле планиметрии

Итак, моя гипотеза оказалась верной

III.Геометрические задачи с практическим содержанием.

Поможет нам формула Пика и для решения геометрических задач с практическим содержанием.

Задача 9 . Найдите площадь лесного массива (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м (рис. 10)

Решение.

Рис. 10 В = 8, Г = 7. S = 8 + 7/2 – 1 = 10,5 (см²)

1 см² - 200² м²; S = 40000 · 10,5 = 420 000 (м²)

Ответ: 420 000 м²

Задача 10 . Найдите площадь поля (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м. (рис. 11)

Решение. Найдём S площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика: S = В + - 1

В = 7, Г = 4. S = 7 + 4/2 – 1 = 8 (см²)

Рис. 11 1 см² - 200² м²; S = 40000 · 8 = 320 000 (м²)

Ответ: 320 000 м²

Заключение

В процессе исследования я изучила справочную, научно-популярную литературу, научилась работать в программе Notebook. Узнала, что

Задача на нахождение площади многоугольника с вершинами в узлах сетки с подвигла австрийского математика Пика в 1899 году доказать замечательную формулу Пика.

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.

Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке Рассмотренные н задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому наша я решила продолжить работу в этом направлении.

Литература

1.Геометрия на клетчатой бумаге. Малый МЕХмат МГУ.

2.Жарковская Н. М., Рисс Е. А . Геометрия клетчатой бумаги. Формула Пика // Математика, 2009, № 17, с. 24-25.

3.Задачи открытого банка заданий по математике ФИПИ, 2010 – 2011

4.В.В.Вавилов, А.В.Устинов.Многоугольники на решетках.М.МЦНМО,2006.

5.Мтематические этюды. etudes.ru

6.Л.С.Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др.Геометрия.7-9 классы.М. Просвещение,2010

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Выполнила ученица МОУ СОШ №7 8 «А» класса Юношева Ксения Преподаватель: Бабина Наталья Алексеевна г. Сальск 2011 год «Формула Пика»

Цели работы: Выяснение существования иной, отличной от школьной программы, формулы нахождения площади решетчатого многоугольника. Области применения искомой формулы.

Введение. Математическое образование, получаемое в общеобразовательных школах, является важнейшим компонентом общего образования и общей культуры современного человека. На данном этапе, школьная система рассчитана на одиннадцатилетнее обучение. Всем учащимся в конце одиннадцатого класса предстоит сдавать Единый Государственный Экзамен, который покажет уровень знаний, полученный во время учебы в школе. Но школьная программа не всегда предоставляет самые рациональные способы решения каких-либо задач. Например, просматривая результаты ЕГЭ 2010 года видно, что многие ученики теряют баллы из-за задания В6. Я задалась целью, как же можно сэкономить время и правильно решить это задание.

Задание В6. На клетчатой бумаге с клетками размером 1 см на 1 см изображены фигуры(см. рисунок). Найдите их площади в квадратных сантиметрах.

Итак, чтобы все-таки решить это задание мне нужно применить формулы нахождения площади, которые мы изучаем в 8классе.Но на это уйдет очень много времени, а мне нужно ответить на поставленный вопрос как можно быстрее, ведь время на экзамене строго ограниченно. Поэтому, проведя исследования, я выяснила, что существует теорема Пика, которая в школьной программе не изучается, но которая поможет мне быстрее справиться с заданием.

Историческая справка. Георг Александр Пик (10 августа, 1859 - 26 июля 1942) был австрийским математиком. Он умер в концлагере Терезин. Сегодня он известен из-за формулы Пика для определения площади решетки полигонов. Он опубликовал свою формулу в статье в 1899 году, она стала популярной, когда Хьюго Штейнгауз включил её в 1969 году в издание математических снимков. Пик учился в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско-Фердинандском университете в Праге. Он стал преподавателем там в 1881 году. Взяв отпуск в университете в 1884 году, стал работать с Феликсом Клейном в Лейпцигском университете. Он оставался в Праге до своей отставки в 1927 году, а за тем вернулся в Вену. Пик возглавлял комитет в(тогда) немецком университете Праги, который назначил Альберта Эйнштейна профессором кафедры математической физики в 1911 году. Пик был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги. После ухода на пенсию в 1927 году, Пик вернулся в Вену, город, где он родился. После аншлюса, когда нацисты вошли в Австрию 12 марта 1938 года, Пик вернулся в Прагу. В марте 1939 года нацисты вторглись в Чехословакию. Георг был отправлен в концентрационный лагерь Терезин 13 июля 1942. Он умер через две недели.

Теорема Пика. Теорема Пика - классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисленными вершинами равна сумме В + Г/2 – 1, где В есть количество целочисленных точек внутри многоугольника, а Г количество целочисленных точек на границе многоугольника.

Доказате льст во теоремы Пика. Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны 1/2, а, следовательно, площадь многоугольника равна половине их числа Т. Чтобы найти это число, обозначим через п число сторон многоугольника, через i - число узлов внутри его и через b - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна πТ. Теперь найдём эту сумму другим способом. Сумма углов с вершиной в любом внутреннем узле составляет 2 π , т. е. общая сумма таких углов равна 2 π i ; общая сумма углов при узлах на сторонах, но не в вершинах равна (b – n) π , а сумма углов при вершинах многоугольника - (п – 2) π . Таким образом, π Т = 2i π + (b – n) π + (n – 2) π , откуда получаем выражение для площади S многоугольника, известное как формула Пика. Например, на рисунке b = 9, i = 24, а следовательно, площадь многоугольника равна 27,5.

Применение. Итак, вернемся к заданию В6. Теперь, зная новую формулы, мы легко сможем найти площадь этого четырехугольника. Так как В – 5; Г – 14, то 5+14:2-1=11 (см в квадрате) Площадь данного четырехугольника равна 11 см в квадрате.

По той же формуле мы можем найти площадь треугольника. Так как В-14, Г-10,то 14+10:2-1=18 (см в квадрате) Площадь данного треугольника равна 18 см в квадрате.

Если В-9, Г-12, тогда: 9+12:2-1=14 (см в квадрате) Площадь данного четырехугольника равна 14 см в квадрате.

Области применения формулы. Помимо того, что формула применяется в различного рода экзаменах, заданиях и так далее, она сопровождает весь окружающий нас мир.

По формуле Пика S =В + ½ Г-1 1)туловище В=9,Г=26, S=9+½·26-1=9+13-1= 21 2) хвост В=0,Г=8, S= 0 +½· 8 -1= 3 3) S= 21+3=24

По формуле Пика S =В + ½ Г-1 В=36, Г=21 S = 36 + ½· 21 -1=36+10,5-1=45,5

Заключение. В итоге, я пришла к выводу, что существует много различных способов решения задач на нахождение площади, не изучаемых в школьной программе, и показала их на примере формулы Пика.

Справочник. Многоугольник без самопересечений называется решётчатым, если все его вершины находятся в точках с целочисленными координатами (в декартовой системе координат). Точка координатной плоскости называется целочисленной, если обе её координаты целые.


Здравствуйте! Очередная порция задачек с призмами, рассматриваются треугольные призмы. Объединил несколько заданий схожих по одному «признаку» – у них через среднюю линию основания проходит сечение. Вопросы стоят о вычислении площади поверхности или объёма либо исходной призмы, либо отсечённой. Что важно здесь помнить?

Это свойство подобия фигур касающееся площади, в частности про треугольник уже речь была в одной из статей, . Но даже, если вы вдруг забудете это, представленные задачи будут интуитивно понятны и решите вы их в одно действие.

77111. Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 6, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсеченной треугольной призмы.

Сказано, что плоскость проходит через среднюю линию основания, то есть через точки, которые являются серединами соседних сторон треугольника. При чём она проходит параллельно боковому ребру – это означает, что указанная плоскость также проходит через середины соответствующих соседних сторон другого основания.

Без каких-либо вычислений понятно, что площадь боковой поверхности отсечённой призмы будет в два раза меньше, чем у исходной.

Посмотрите!

Высота у призм общая. Указанная плоскость разрезает две соседние боковые грани пополам.

Рассмотрим третью грань (параллельную плоскости сечения) – её площадь поверхности также в два раза меньше, так как средняя линия треугольника в два раза меньше параллельной ей стороны треугольника.

Учитывая, что высота остаётся неизменной (общая для обеих призм), можем сделать вывод, что площадь боковой поверхности (сумма площадей всех трёх граней) отсечённой призмы будет в два раза меньше.

Ответ: 3

76147. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 20. Найдите площадь боковой поверхности исходной призмы.

Задача обратная предыдущей. Ф ормула для площади боковой поверхности призмы:

Значит для отсечённой призмы:

Высота у пирамид общая, поэтому площадь боковой поверхности исходной призмы зависит от периметра. Поскольку получившиеся треугольники в основании призмы подобны, и их соответствующие стороны относятся как 1:2, значит периметр основания исходной призмы вдвое больше периметра основания отсечённой.

А это означает, что и площадь боковой поверхности так же больше в 2 раза и равна 40.

Ответ: 40

27106. Через среднюю линию основания треугольной призмы, объем которой равен 32, проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы.

Известно, что объём призмы равен произведению площади основания и высоты. Высота для указанных призм общая, значит изменение объёма зависит только от изменения площади поверхности.

Рассмотрим треугольники лежащие в основаниях призм – они подобны. Если рассматривать основание исходной призмы относительно основания отсечённой, то коэффициент подобия будет равен 2. Что это нам даёт?

Мы знаем, что пощади подобных фигур соотносятся как квадрат коэффициента подобия, значит:

Основание отсечённой призмы в 4 раза меньше.

Таким образом, и её объём будет в 4 раза меньше, то есть 8.

Формально можно расписать так:

Ответ: 8

74745. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 7. Найдите объем исходной призмы.

Задача обратная предыдущей. Объём призмы равен произведению площади основания на высоту:

Высота общая, значит объём меняется в зависимости от изменения площади основания.

Треугольник лежащий в основании исходной призмы, как уже сказано, подобен треугольнику лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию.

Площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть:

Таким образом, площадь основания исходной призмы больше площади основания отсечённой призмы в 4 раза.

Следовательно объем исходной призмы будет в 4 раза больше объема отсечённой призмы. Таким образом, искомый объём равен 28.

Ответ: 28

Ещё три задачи про площадь поверхности призмы

245356. Площадь поверхности правильной треугольной призмы равна 6. Какой будет площадь поверхности призмы, если все ее ребра увеличить в три раза?

Увеличим все рёбра призмы в три раза. Что получается?

Получается, что каждая грань полученной призмы и соответствующая ей грань исходной призмы являются подобными фигурами. При чём коэффициент подобия равен 3. Мы, что площади подобных фигур пропорциональны квадрату коэффициента подобия, то есть:

Это означает, что площадь каждой отдельной грани нашей призмы увеличится в 9 раз. Так как площадь поверхности всей призмы это сумма площадей всех граней, то разумеется, что и вся площадь поверхности призмы также увеличится в 9 раз.

Ответ: 54

*На самом деле не важно о каком теле идёт речь (о призме, пирамиде, кубе, параллелепипеде), суть одна.

В треугольной призме две боковые грани перпендикулярны. Их общее ребро равно 30 и отстоит от других боковых ребер на 3 и 4. Найдите площадь боковой поверхности этой призмы.

На момент написания статьи эта задача из открытого банка заданий ЕГЭ удалена, но мы её рассмотрим, так вернуться может туда в любой момент, а значит и быть на экзамене в будущие годы.

Для вычисления боковой поверхности призмы воспользуемся формулой:

В данном случае боковое ребро это общее ребро перпендикулярных друг другу граней, оно равно 30. Перпендикулярным сечением призмы является прямоугольный треугольник с катетами 3 и 4. По теореме Пифагора найдём его гипотенузу и сможем вычислить периметр:

Таким образом:

Второй путь решения!

Указанная выше формула для кого-то может быть не понятна. В чём её смысл и что она выражает?

Посмотрите на каждую отдельную грань (положив призму на бок) – это параллелограммы. При чём основания этих параллелограммов равны и равны они боковому ребру, то есть 30. Высоты у них будут разные.

Две нам известны 3 и 4, третья не известна. Но её мы можем найти. Разрежем призму перпендикулярно боковым рёбрам, сечением разреза будет прямоугольный треугольник с катетами 3 и 4, найдём гипотенузу:

Получается, что площадь боковой поверхности равна сумме площадей трёх параллелограммов:

Ответ: 360

72605. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 6, а высота 2.

Последние материалы раздела:

Слои атмосферы по порядку от поверхности земли
Слои атмосферы по порядку от поверхности земли

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность....

Берестяная трубочка — Михаил Пришвин
Берестяная трубочка — Михаил Пришвин

Жанр: рассказГлавные герои: рассказчик - авторЛюди все меньше времени и внимания уделяют природе, а краткое содержание рассказа «Берестяная...

Кто такой Клод Шеннон и чем он знаменит?
Кто такой Клод Шеннон и чем он знаменит?

Клод Элвуд Шеннон – ведущий американский учёный в сфере математики, инженерии, криптоаналитики. Он приобрёл мировую известность, благодаря своим...