Магнитная защита. Принципы экранирования магнитного поля

МАГНИТНОЕ ЭКРАНИРОВАНИЕ (магнитная защита) - защита объекта от воздействия магн. полей (постоянных и переменных). Совр. исследования в ряде областей науки ( , геология, палеонтология, биомагнетизм) и техники (космич. исследования, атомная энергетика, материаловедение) часто связаны с измерениями очень слабых магн. полей ~10 -14 -10 -9 Тл в широком частотном диапазоне. Внешние магнитные поля (например, поле Земли Тл с шумом Тл, магн. шумы от электрич. сетей и городского транспорта) создают сильные помехи для работы высокочувствит. магнитометрич. аппаратуры. Уменьшение влияния магн. полей в сильной степени определяет возможности проведения магн. измерений (см., напр., Магнитные поля биологических объектов ).Среди методов М. э. наиболее распространены следующие.

Экранирующее действие полого цилиндра из ферромагнитного вещества с (1 - внеш. поверхность цилиндра, 2 -внутр. поверхность). Остаточное магнитное поле внутри цилиндра

Ферромагнитный экран - лист, цилиндр, сфера (или оболочка к--л. иной формы) из материала с высокой магнитной проницаемостью m низкой остаточной индукцией В r и малой коэрцитивной силой Н с . Принцип действия такого экрана можно проиллюстрировать на примере полого цилиндра, помещённого в однородное магн. поле (рис.). Линии индукции внеш. магн. поля B внеш при переходе из среды с в материал экрана заметно сгущаются, а в полости цилиндра густота линий индукции уменьшается, т. е. поле внутри цилиндра оказывается ослабленным. Ослабление поля описывается ф-лой

где D - диаметр цилиндра, d - толщина его стенки, - магн. проницаемость материала стенки. Для расчёта эффективности М. э. объёмов разл. конфигурации часто используют ф-лу

где - радиус эквивалентной сферы (практически ср. значение размеров экрана в трёх взаимно перпендикулярных направлениях, т. к. форма экрана мало влияет на эффективность М. э.).

Из ф-л (1) и (2) следует, что использование материалов с высокой магн. проницаемостью [таких, как пермаллой (36-85% Ni, остальное Fe и легирующие добавки) или мю-металл (72-76% Ni, 5% Сu, 2% Сr, 1% Мn, остальное Fe)] существенно улучшает качество экранов (у железа ). Кажущийся очевидным способ улучшения экранирования за счёт утолщения стенки не оптимален. Эффективнее работают многослойные экраны с промежутками между слоями, для к-рых коэф. экранирования равен произведению коэф. для отд. слоев. Именно многослойные экраны (внеш. слои из магн. материалов, насыщающихся при высоких значениях В , внутренние - из пермаллоя или мю-металла) составляют основу конструкций магнитозащищённых комнат для биомагнитных, палеомагнитных и т. п. исследований. Следует отметить, что применение защитных материалов типа пермаллоя связано с рядом трудностей, в частности с тем, что их магн. свойства при деформациях и значит. нагревах ухудшаются, они практически не допускают сварки, значит. изгибов и др. механич. нагрузок. В совр. магн. экранах широко применяются ферромагн. металлические стёкла (метглассы), близкие по магн. свойствам к пермаллою, но не столь чувствительные к механич. воздействиям. Полотно, сотканное из полосок метгласса, допускает изготовление мягких магн. экранов произвольной формы, а многослойное экранирование этим материалом много проще и дешевле.

Экраны из материала с высокой электропроводностью (Сu, А1 и др.) служат для защиты от переменных магн. полей. При изменении внеш. магн. поля в стенках экрана возникают индукц. токи, к-рые охватывают экранируемый объём. Магн. поле этих токов направлено противоположно внеш. возмущению и частично компенсирует его. Для частот выше 1 Гц коэф. экранировки К растёт пропорционально частоте:

где - магнитная постоянная , - электропроводность материала стенки, L - размер экрана, - толщина стенки, f - круговая частота.

Магн. экраны из Сu и А1 менее эффективны, чем ферромагнитные, особенно в случае низкочастотного эл--магн. поля, но простота изготовления и невысокая стоимость часто делают их более предпочтительными в применении.

Сверхпроводящие экраны . Действие экранов этого типа основано на Мейснера эффекте - полном вытеснении магн. поля из сверхпроводника. При всяком изменении внеш. магн. потока в сверхпроводниках возникают токи, к-рые в соответствии с Ленца правилом компенсируют эти изменения. В отличие от обычных проводников в сверхпроводниках индукц. токи не затухают и поэтому компенсируют изменение потока в течение всего времени существования внеш. поля. То обстоятельство, что сверхпроводящие экраны могут работать при очень низких темп-pax и полях, не превышающих критич. значения (см. Критическое магнитное поле ),приводит к существенным трудностям при конструировании больших магнитозащищённых "тёплых" объёмов. Однако открытие оксидных высокотемпературных сверхпроводников (ОВС), сделанное Й. Беднорцем и К. Мюллером (J. G. Bednorz, К. A. Miiller, 1986), создаёт новые возможности в использовании сверхпроводящих магн. экранов. По-видимому, после преодоления технологич. трудностей в изготовлении ОВС, будут применяться сверхпроводящие экраны из материалов, становящихся сверхпроводниками при темп-ре кипения азота (а в перспективе, возможно, и при комнатных темп-рах).

Следует отметить, что внутри магнитозащищённого сверхпроводником объёма сохраняется остаточное поле, существовавшее в нём в момент перехода материала экрана в сверхпроводящее состояние. Для уменьшения этого остаточного поля необходимо принять спец. меры. Напр., переводить экран в сверхпроводящее состояние при малом по сравнению с земным магн. поле в защищаемом объёме или использовать метод "раздувающихся экранов", при к-ром оболочка экрана в сложенном виде переводится в сверхпроводящее состояние, а затем расправляется. Подобные меры позволяют пока в небольших объёмах, ограниченных сверхпроводящими экранами, свести остаточные поля до величины Тл.

Активная защита от помех осуществляется при помощи компенсирующих катушек, создающих магн. поле, равное по величине и противоположное по направлению полю помехи. Алгебраически складываясь, эти поля компенсируют друг друга. Наиб. известны катушки Гельмгольца, представляющие собой две одинаковые соосные круговые катушки с током, раздвинутые на расстояние, равное радиусу катушек. Достаточно однородное магн. поле создаётся в центре между ними. Для компенсации по трём пространств. компонентам необходимы минимум три пары катушек. Существует много вариантов таких систем, и выбор их определяется конкретными требованиями.

Система активной защиты, как правило, используется для подавления НЧ-помех (в диапазоне частот 0-50 Гц). Одно из её назначений - компенсация пост. магн. поля Земли, для чего необходимы высокостабильные и мощные источники тока; второе - компенсация вариаций магн. поля, для к-рой могут использоваться более слабые источники тока, управляемые датчиками магн. поля, напр. магнитометрами высокой чувствительности - сквидами или феррозондами .В большой степени полнота компенсации определяется именно этими датчиками.

Существует важное отличие активной защиты от магн. экранов. Магн. экраны устраняют шумы во всём объёме, ограниченном экраном, в то время как активная защита устраняет помехи лишь в локальной области.

Все системы подавления магн. помех нуждаются в антивибрац. защите. Вибрация экранов и датчиков магн. поля сама может стать источником дополнит. помех.

Лит.: Роуз-Инс А., Родерик Е., Введение в физику , пер. с англ., М., 1972; Штамбергер Г. А., Устройства для создания слабых постоянных магнитных полей, Новосиб., 1972; Введенский В. Л., Ожогин В. И., Сверхчувствительная магнитометрия и биомагнетизм, М., 1986; Bednorz J. G., Мullеr К. А., Possible high Тс superconductivity in the Ba-La-Сr-О system, "Z. Phys.", 1986, Bd 64, S. 189. С. П. Наурзаков .

Само собой разумеется, что намагничивание ферромагнитных, парамагнитных и диамагнитных тел происходит не только тогда, когда мы помещаем их внутрь соленоида, но и вообще всегда, когда вещество помещается в магнитное иоле. Во всех этих случаях к магнитному полю, которое существовало до внесения в него вещества, добавляется магнитное поле, обусловленное намагничиванием этого вещества, в результате чего магнитное поле изменяется. Из сказанного в предыдущих параграфах ясно, что наиболее сильные изменения поля происходят при внесении в него ферромагнитных тел, в частности железа. Изменение магнитного поля вокруг ферромагнитных тел очень удобно наблюдать, пользуясь картиной линий поля, получаемой при помощи железных опилок. На рис. 281 изображены, например, изменения, наблюдающиеся при внесении куска железа прямоугольной формы в магнитное поле, которое раньше было однородным. Как видим, поле перестает быть однородным и приобретает сложный характер; в одних местах оно усиливается, в других – ослабляется.

Рис. 281. Изменение магнитного поля при внесении в него куска железа

148.1. Когда на современных судах устанавливают и выверяют компасы, то вводят поправки к показаниям компаса, зависящие от формы и расположения частей судна и от положения компаса не нем. Объясните, почему это необходимо. Зависят ли поправки от сорта стали, примененной при постройке судна?

148.2. Почему суда, снаряжаемые экспедициями для исследования магнитного поля Земли, строят не стальные, а деревянные и для скрепления обшивки применяют медные винты?

Очень интересна и практически важна картина, которая наблюдается при внесении в магнитное поле замкнутого железного сосуда, например полого шара. Как видно из рис. 282, в результате сложения внешнего магнитного поля с полем намагнитившегося железа поле во внутренней области шара почти исчезает. Этим пользуются для создания магнитной защиты или магнитной экранировки, т. е. для защиты тех или иных приборов от действия внешнего магнитного поля.

Рис. 282. Полый железный шар внесен в однородное магнитное поле

Картина, которую мы наблюдаем при создании магнитной защиты, внешне напоминает создание электростатической защиты при помощи проводящей оболочки. Однако между этими явлениями есть глубокое принципиальное различие. В случае электростатической защиты металлические стенки могут быть сколь угодно тонкими. Достаточно, например, посеребрить поверхность стеклянного сосуда, помещенного в электрическое поле, чтобы внутри сосуда не оказалось поля, которое обрывается на поверхности металла. В случае же магнитного поля тонкие железные стенки не являются защитой для внутреннего пространства: магнитные поля проходят сквозь железо, и внутри сосуда оказывается некоторое магнитное поле. Лишь при достаточно толстых железных стенках ослабление поля внутри полости может сделаться настолько сильным, что магнитная, защита приобретает практическое значение, хотя и в этом, случае поле внутри не уничтожается полностью. И в этом случае ослабление поля не есть результат обрыва его на поверхности железа; линии магнитного поля отнюдь не обрываются, но по-прежнему остаются замкнутыми, проходя сквозь железо. Изображая графически распределение линий магнитного поля в толще железа и в полости, получим картину (рис. 283), которая и показывает, что ослабление поля внутри полости есть результат изменения направления линий поля, а не их обрыва.

Cтраница 3


Именно поэтому железное тело, обладающее магнитной проницаемостью в сотни и тысячи раз больше jio, вбирает в себя силовые линии. На этом явлении основана магнитная защита.  

Именно поэтому железное тело, обладающее магнитной проницаемостью в сотни и тысячи раз больше ц0, вбирает в себя силовые линии. На этом явлении основана магнитная защита.  

Следует отметить, что чем меньше потребление мощности электродинамического прибора, тем слабее собственные магнитные поля и сильнее влияние внешних полей. Такие приборы требуют лучших средств магнитной защиты, отличаются более сложной конструкцией и стоят дороже. Электродинамические приборы имеют сравнительно небольшой коэффициент добротности и плохо переносят механические воздействия - удары, тряску и вибрации.  


Следует отметить, что чем меньше потребление мощности электродинамического прибора, тем слабее собственные магнитные поля и сильнее влияние внешних полей. Такие приборы требуют лучших средств - магнитной защиты, отличаются более сложной конструкцией и стоят дороже.  

Важное значение для последующего накопления информации имеет магнитная предыстория ленты. Одним из них является нагревание образца до температуры выше точки Кюри с последующим охлаждением в магнитной защите. Получаемое при этом естественное размагниченное состояние называют абсолютным нулевым состоянием.  

В случае же магнитного поля тонкие железные стенки не являются защитой для внутреннего пространства: магнитные поля проходят сквозь железо, и внутри сосуда оказывается некоторое магнитное поле. Лишь при достаточно толстых железных стенках ослабление поля внутри полости может сделаться настолько сильным, что магнитная защита приобретает практическое значение, хотя и в этом случае поле внутри не уничтожается полностью. И в этом случае ослабление поля не есть результат обрыва его на поверхности железа; линии магнитного поля отнюдь не обрываются, но по-прежнему остаются замкнутыми, проходя сквозь железо. Изображая графически распределение линий магнитного поля в толще железа и в полости, получим картину (рис. 283), которая и показывает, что ослабление поля внутри полости есть результат изменения направления линий поля, а не их обрыва.  

В случае же магнитного поля тонкие железные стенки не являются защитой для внутреннего пространства: магнитные поля проходят сквозь железо, и внутри сосуда оказывается некоторое магнитное поле. Лишь при достаточно толстых железных стенках ослабление поля внутри полости может сделаться настолько сильным, что магнитная защита приобретает практическое, значение, хотя и в этом случае поле внутри не уничтожается полностью. И в этом случае ослабление поля не есть результат обрыва его на поверхности железа; линии магнитного поля отнюдь не обрываются, но по-прежнему остаются замкнутыми, проходя сквозь железо. Изображая графически распределение линий магнитного поля в толще железа и в полости, получим картину (рис. 283), которая и показывает, что ослабление поля внутри полости есть результат изменения направления линий поля, а не их обрыва.  

Обычно рассчитывают несколько вариантов и выбирают оптимальный. Изложенная методика расчета электродинамического ваттметра относится только к приборам с установкой подвижной части на кернах и является неполной (например, не рассмотрен вопрос магнитной защиты и Др.  

На рис. 237 приведен пример расположения линий индукции в случае тела с большой магнитной проницаемостью ц, имеющего полость. Редкое расположение линий индукции внутри полости указывает на слабость магнитного поля внутри полости. Практически для магнитной защиты употребляются массивные железные футляры.  

Для этого туннельный контакт был помещен в полый волновод, погруженный в криостат. Во избежание всякого рода наводок система была окружена магнитной защитой.  

В настоящее время космонавты часто оказываются в зоне повышенной радиации. Для защиты от нее необходимо магнитное поле, искривляющее траекторию заряженных частиц и уводящее радиацию. С этой целью на космическом корабле должна находиться установка, создающая магнитную защиту с помощью сверхпроводящих соленоидов.  

Влияние магниткых свойств вещества на распределение магнит-пего поля. Если выполнить ферромагнитное тело в виде кольца, то во внутреннюю его полость магнитные силовые линии практически проникать не будут (рис. 102) и кольцо будет служить магнитным экраном, защищающим внутреннюю полость от влияния магнитного поля. На этом свойстве ферромагнитных материалов основана магнитная защита электроизмерительных приборов и других электротехнических устройств от вредного воздействия внешних магнитных полей.  

Картина, которую мы наблюдаем при создании магнитной защиты, внешне напоминает создание электростатической защиты при помощи проводящей оболочки. В случае электростатической защиты металлические стенки могут быть сколь угодно тонки. Достаточно, например, посеребрить поверхность стеклянного сосуда, помещенного в электрическом поле, чтобы внутри сосуда не оказалось электрического поля, которое обрывается на поверхности металла. В случае же магнитного поля тонкие железные стенки не являются защитой для внутреннего пространства: магнитные поля проходят сквозь железо, и внутри сосуда оказывается некоторое магнитное поле. Лишь при достаточно толстых железных стенках ослабление поля внутри полости может сделаться настолько сильным, что магнитная защита приобретает практическое значение, хотя и в этом случае поле внутри не уничтожается целиком.  

На этом хитрость заканчивается. Теперь нужна физика: как получить защитный слой шариков. Физика простая, ее проходят в седьмом классе: надо использовать магниты. Там, где труба изгибается, поставим снаружи магнит. Интересно отметить, что дробеметные аппараты для упрочнения деталей широко применялись по крайней мере за четверть века до появления авторского свидетельства № 2Н1 207 на магнитную защиту.  

Принцип действия большинства преобразователей средств измерений основан на преобразовании электрической и магнитной энергий, поэтому электрические и магнитные поля, наводимые внутри средств измерений источниками, расположенными вблизи, искажают характер преобразования электрической и магнитной энергии в измерительном устройстве. Для защиты чувствительных элементов приборов от влияния внутренних и внешних электрических и магнитных полей применяют экранирование.

Под магнитным экранированием какой-либо области пространства понимается ослабление магнитного поля внутри этой области путем ограничения ее оболочкой, изготовленной из магнито-мягких материалов. В практике также применяется другой способ экранирования, когда в оболочку помещают источник магнитного поля, ограничивая тем, самым распространение последнего в окружающую среду.

Основы экранирования базируются на теории распространения электрического и магнитного поля. Излучаемая энергия передается электромагнитным полем. Когда поле изменяется во времени, его электрическая и магнитная составляющие существуют одновременно, причем одна из них может быть больше другой. Если больше электрическая составляющая, то поле считается электрическим, если больше магнитная составляющая, то поле считают магнитным. Обычно поле имеет ярко выраженный характер вблизи своего источника на расстоянии длины волны. В свободном пространстве, на большом расстоянии от источника энергии (сравнительно с длиной волны) обе составляющие поля имеют равное количество энергии. Кроме того, всякий проводник, расположенный в электромагнитном поле, обязательно поглощает и вновь излучает энергию, поэтому и на малых расстояниях от такого проводника относительное распределение энергии отличается от распределения энергии в свободном пространстве.

Электрическая (электростатическая) составляющая поля соответствует напряжению на проводнике, а магнитная (электромагнитная) - току. Определение необходимости той или иной степени экранирования данной электрической цепи, а так же, как и определение достаточности того или иного вида экрана, почти не поддается техническому расчету, потому что теоретические решения отдельных простейших задач оказываются неприемлемыми к сложным электрическим цепям, состоящим из произвольно расположенных в пространстве элементов, излучающих электромагнитную энергию в самых разнообразных направлениях. Для расчета экрана пришлось бы учитывать влияние всех этих отдельных излучений, что невозможно. Поэтому от конструктора, работающего в этой области, требуется ясное понимание физического действия каждой экранирующей детали, ее относительного значения в комплексе деталей экрана и умение выполнять ориентировочные расчеты эффективности экрана.

По принципу действия различают электростатические, магнитостатические и электромагнитные экраны.

Экранирующее действие металлического экрана обуславливается двумя причинами: отражением поля от экрана и затуханием поля при прохождении сквозь металл. Каждое из этих явлений не зависит одно от другого и должно рассматриваться отдельно, хотя общий экранирующий эффект является результатом их обоих.

Электростатическое экранирование состоит в замыкании электрического поля на поверхности металлической массы экрана и передаче электрических зарядов на корпус устройства (рис 1.).

Если между элементом конструкции А, создающим электрическое поле, и элементом Б, для которого влияние этого поля вредно, поместить экран В, соединенный с корпусом (землей) изделия, то он будет перехватывать электрические силовые линии, защищая элемент Б от вредного влияния элемента А. Следовательно, электрическое поле может быть надежно экранировано даже очень тонким слоем металла.

Индуктированные заряды располагаются на внешней поверхности экрана так, что электрическое поле внутри экрана равно нулю.

Магнитостатическое экранирование основано на замыкании магнитного поля в толщине экрана, имеющего повышенную магнитную проницаемость. Материал экрана должен обладать магнитной проницаемостью значительно больше магнитной проницаемости окружающей среды. Принцип действия магнитостатического экрана показан на рис 2.

Магнитный поток, создаваемый элементом конструкции (в данном случае проводом), замыкается в стенках магнитного экрана вследствие его малого магнитного сопротивления. Эффективность такого экрана тем больше, чем больше его магнитная проницаемость и толщина.

Магнитостатический экран применяют только при постоянном поле или в диапазоне низких частот изменения последнего.

Электромагнитное экранирование основано на взаимодействии переменного магнитного поля с вихревыми токами, наведенными им в толще и на поверхности токопроводящего материала экрана. Принцип электромагнитного экранирования иллюстрирован на рис. 3. Если на пути однородного магнитного потока поместить медный цилиндр (экран), то в нем возбудятся переменные Э.Д.С., которые, в свою очередь, создадут переменные индукционные вихревые токи. Магнитное поле этих токов будет замкнутым (рис 3б); внутри цилиндра оно будет направлено навстречу возбуждающему полю, а за его пределами - в ту же сторону, что и возбуждающее поле. Результирующее поле оказывается ослабленным (рис. 3в) внутри цилиндра и усиленным вне его, т.е. происходит вытеснение из пространства, занимаемого цилиндром, в чем и заключается его экранирующие действие.

Эффективность электромагнитного экранирования увеличивается с увеличением обратного поля, которое будет тем больше, чем больше протекающие по цилиндру вихревые токи, т.е. чем больше электрическая проводимость цилиндра.

Ослабление магнитного поля металлом может быть вычислено. Оно пропорционально толщине экрана, коэффициенту вихревых токов и корню квадратному из произведения частоты поля, магнитной проницаемости и проводимости материала экрана.

При экранировании элементов изделия магнитостатическими и электромагнитными экранами следует учитывать, что они будут эффективны и как электростатические экраны, если их надежно соединить с корпусом устройства.

Оборудование, приборы и инструмент

При выполнении работы используются: установка для создания электромагнитного поля; генератор сигналов специальной формы Г6-26; измерительная катушка для оценки напряженности электромагнитного поля; осциллограф С1-64; вольтметр; комплект экранов, изготовленных их различных материалов.

Сигнал синусоидальной формы подается с генератора сигналов установки через понижающий трансформатор. Для подключения измерительной катушки 5 к осциллографу и катушки 1 возбуждения электромагнитного поля к генераторам сигналов, на основании 3 установки укреплены клеммные гнезда 6 и 7. Включение установки осуществляется тумблером 8.

Для характеристики экранирующего материала пользуются еще двумя значениями глубины проникновения x 0.1 , x 0.01 , характеризующими падение плотности напряженности поля (ока) в 10 и 100 раз от значения на его поверхности

которые приводятся в справочных таблицах для различных материалов. В таблице 2 приведены значения x 0 , x 0.1 , x 0.01 , для меди, алюминия, стали и пермаллоя .

При выборе материала экрана удобно пользоваться кривыми эффективности экранирования, приведенными на графиках рис.4.

Характеристики сплавов для магнитных экранов

В качестве материала магнитных экранов в слабых полях используются сплавы с высокой магнитной проницаемостью. Пермаллои, относящиеся к группе ковких сплавов с высокой магнитной проницаемостью, хорошо обрабатываются резанием и штамповкой. По составу пермаллои принято делить на низконикелевые (40-50% Ni) и высоконикелевые (72-80% Ni). Для улучшения электромагнитных и технологических свойств пермаллои часто легируют молибденом, хромом, кремнием, кобальтом, медью и другими элементами. Основными показателями электромагнитного качества этих сплавов являются значения начальной µ нач и максимальной µ max магнитной проницаемости. Коэрцитивная сила H c у пермаллоев должна быть как можно меньше, а удельное электрическое сопротивление ρ и намагниченность насыщения M s как можно более высоким. Зависимость указанных параметров для двойного сплав Fe-Ni от процентного содержания никеля представлена на рис. 5.

Характеристика µ нач (рис. 5) имеет два максимума, относительный (1) и абсолютный (2). Область относительного минимума ограниченная содержанием никеля 40-50% соответствует низконикелевому пермаллою, а область абсолютного максимума, ограниченная содержанием никеля 72-80% - высоконикелевому. Последний обладает и наибольшим значением µ max . Течение характеристик µ 0 M s и ρ (рис.5) свидетельствует о том, что магнитное насыщение и удельное электрическое сопротивление у низконикелевого пермаллоя существенно выше, чем у высоконикелевого. Указанные обстоятельства разграничивают сферы применения низконикелевого и высоконикелевого пермаллоев

Низконикелевый пермаллой применяют для изготовления магнитных экранов, работающих в слабых постоянных магнитных полях. Легированный кремнием и хромом низконикелевый пермаллой применяют при повышенных частотах.

Сплавы 79НМ, 80НХС, 81НМА, 83НФ с наивысшей магнитной проницаемостью в слабых магнитных полях и индукцией насыщения 0,5 -0,75 Тл для магнитных экранов, сердечников магнитных усилителей и бесконтактных реле. Сплавы 27КХ, 49КХ, 49К2Ф и 49К2ФА, обладающие высокой индукцией технического насыщения (2,1 - 2,25 Тл), применяют для магнитных экранов, защищающих аппаратуру от воздействия сильных магнитных полей

Требования по безопасности

Перед началом работы

  • Уяснить расположение и назначение органов управления лабораторной установки и измерительной аппаратуры.
  • Подготовить рабочее место для безопасной работы: убрать лишние предметы со стола и установки.
  • Проверить: наличие и исправность системы заземления, целость корпуса установки, питающих шнуров, штепсельных разъемов. Не приступать к работе, если у лабораторной установки (стенда) сняты защитные панели.

Во время работы

  • Работу можно проводить только на исправном оборудовании.
  • Не допускается перекрывание вентиляционных отверстий (жалюзей) в корпусах лабораторных установок посторонними предметами.
  • Нельзя оставлять установку включенной, отлучаясь даже на короткое время.
  • В случае перерыва в электроснабжении установки ее надо обязательно выключить.

В аварийных ситуациях

Лабораторная установка немедленно должна быть выключена в следующих случаях:

  1. несчастный случай или угроза здоровью человека;
  2. появление запаха, характерного для горящей изоляции, пластмасс, краски;
  3. появление треска, щелчков, искрения;
  4. повреждение штепсельного соединения или электрического кабеля, питающего установку.

После окончания работы

  • Выключить лабораторную установку и измерительные приборы.
  • Отключить установку и измерительные приборы от сети. Привести в порядок рабочее место.
  • Убрать посторонние предметы, очистить от возможного мусора (ненужной бумаги).

Задание и методика исследований

Экспериментальным путем определить области эффективного использования различных материалов для электромагнитных материалов при изменении частот электромагнитного поля от 102 до 104 Гц.

Подключить установку для создания электромагнитного поля к генератору сигналов. Подключить измерительную катушку к входу осциллографа и к вольтметру. Измерить амплитуду U сигнала, пропорциональную напряженности электромагнитного поля внутри цилиндрического каркаса катушки возбуждения поля. Закрыть измерительную катушку экраном

Измерить амплитуду U’ сигнала с измерительной катушки. Определить эффективность экранирования

на данной частоте и записать в таблицу (см. приложение).

Проделать измерения по п.5.1.1. для частот 100, 500, 1000, 5000, 104 Гц. Определить эффективность экранирования на каждой частоте.

Исследуемые образцы экранов. Экспериментальное исследование свойств материалов для магнитных экранов осуществляется с применением образцов в

форме цилиндрических стаканов 9 (рис. 6), основные параметры которых приведеныв таблице 3.

Экраны могут быть как однослойными, так и многослойными с воздушным зазором между ними, цилиндрическими и с прямоугольным сечением. Расчет количества слоев экрана может быть проведен по достаточно громоздким формулам, поэтому выбор количества слоев рекомендуется производить по кривым эффективности экранирования, приведенными в справочниках.

При экранировании элементов изделия магнитостатическими и электромагнитными экранами следует учитывать, что они будут эффективны и как электростатические экраны, если их надежно соединить с корпусом устройства

1 - катушка возбуждения электромагнитного поля;

2 - немагнитный каркас;

3 - немагнитное основание;

4 - понижающий трансформатор;

5 - измерительная катушка;

6 и 7 - клеммные гнезда;

8 - тумблер;

9 - магнитный экран;

10 - генератор сигналов;

11 - осциллограф;

12 - вольтметр.

Провести измерения для экранов из стали обыкновенного качества, пермаллоя, алюминия, меди, латуни.

По результатам измерений построить кривые эффективности экранирования для различных материалов по типу рис.4. Проанализировать результаты эксперимента. Сравнить результаты эксперимента со справочными данными, сделать выводы.

Экспериментальным путем определить влияние толщины стенки экрана (стакана) на эффективность экранирования.

Для материалов с высокой магнитной проницаемостью (сталь, пермаллой) эксперимент провести в электромагнитном поле на частотах 100 Гц, 500 Гц, 1000 Гц, 5000 Гц, 10000 Гц по методике, изложенной для экранов с различной толщиной стенки.

Для материалов с электропроводностью (медь, алюминий) эксперимент провести на частотах 100 Гц, 500 Гц, 1000 Гц, 5000 Гц, 10000 Гц по изложенной методике.

Проанализировать результаты эксперимента. Сравнить результаты эксперимента с данными, приведенными в таблице 1. Сделать выводы

ЛИТЕРАТУРА

1. Гроднев И. И. Электромагнитное экранирование в широком диапазоне частот. М.: Связь. 1972. - 275с.

2. Конструирование приборов. В 2-х кн. / Под ред. В. Краузе; Пер. с нем. В.Н. Пальянова; Под ред. О.Ф. Тищенко. - Кн. 1-М.: Машиностроение, 1987.

3. Материалы в приборостроении и автоматике: Справочник/ под. ред. Ю.М. Пятина. - 2е изд. Перераб. И доп. - М.: Машиностроение, 1982.

4. Оберган А.Н. Конструирование и технология средств измерений. Учебное пособие. - Томск, Ротапринт ТПИ. 1987. - 95с.

5. Говорков В.А. Электрические и магнитные поля. - М. Связьиздат, 1968.

6. Генератор сигналов синусоидальной формы Г6-26. Техническое описание и инструкция по эксплуатации. 1980г. - 88с.

7. Осциллограф С1-64. Техническое описание и инструкция по эксплуатации.

Учебно-методическое пособие

Составители: Гормаков А. Н., Мартемьянов В. М

Компьютерный набор и верстка Иванова В. С.

Экранирование магнитных полей может быть осуществленно двумя методами:

Экранирование с помощью ферромагнитных материалов.

Экранирование с помощью вихревых токов.

Первый метод применяется обычно при экранировании постоянных МП и полей низкой частоты. Второй метод обеспечивает значительную эффективность при экранировании МП высокой частоты. Из-за поверхностного эффекта плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциально­му закону:

Показатель уменьшения поля и тока, который назы­вают эквивалентной глубиной проникновения.

Чем меньше глубина проникновения, тем больший ток течет в поверхностных слоях экрана, тем больше создаваемое им обратное МП, вытесняющее из пространства, занятое экраном, внешнее поле источника наводки. Если экран сделан из немагнитного материала, то экранирующий эффект будет зависеть только от удельной проводимости материала и частоты экранирующего поля. Если экран сделан из ферромагнитного материала, то при прочих равных условиях внешним полем в нем будет наводиться большая э. д. с. благодаря большей концентрации магнитных силовых линий. При одинаковой удельной проводимости материала увеличатся вихревые токи, что приведет к меньшей глубине проникновения и к лучшему экранирующему эффекту.

При выборе толщины и материала экрана следует исходить не из электрических свойств материала, а ру­ководствоваться соображениями механической прочно­сти, веса, жесткости, стойкости против коррозии, удобства стыковки отдельных деталей и осуществления меж­ду ними переходных контактов с малым сопротивлением, удобства пайки, сварки и прочим.

Из данных таблицы видно, что для частот выше 10 МГц медная и тем более серебряная пленки толщиной около 0,1 мм дает значительный экранирующий эффект. Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированого гетинакса или стеклотекстолита. На больших частотах сталь дает больший экранирующий эффект, чем немагнитные металлы. Однако стоит учитывать, что такие экраны могут вносить значительные потери в экранируемые цепи вследствие большого удельного сопротивления и явления гистерезиса. Поэтому такие экраны применимы только в тех случаях, когда с вносимыми потерями можно не считаться. Так же для большей эффективности экранирования экран должен обладать меньшим магнитным сопротивлением, чем воздух, тогда силовые линии магнитного поля стремятся пройти по стенкам экрана и в меньшем числе проникают в пространство вне экрана. Такой экран одинаково пригоден для защиты от воздействия магнитного поля и для защиты внешнего пространства от влияния магнитного поля созданного источником внутри экрана.



Существует много марок стали и пермаллоя с различными величинами магнитной проницаемости, поэтому для каждого материала нужно расчитывать величину глубины проникновения. Расчет производится по приближенному уравнению:


1) Защита от внешнего магнитного поля

Магнитные силовые линии внешнего магнитного поля (линии индукции магнитного поля помех) будут проходить в основном по толще стенок экрана, обладающего малым магнитным сопротивлением по сравнению с сопротивлением пространства внутри экрана. В результате внешнее магнитное поле помех не будет влиять на режим работы электрической цепи.

2) Экранирование собственного магнитного поля

Такое кранирование используется, если ставится задача предохранения внешних электрических цепей от воздействия магнитного поля, создаваемого током катушки. Индуктивности L, т. е. когда требуется практически локализовать помехи, создаваемые индуктивностью L, то такая задача решается при помощи магнитного экрана, как это схематически показано на рисунке. Здесь почти все силовые линии поля катушки индуктивности будут замыкаться через толщу стенок экрана, не выходя за их пределы вследствие того, что магнитное сопротивление экрана намного меньше сопротивления окружающего пространства.


3) Двойной экран

В двойном магнитном экране можно представить себе, что часть магнитных силовых линий, которые выйдут за толщу стенок одного экрана, замкнутся через толщу стенок второго экрана. Точно также можно представить себе действие двойного магнитного экрана при локализации магнитных помех, создаваемых элементом электрической цепи, находящимся внутри первого (внутреннего) экрана: основная масса магнитных силовых линий (линии магнитного рассеяния) замкнется через стенки наружного экрана. Разумеется, что в двойных экранах должны быть рационально выбраны толщины стенок и расстояние между ними.

Общий коэффициент экранирования достигает наибольшей величииы в тех случаях, когда толщина стенок и промежуток между экранами увеличивается пропорционально расстоянию от центра экрана, причем величина промежутка является средней геометрической величиной толщин стенок примыкающих к нему экранов. При этом коэффициент экранирования:

L = 20lg (H/Нэ)

Изготовление двойных экранов в соответствии с указанной рекомендацией практически затруднено из технологических соображений. Значительно целесообразнее выбрать расстояние между оболочками, прилегающими к воздушному промежутку экранов, большим, чем толщина первого экрана, приблизительно равным расстоянию между стеикой первого экрана и краем экранируемого элемента цепи (например, катушки иидуктивности). Выбор той или иной толщины стенок магнитного экрана нельзя сделать однозначным. Рациональная толщина стенок определяется. материалом экрана, частотой помехи и заданным коэффициентом экранирования. При этом полезно учитывать следующее.

1. При повышении частоты помех (частоты переменного магнитного поля помех) магнитная проницаемость материалов падает и вызывает снижение экранирующих свойств этих материалов, так как по мере снижения магнитной проницаемости возрастает сопротивление магнитному потоку, оказываемое экраном. Как правило, уменьшение магнитной проницаемости с повышением частоты идет наиболее интенсивно у тех магнитных материалов, у которых имеется наибольшая начальная магнитная проницаемость. Например, листовая электротехническая сталь с малой начальной магнитной проницаемостью мало изменяет величину jx с повышением частоты, а пермаллой, имеющий большие начальные значения магнитной проницаемости, весьма чувствителен к повышению частоты магнитного поля; магнитная проницаемость у него резко падает с частотой.

2. В магнитных материалах, подверженных действию высокочастотного магнитного поля помех, заметно проявляется поверхностный эффект, т. е. вытеснение магнитного потока к поверхности стенок экрана, вызывая увеличение магнитного сопротивления экрана. При таких условиях кажется, что почти бесполезно увеличивать толщину стенок экрана за пределы тех величин, которые заняты магнитным потоком при данной частоте. Такой вывод неправилен, ибо увеличение толщины стенок приводит к снижению магнитного сопротивления экрана даже при наличии поверхностного эффекта. При этом одновременно следует учитывать и изменение магнитной проницаемости. Так как явление поверхностного эффекта в магнитных материалах обычно начинает сказываться заметнее, чем снижение магнитной проницаемости в области низких частот, то влияние обоих факторов на выбор толщины стенок экрана будет различным на разных диапазонах частот магнитных помех. Как правило, снижение экранирующих свойств с повышением частоты помехи сильнее проявляется в экранах из материалов с высокой начальной магнитной проницаемостью. Указанные выше особенности магнитных материалов дают основание для рекомендаций по выбору материалов и толщины стенок магнитных экранов. Эти рекомендации могут быть сведены к следующим:

А) экраны из обычной электротехнической (трансформаторной) стали, обладающие малой начальной магнитной проницаемостью, можно применять при необходимости обеспечить малые коэффициенты экранирования (Кэ 10); такие экраны обеспечивают почти неизменный коэффициент экранирования в достаточно широкой полосе частот, вплоть до нескольких десятков килогерц; толщина таких экранов зависит от частоты помехи, причем чем ниже частота, тем большая толщина экрана требуется; например, при частоте магнитного поля помех 50-100 гц толщина стенок экрана должна быть приблизительно равна 2 мм; если требуется увеличение коэффициента экранирования или большая толщина экрана, то целесообразно применять несколько экранирующих слоев (двойных или тройных экранов) меньшей толщины;

Б) экраны из магнитных материалов с высокой начальной проницаемостью (например пермаллой) целесообразно применять при необходимости обеспечения большого коэффициента экранирования (Кэ > Ю) в сравнительно узкой полосе частот, причем толщину каждой оболочки магнитного экрана нецелесообразно выбирать больше 0,3-0,4 мм; экранирующее действие таких экранов начинает заметно падать на частотах, выше нескольких сот или тысяч герц, в зависимости от начальной проницаемости этих материалов.

Все сказанное выше о магнитных экранах справедливо в отношении слабых магнитных полей помех. Если же экран находится вблизи от мощных источников помех и в нем возникают магнитные потоки с большой магнитной индукцией, то, как известно, приходится учитывать изменение магнитной динамической проницаемости в зависимости от индукции; необходимо также учитывать при этом потери в толще экрана. Практически же с такими сильными источниками магнитных полей помех, при которых надо было бы считаться с их действием на экраны, не встречаются, за исключением некоторых специальных случаев, не предусматривающих радиолюбительскую практику и нормальные условия работы радиотехнических устройств широкого применения.


Тест

1. При магнитном экранировании экран должен:
1) Обладать меньшим магнитным сопротивлением, чем воздух
2) обладать равным воздуху магнитным сопротивлением
3) обладать большим магнитным сопротивлением, чем воздух

2. При экранировании магнитного поля Заземление экрана:
1) Не влияет на эффективность экранирования
2) Увеличивает эффективность магнитного экранирования
3) Уменьшает эффективность магнитног экранирования

3. На низких частотах (<100кГц) эффективность магнитного экранирования зависит от:
а) Толщины экрана, б) Магнитной проницаемости материала, в) Расстояния между экраном и другими магнитопроводами.
1) Верно только а и б
2) Верно только б и в
3) Верно только а и в
4) Все варианты верны

4. В магнитном экранировании при низких частотах используется:
1) Медь
2) Аллюминий
3) Пермаллой.

5. В магнитном экранировании при высоких частотах используется:
1) Железо
2) Пермаллой
3) Медь

6. На высоких частотах (>100кГц) эффективность магнитного экранирования не зависит от:
1) Толщины экрана

2) Магнитной проницаемости материала
3) Расстояния между экраном и другими магнитопроводами.


Использованая литература:

2. Семененко, В. А. Информационная безопасность / В. А. Семененко - Москва, 2008г.

3. Ярочкин, В. И. Информационая безопасность / В. И. Ярочкин – Москва, 2000г.

4. Демирчан, К. С. Теоретические основы электротехники III том / К. С. Демирчан С.-П, 2003г.

Последние материалы раздела:

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...

Генрих Мореплаватель: биография и интересные факты
Генрих Мореплаватель: биография и интересные факты

Португальский принц Энрике Мореплаватель совершил множество географических открытий, хотя сам выходил в море всего три раза. Он положил начало...

Последнее восстание интеллектуалов Франция 1968 год волнения студентов
Последнее восстание интеллектуалов Франция 1968 год волнения студентов

Любой революции предшествует идеологическая аргументация и подготовка. «Майская революция» 1968 года, бесспорно, не является исключением. Почему к...