Принцип Бернулли. Практическое значение

Как мы упоминали, в трубах не очень длинных и достаточно широких трение настолько невелико, что им можно пренебречь. При этих условиях падение давления так мало, что в трубе постоянного сечения жидкость в манометрических трубках находится практически на одной высоте. Однако, если труба имеет в разных местах неодинаковое сечение, то даже в тех случаях, когда трением можно пренебречь, опыт обнаруживает, что статическое давление в разных местах различно.

Возьмем трубу неодинакового сечения (рис. 311) и будем пропускать через нее постоянный поток воды. По уровням в манометрических трубках мы увидим, что в суженных местах трубы статическое давление меньше, чем в широких. Значит, при переходе из широкой части трубы в более узкую степень сжатия жидкости уменьшается (давление уменьшается), а при переходе из более узкой части в широкую - увеличивается (давление увеличивается).

Рис. 311. В узких частях трубы статическое давление текущей жидкости меньше, чем в широких

Это объясняется тем, что в широких частях трубы жидкость должна течь медленнее, чем в узких, так как количество жидкости, протекающей за одинаковые промежутки времени, одинаково для всех сечений трубы. Поэтому при переходе из узкой части трубы в широкую скорость жидкости уменьшается: жидкость тормозится, как бы натекая на препятствие, и степень сжатия ее (а также ее давление) растет. Наоборот, при переходе из широкой части трубы в узкую скорость жидкости увеличивается и сжатие ее уменьшается: жидкость, ускоряясь, ведет себя подобно распрямляющейся пружине.

Итак, мы видим, что давление жидкости, текущей по трубе, больше там, где скорость движения жидкости меньше, и обратно: давление меньше там, где скорость движения жидкости больше. Эту зависимость между скоростью жидкости и ее давлением называют законом Бернулли по имени швейцарского физика и математика Даниила Бернулли (1700-1782).

Закон Бернулли имеет место и для жидкостей и для газов. Он остается в силе и для движения жидкости, не ограниченного стенками трубы, - в свободном потоке жидкости. В этом случае закон Бернулли нужно применять следующим образом.

Допустим, что движение жидкости или газа не изменяется с течением времени (установившееся течение). Тогда мы можем представить себе внутри потока линии, вдоль которых происходит движение жидкости. Эти линии называются линиями тока; они разбивают жидкость на отдельные струи, которые текут рядом, не смешиваясь. Линии тока можно сделать видимыми, вводя в поток воды жидкую краску через тонкие трубочки. Струйки краски располагаются вдоль линий тока. В воздухе для получения видимых линий тока можно воспользоваться струйками дыма. Можно показать, что закон Бернулли применим для каждой струи в отдельности: давление больше в тех местах струи, где скорость в ней меньше и, следовательно, где сечение струи больше, и обратно. Из рис. 311 видно, что сечение струи велико в тех местах, где линии тока расходятся; там же, где сечение струи меньше, линии тока сближаются. Поэтому закон Бернулли можно сформулировать еще так: в тех местах потока, где линии тока гуще, давление меньше, а в тех местах, где линии тока реже, давление больше.

Возьмем трубу, имеющую сужение, и будем пропускать по ней с большой скоростью воду. Согласно закону Бернулли, в суженной части давление будет понижено. Можно так подобрать форму трубы и скорость потока, что в суженной части давление воды будет меньше атмосферного. Если теперь присоединить к узкой части трубы отводную трубку (рис. 312), то наружный воздух будет засасываться в место с меньшим давлением: попадая в струю, воздух будет уноситься водой. Используя это явление, можно построить разрежающий насос - так называемый водоструйный насос. В изображенной на рис. 313 модели водоструйного насоса засасывание воздуха производится через кольцевую щель 1, вблизи которой вода движется с большой скоростью. Отросток 2 присоединяется к откачиваемому сосуду. Водоструйные насосы не имеют движущихся твердых частей (как, например, поршень в обычных насосах), что составляет одно из их преимуществ.

Рис. 312. Воздух засасывается в узкую часть трубы, где давление меньше атмосферного

Рис. 313. Схема водоструйного насоса

Будем продувать воздух по трубке с сужением (рис. 314). При достаточной скорости воздуха давление в суженной части трубки будет ниже атмосферного. Жидкость из сосуда будет засасываться в боковую трубку. Выходя из трубки, жидкость будет распыляться струей воздуха. Этот прибор называется пульверизатором - распылителем.

Рис. 314. Пульверизатор

Другие представители семьи Бернулли и другие значения перечислены на странице Бернулли (семья). Уравнение Бернулли показывает, что давление жидкости (или газа) больше там, где скорость её течения меньше и наоборот. Бернулли, Даниил - Эта статья о физике и математике Данииле Бернулли. Эти силы и создают давление жидкости. Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Движение жидкости по трубам. Закон Бернулли

Слева на большой объем жидкости между двумя поверхностями действует сила, а справа — (минус, потому что влево). Два указанных пути получения уравнения Бернулли не эквивалентны. Уважаемый посетитель, Вы находитесь на странице, где представлен урок Движение жидкости по трубам.

В данном уроке Вы узнаете как движется жидкость по трубам и в чем заключается закон Бернулли.В этом уроке мы применим закон сохранения энергии к движению жидкости или газа по трубам.

В машинах по трубам поступает масло для смазки, топливо в двигатели и т. д. Движение жидкости по трубам нередко встречается и в природе. В какой-то мере течение воды в реках тоже является разновидностью течения жидкости по трубам. Это значит, что вся та жидкость, которая за время t проходит через первое сечение, за такое же время проходит и через третье сечение, хотя оно по площади значительно меньше, чем первое.

Смотреть что такое «ЗАКОН БЕРНУЛЛИ» в других словарях:

При этом мы считаем, что данная масса жидкости всегда имеет один и тот же объем, что она не может сжаться и уменьшить свой объем (о жидкости говорят, что она несжимаема). Отсюда видно, что при переходе жидкости с участка трубы с большей площадью сечения на участок с меньшей площадью сечения скорость течения увеличивается, т. е. жидкость движется с ускорением. Действительно, если в узких местах трубы увеличивается скорость движения жидкости, то увеличивается и ее кинетическая энергия.

Вот это сжатие жидкости и уменьшается в узких частях трубы, компенсируя рост скорости. И опыт хорошо это подтверждает. Это означает, что в этих местах давление меньше. Такой поток жидкости можно использовать для откачки воздуха.

Дополнительные материалы по теме: Гидродинамика. Уравнение Бернулли для идеальной жидкости.

В узких частях труб, где газ движется быстрее, давление его меньше, чем в широких частях, и может стать меньше атмосферного. Встречный поток воздуха набегает на выпуклую верхнюю поверхность крыла летящего самолета, и за счет этого происходит понижение давления. Движение газа подчиняется закону сохранения механической энергии. Закон Торричелли - Не следует путать с Формула Торричелли. Закон Торричелли, также известный как Теорема Торричелли, – это теорема в гидродинамике, связывающая скорость жидкости, вытекающей через отверстие, с высотой жидкости над отверстием.

Гидродинамика — раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями. Швейцарский ученый Даниил Бернулли длительное время жил в России, именно к этому времени относится создание его главного научного труда — теории гидромеханики.

До сих пор вы рассматривали движение твердых тел. Сегодня мы перенесем знания законов сохранения на движение жидкостей и газов. Будем рассматривать закон Бернулли на качественном уровне. Делаем вывод: скорость течения жидкости в трубе переменного сечения обратно пропорциональна площади поперечного сечения.

Сила (второй закон Ньютона)). Даниил Бернулли (29.1.1700- 17.3.1782), сын Иоганна Бернулли (брат — Якоб Бернулли) . Занимался физиологией и медициной, но больше всего математикой и механикой. Он показал, что поперечная сила, вызывающая это отклонение, возникает из-за взаимодействия двух потоков воздуха: набегающего на снаряд и вращающегося вместе со снарядом.

Уравнение Бернулли объясняет такое поведение рулона (и закрученного мячика): вращение нарушает симметричность обтекания за счёт эффекта прилипания. Это явление носит название эффекта Магнуса, по имени ученого, открывшего и исследовавшего его экспериментально.

В поперечнике такой столб может достигать сотен метров и несется со скоростью около 100м/с. Опыт 5. «Демон» Бернулли. Таким оно остается и в струе, пока в нее не будет «затянут» окружающий воздух. Благодаря этому Холлу удалось увеличить сцепление колес с дорогой и тем самым значительно повысить скорость автомобиля. Согласно уравнению Бернулли, увеличение скорости потока сопровождается понижением давления.

Магнус в 1852 г доказал, возникающая поперечная сила, действующая на тело, вращающееся в обтекающем его потоке жидкости или газа, направлена в сторону, где скорость потока и вращение тела совпадают. Этим опытом ученый установил: если на вращаемый цилиндр набегает поток воздуха, то скорости потока и вращения по одну сторону цилиндра складываются, по другую же — вычитаются.

Размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости. Полное давление состоит из весового, статического и динамического давлений. Это является основной причиной эффекта Магнуса. Закон Бернулли можно применить к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда. Отсюда: . Это - формула Торричелли. Иногда это притяжение может создавать угрозу безопасности.

ЗАКОН БЕРНУЛЛИ - один из основных законов гидродинамики, который связывает скорость потока идеальной несжимаемой жидкости и давление при установившемся течении. Бернулли - (Bernoulli) фамилия. Парадоксальность результатов такого поведения тел можно объяснить, используя закон Берннули (уравнение Бернулли). Это неправильное истолкование смысла уравнения Бернулли.

Уравнение Бернулли является основным уравнением гидродинамики , устанавливающим связь между средней скоростью потока и гидродинамическим давлением в установившемся движении.

Рассмотрим элементарную струйку в установившемся движении идеальной жидкости. Выделим двумя сечениями, перпендикулярными к направлению вектора скоростиu , элемент длиной dl и площадью dF . Выделенный объем будет находиться под действием силы тяжести

и сил гидродинамического давления
.

Так как
, то
.

Учитывая, что в общем случае скорость выделенного элемента
, его ускорение

.

Применив к выделенному элементу весом
уравнение динамики
в проекции на траекторию его движения, получим

Учитывая то, что
и что при установившемся движении
, после интегрирования и деления на
получим полный напор потока в рассматриваемом сечении:

,

где - геометрический напор (высота), выражающий удельную потенциальную энергию положения частички жидкости над некоторой плоскостью отсчета, м,

- пьезометрический напор, выражающий удельную энергию давления, м,

- скоростной напор, выражающий удельную кинетическую энергию, м,

- статический напор, м.

Это и есть уравнение Бернулли. Трехчлен этого уравнения выражает напор в соответствующем сечении и представляет собой удельную (отнесенную к единице веса) механическую энергию, переносимую элементарной струйкой через это сечение.

Впрактике технических измерений уравнение Бернулли используют для определения скорости жидкости
.

Уравнение Бернулли можно получить еще и следующим образом. Представим себе, что рассматриваемый нами элемент жидкости является неподвижным. Тогда на основании основного уравнения гидростатики
потенциальная энергия жидкости в сечениях 1 и 2 будет

.

Движение жидкости характеризуется появлением кинетической энергии, которая для единицы веса будет равна для рассматриваемых сечений
и
. Полная энергия потока элементарной струйки будет равна сумме потенциальной и кинетической энергии, поэтому

.

Таким образом, основное уравнение гидростатики является следствием уравнения Бернулли.

Лекция №7

Уравнение бернулли для реальной жидкости

Уравнение Бернулли в установившемся движении идеальной жидкости имеет вид:

.

где - геометрический напор (высота), м,- пьезометрический напор, м,

- скоростной напор, м,
- статический напор, м.

В случае реальной жидкости полный напор для разных струек в одном и том же сечении потока не будет одинаковым, так как неодинаковым будет скоростной напор в разных точках одного и того же сечения потока. Кроме того, в виду рассеяния энергии из-за трения напор от сечения к сечению будет убывать.

Однако для сечений потока, взятых там, где движение на его участках плавно меняющееся, для всех проходящих через сечение элементарных струек будет постоянным статический напор

.

Если уравнение Бернулли для элементарной струйки распространить на весь поток и учесть потери напора на сопротивление движению, то получим

где α – коэффициент кинетической энергии, равный для турбулентного потока 1,13, а для ламинарного – 2; v – средняя скорость потока; h – уменьшение удельной механической энергии потока на участке между сечениями 1 и 2, проходящее в результате сил внутреннего трения.

Расчет дополнительного члена h в уравнении Бернулли является основной задачей инженерной гидравлики.

Графическое представление уравнения Бернулли для нескольких сечений потока реальной жидкости имеет вид:

Линия А, которая проходит по уровням в пьезометрах, измеряющих в точках избыточное давление, называетсяпьезометрической линией . Она показывает изменение отсчитанного от плоскости сравнения статического напора Н с по длине потока. Пьезометрическая линия отделяет область измерения потенциальной и кинетической энергии.

Полный напор Н уменьшается по длине потока (линия В – линия полного напора реальной жидкости).

Градиент напора по длине потока называется гидравлическим уклоном и выражается формулой

,

т.е. гидравлический уклон численно равен синусу угла между горизонталью и линией полного напора реальной жидкости.

Расходомер Вентури

Расходомер Вентури представляет собой устройство, устанавливаемое в трубопроводах и осуществляющее сужение потока – дросселирование. Расходомер состоит из двух участков – плавно сужающегося (сопла) и постепенно расширяющегося (диффузора). Скорость потока в суженном месте возрастает, а давление падает. В наибольшем и наименьшем сечениях трубы установлены пьезометры, показания которых позволяют определить перепад пьезометрического напора между двумя сечениями трубы и записать

.

В этом уравнении неизвестными являются v 1 и v 2 . Из уравнения неразрывности следует
, что позволяет определить скоростьv 2 и расход жидкости через трубу

,

где С – константа расходомера, учитывающая также и потери напора, так как определяется опытом.

Аналогично ведется расчет расходомерной шайбы, обычно выполняемой в виде кольца. Расход определяется по замеренной разности уровней в пьезометрах.

Уравнение Бернулли и уравнение неразрывности потока являются основными при расчете гидравлических систем.

Документальные учебные фильмы. Серия «Физика».

Даниил Бернулли (Daniel Bernoulli; 29 января (8 февраля) 1700 - 17 марта 1782), швейцарский физик-универсал, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Сын Иоганна Бернулли.

Закон (уравнение) Бернулли является (в простейших случаях) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь

- плотность жидкости, - скорость потока, - высота, на которой находится рассматриваемый элемент жидкости, - давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, - ускорение свободного падения.

Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости.

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли (не следует путать с дифференциальным уравнением Бернулли), теоремой Бернулли или интегралом Бернулли .

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»).

Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли . В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы высота постоянна и уравнение Бернулли принимает вид: .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности : .


Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового , статического и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений), в магнитной гидродинамике, феррогидродинамике.

Последние материалы раздела:

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...