Классификация методов дистанционных исследований. Дистанционные методы получения информации о земле

Дистанционные методы

Дистанционного зондирования мйтоды (a. remote sensing, distances methods; н. Fernerkundung; ф. teledetection; и. metodos a distancia ), - общее название методов изучения наземных объектов и космич. тел неконтактным путём на значит. расстоянии (напр., с воздуха или из космоса) разл. приборами в разных областях спектра. Д. м. позволяют оценивать региональные особенности изучаемых объектов, выявляемые на больших расстояниях. Термин получил распространение после запуска в 1957 первого в мире ИСЗ и съёмки обратной стороны Луны сов. автоматич. станцией "Зонд-3" (1959).
Различают активные Д. м., основанные на использовании отражённого объектами излучения после облучения их искусств. источниками, и пассивные, к-рые изучают собств. излучение тел и отражённое ими солнечное. В зависимости от расположения приёмников Д. м. подразделяют на наземные (в т.ч. надводные), воздушные (атмосферные, или аэро-) и космические. По типу носителя аппаратуры Д. м. различают самолётные, вертолётные, аэростатные, ракетные, спутниковые Д. м. (в геол.-геофиз. исследованиях - , аэрогеофизическая съёмка и космическая съёмка). Отбор, сравнение и анализ спектральных характеристик в разных диапазонах электромагн. излучения позволяют распознать объекты и получить информацию об их размере, плотности, хим. составе, физ. свойствах и состоянии. Для поисков радиоактивных руд и источников используется g-диапазон, для установления хим. состава г. п. и почв - ультрафиолетовая часть спектра; световой диапазон наиболее информативен при изучении почв и растит, покрова, ИК - даёт оценки темп-р поверхности тел, радиоволны - информацию о рельефе поверхности, минеральном составе, влажности и глубинных свойствах природных образований и об атмосферных слоях.
По типу приёмника излучения Д. м. подразделяют на визуальные, фотографические, фотоэлектрические, радиометрические и радиолокационные. В визуальном методе (описание, и зарисовки) регистрирующим элементом является глаз наблюдателя. Фотографич. приёмники (0,3-0,9 мкм) обладают эффектом накопления, однако они имеют разл. в разных областях спектра (селективны). Фотоэлектрич. приёмники (энергия излучения преобразуется непосредственно в электрич. сигнал при помощи фотоумножителей, фотоэлементов и др. фотоэлектронных приборов) также селективны, но более чувствительны и менее инерционны. Для абс. энергетич. измерений во всех областях спектра, и особенно в ИК, используют приёмники, преобразующие тепловую энергию в др. виды (чаще всего в электрические), для представления данных в аналоговой или цифровой форме на магнитных и др. носителях информации для их анализа при помощи . Видеоинформация, полученная телевизионными, сканерными (рис.), панорамными камерами, тепловизионными, радиолокационными (бокового и кругового обзора) и др. системами, позволяет изучить пространственное положение объектов, их распространённость, привязать их непосредственно к карте.


Наиболее полные и достоверные сведения об изучаемых объектах даёт многоканальная съёмка - одновременные наблюдения в нескольких диапазонах спектра (напр., в видимом, ИК и радиообласти) или радиолокация в сочетании с методом съёмки более высокого разрешения.
В геологии Д. м. используются для изучения рельефа, строения земной , магнитных и гравитац. полей Земли, разработки теоретич. принципов автоматизир. систем космофотогеол. картирования, поиска и прогнозирования м-ний п. и.; исследования глобальных особенностей геол. объектов и явлений, получения предварит, данных о поверхности Луны, Венеры, Марса и др. Развитие Д. м. связано с улучшением наблюдат. базы (спутники-лаборатории, балонные аэростанции и др.) и техн. аппаратуры (внедрение криогенной техники, снижающей помех), формализацией дешифровочного процесса и созданием на этой основе машинных методов обработки информации, дающих макс. объективность оценок и корреляций. Литература : геологических исследований, Л., 1971; Баррет Э., Куртис Л., Введение в космическое землеведение. Дистанционные методы исследования Земли, пер. с англ., М., 1979; Гонин Г. Б., Космическая фотосъемка для изучения природных ресурсов, Л., 1980; Лаврова Н. П., Стеценко А. Ф., Аэрофотосъемка. Аэрофотосъемочное оборудование, М., 1981; Радиолокационные методы исследования Земли, М., 1980; "Исследование Земли из космоса" (с 1980); Дистанционное зондирование: количественный подход, пер. с англ., М., 1983; Теicholz E., Processing Satellite Data, "Datamation", 1978, v. 24, No 6. К. А. Зыков.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Смотреть что такое "Дистанционные методы" в других словарях:

    ДИСТАНЦИОННЫЕ МЕТОДЫ - получение информации о растении или растительности бесконтактным способом, обычно с помощью самолетов или спутников … Словарь ботанических терминов

    В этой статье отсутствует вступление. Пожалуйста, допишите вводную секцию, кратко раскрывающую тему статьи. В зависимости от точности результатов, которые необходимо получить при проведении мониторинга по тому или иному компоненту, явлению, пр … Википедия

    Дистанционные геохимические поиски - 27. Дистанционные геохимические поиски Геохимические поиски с применением аналитической аппаратуры, располагаемой на различном удалении от ископаемого объекта Источник: ГОСТ 28492 90: Геохимические методы поисков твердых полезных ископаемых.… …

    АЭРОКОСМИЧЕСКИЕ МЕТОДЫ - обследования в сельском хозяйстве, совокупность методов сбора, обработки и использования материалов аэро и космич. съёмок, а также наземной информации о состоянии с. х. культур, угодий и почв. В основе А. м. лежит съёмка изучаемых объектов на… … Сельско-хозяйственный энциклопедический словарь

    аэрокосмические методы - обследования в сельском хозяйстве, совокупность методов сбора, обработки и использования материалов аэро и космических съёмок, а также наземной информации о состоянии сельскохозяйственных культур, угодий и почв. В основе А. м. лежит съёмка… … Сельское хозяйство. Большой энциклопедический словарь

    Электронные методы и средства разведки совокупность методов и организационных структур для ведения разведывательных действий с помощью радиоэлектронных средств (РЭС) и другой электронной техники … Википедия

    ГОСТ 28492-90: Геохимические методы поисков твердых полезных ископаемых. Термины и определения - Терминология ГОСТ 28492 90: Геохимические методы поисков твердых полезных ископаемых. Термины и определения оригинал документа: 10. Аддитивная геохимическая аномалия Геохимическая аномалия, выделенная по сумме содержаний химических элементов… … Словарь-справочник терминов нормативно-технической документации

    Ангоб Покрытие из жидкой глины, нанесенное снаружи на керамический сосуд; часто в него добавляют пигмент, который после обжига определяет цвет поверхности сосуда. После просушки ангоб иногда обрабатывают лощением, а украшение сосуда иным способом … Энциклопедия Кольера

    1) раздел клинической медицины, в котором для лечения различных болезней, в первую очередь злокачественных новообразований, используют методы, основанные на биологическом действии ионизирующего излучения; 2) совокупность методов лечения различных … Медицинская энциклопедия

    - (от лат. monitor тот, кто напоминает, предупреждает * a. monitoring; н. Monitoring; ф. monitoring; и. monitoring) комплексная система регламентированных периодич. наблюдений, оценки и прогноза изменений состояния природной среды c целью… … Геологическая энциклопедия

Книги

  • Дистанционные методы поисков месторождений нефти и газа на морских акваториях , Райкунов Геннадий Геннадьевич. Представлены и проанализированы методы дистанционного зондирования, разработанные в западных государственных и частных компаниях, а также советскими специалистами во второй половине прошлого…

Бесспорно, важнейшие качества данных, используемых в про­цессе принятия решения, - актуальность, полнота и объектив­ность. Всеми этими качествами обладают данные дистанционного зондирования (ДЦЗ) Земли. Они служат эффективным инстру­ментом, позволяющим оперативно и детально исследовать состоя­ние окружающей среды, использование природных ресурсов и по­лучать объективную картину мира.

Дистанционное зондирование - получение информации о зем­ной поверхности (включая расположенные на ней объекты) без непосредственного контакта с ней путем регистрации приходя­щего от нее электромагнитного излучения .

Методы дистанционного зондирования основаны на том, что любой объект излучает и отражает электромагнитную энергию в соответствии с особенностями его природы. Различия в длинах волн и интенсивности излучения могут быть использованы для изучения свойств удаленного объекта без непосредственного кон­такта с ним .

Дистанционное зондирование сегодня - это огромное разно­образие методов получения изображений практически во всех диапазонах длин волн электромагнитного спектра (от ультрафиоле­товой до дальней инфракрасной) и радиодиапазона, самая раз­личная обзорность изображений - от снимков с метеорологиче­ских геостационарных спутников, охватывающих практически це­лое полушарие, до детальных аэросъемок участка в несколько сот квадратных метров .

Основные достоинства дистанционного мониторинга следующие:

Наблюдаются и регистрируются сведения об обширных пространствах вплоть до всей видимой в момент съемки части Земного шара;

Благодаря большой обзорности можно прослеживать глобальные и крупные региональные особенности природы Земли;

Космические снимки дают однотипную информацию о труднодоступных районах с такой же точностью, как и для хорошо
изученных участков, что позволяет эффективно применять метод
экстраполяции дешифровочных признаков на основе выделения
ландшафтов-аналогов;

Мгновенность изображения обширных площадей сводит к минимуму влияние переменных факторов;

Возможность регулярного проведения повторных съемок позволяет выбрать лучшие изображения;

По материалам повторных съемок изучается динамика при­
родных процессов;

Комплексный характер информации, содержащейся на космоснимках, обусловливает использование их для изучения сложных
процессов взаимодействия компонентов природы: атмосферы и
океана, гидрологических процессов с литогенной основой, жи­вотных и растений со всем многообразием условий их обитания;

Благодаря естественной генерализации изображения на кос­мических снимках отображаются наиболее крупные и существенные элементы ландшафтной структуры географической оболочки
и следы антропогенного воздействия .

История использования данных аэрокосмического мониторинга. Дистанционные методы исследования окружающей среды ведут свою историю с древнейших времен. Например, еще в Древнем Риме существовали изображения различных географических объек­тов в виде планов на стенах зданий.

В XVIII в. определение размеров и пространственного положения предметов происходило по его рисованным изображениям в цент­ральной проекции, которые получали с помощью камеры-обскуры с возвышенных мест и судов. Исследователь получал снимки-ри­сунки, графически фиксируя оптическое изображение. Уже при съемке производился отбор и обобщение деталей изображения.

Следующими этапами в развитии дистанционных методов стали открытие фотографии, изобретение фотообъектива и стереоскопа. Фотографическая регистрация оптического изображения позво­лила получать практически моментальные снимки, которые отличались объективностью, детальностью и точностью. Француз­ский геолог и альпинист Э. Цивиаль выполнил фотографирова­ние в Пиренеях и Альпах.

Фотографии местности, сделанные с высоты птичьего полета с воздушных шаров и воздушных змеев, сразу же получили высо­кую картографическую оценку. Для различных военных и граж­данских целей использовались снимки с привязных аэростатов и аэропланов .

Первые самолетные съемки совершили революцию в дистан­ционном зондировании, но они не позволяли получать необходи­мые мелкомасштабные изображения. Однако в 1920 -1930-е гг. фо­тосъемка местности с самолетов широко применялась для созда­ния лесных, топографических, геологических карт, для изыска­тельских работ.

Следующим этапом стало использование баллистических ракет. Первый снимок земной поверхности был получен при помощи фотоаппарата, установленного на баллистической ракете Fau-2 немецкого производства, запущенной в 1945 г. с американского ракетного полигона White Sands. Ракета достигла высоты 120 км, после чего фотоаппарат с отснятой пленкой был возвращен на Землю в специальной капсуле. До конца 1950-х гг. космическая съемка поверхности Земли осуществлялась с высот до 200 км ис­ключительно с использованием аппаратуры, устанавливаемой на баллистических ракетах и зондах . Несмотря на несовершен­ство методики получения снимков при фотографировании с бал­листических ракет, они широко применялись благодаря их отно­сительной дешевизне для изучения растительности, типов исполь­зования земель, для нужд гидрометеорологии и геологии и при исследованиях природной среды .

Началом систематического обзора поверхности Земли из кос­моса можно считать запуск 1 апреля 1960 г. американского метео­рологического спутника TIROS-1 {Television and Infrared Observation Satellite). Первый отечественный ИСЗ аналогичного назначения, «Космос-122», был выведен на орбиту 25 июня 1966 г. Работа спут­ников серии «Космос» («Космос-144» и «Космос-156») позволила создать метеорологическую систему, впоследствии разросшуюся в специальную службу погоды (система «Метеор»).

Уже со времени второго пилотируемого полета Г.С.Титова на корабле «Восток-2» (1961) производилась съемка Земли. В каче­стве съемочной аппаратуры использовались ручные фотокамеры.

Со второй половины 1970-х гг. космические съемки стали про­водиться в массовом порядке с автоматических спутников. Первым спутником, нацеленным на исследование природных ресурсов Зем­ли, стал американский космический аппарат (КА) ERTS {Earth Resources Technological Satellite), впоследствии переименованный в Landsat, дававший разрешение на местности в 50 - 100 м.

По-настоящему широкие перспективы открылись перед дис­танционным зондированием с развитием компьютерных техноло­гий, переносом всех основных операций по обработке и использо­ванию данных съемок на компьютеры, особенно в связи с появ­лением и широким распространением ГИС .

Сейчас задачи оперативного спутникового контроля природ­ных ресурсов, исследования динамики протекания природных процессов и явлений, анализа причин, прогнозирования воз­можных последствий и выбора способов предупреждения чрез­вычайных ситуаций считаются неотъемлемым атрибутом мето­дологии сбора информации о состоянии интересующей терри­тории (страны, края, города), необходимой для принятия пра­вильных и своевременных управленческих решений. Особая роль отводится спутниковой информации в геоинформационных си­стемах, где результаты дистанционного зондирования поверх­ности Земли (ДЗЗ) из космоса являются регулярно обновляе­мым источником данных, необходимых для формирования при-родоресурсных кадастров и других приложений, охватывая весьма широкий спектр масштабов (от 1:10 000 до 1:10 000 000). При этом информация ДЗЗ позволяет оперативно оценивать достоверность и в случае необходимости проводить обновление использующихся графических слоев (карт дорожной сети, комму­никаций и т.п.), а также может быть использована в качестве растровой «подложки» в целом ряде ГИС-приложений, без кото­рых сегодня уже немыслима современная хозяйственная деятель­ность .

Принципы современного подхода к использованию данных дис­танционного зондирования Земли. 1. Вся обработка и практически все использование ДДЗ производится в цифровом виде с помо­щью компьютеров.

2. Все материалы дешифрирования ДДЗ и другие получаемые
из них данные готовятся для использования в составе пространственных баз данных геоинформационных систем.

3. В процессе использования ДДЗ дополнительно привлекаются
самые различные данные другого типа, организованные в виде
баз данных ГИС. Это могут быть данные полевых обследований,
различные карты, другие данные дистанционного зондирования,
геофизические и геохимические поля, характеризующие те или
иные природные среды, и т.д. Эти данные используются непосредственно в процессе дешифрирования ДДЗ или вовлекаются в
совместную обработку с ними. Дешифрирование и процесс ис­пользования ДДЗ сегодня следует рассматривать не как отдельный
изолированный процесс, а как часть процесса комплексной интерпретации и использования данных.

4. Как правило, работа с ДДЗ производится не с отдельными
снимками, а с виртуальной мозаикой многих кадров.

5. Улучшающая обработка изображения - не отдельный про­
цесс, оторванный от процесса тематической обработки и дешифрирования ДДЗ, а обработка прямо в процессе дешифрирования
или другого использования.

6. В основном тематическая обработка и дешифрирование ДДЗ
ведется или с трансформированными и привязанными снимками
в реальных координатных системах, или при установленной та­
кой связи с реальными координатами с возможностью выполнения отложенного трансформирования.

7. Картографические проекции и системы координат более не
трактуются как нечто навсегда заданное для изображения; они
преобразуются по мере необходимости как для отдельных точек
или объектов, так и для целого изображения ДДЗ.

8. Широко применяются методы автоматизации тематической
обработки, автоматизации дешифрирования, которые, однако,
не рассматриваются обычно как методы получения окончательного результата, а как подручные, многократно применяемые ме­тоды получения чернового результата, как метод исследования
данных. Главные и окончательные решения чаще всего принимает
человек.

9. Для комплексного анализа данных, включающих ДДЗ, часто
применяются технологии экспертных систем и им подобные, объединяющие неформальные знания экспертов и формальные методы анализа.

10. Из процесса использования ДДЗ исключен как самостоя­тельная стадия процесс сбора результатов дешифрирования от­
дельных снимков и перенос их на единую топооснову.

11. Значительная часть обработки, особенно улучшающих пре­
образований, проводится без внесения изменений в файлы данных на диске (в оперативной памяти или временных файлах),
поэтому не происходит накопления промежуточных результатов
обработки и возможна отмена выполненных преобразований.

12. Поскольку трансформирование и привязка снимков могут
занимать различное положение в цепи обработки и использова­ния снимков, их нельзя более считать поставщиком данных или
специальной группой подготовки (предварительной обработки)
снимков. В ряде ситуаций она выполняется конечным пользователем ДДЗ, занятым их тематическим использованием.

13.Фотограмметрические методики, обеспечивающие выпол­нение точных геометрических измерений на снимках, ранее мало­доступные из-за необходимости использования очень дорогого, сложного в эксплуатации и немобильного оптико-механического оборудования и высококвалифицированного персонала, сегодня, с внедрением методов цифровой фотограмметрии и, особенно, в связи с ее переходом на использование персональных компьюте­ров, стали доступны даже конечному пользователю ДДЗ .

Далее мы подробно остановимся на космическом мониторинге окружающей среды как наиболее объективном и современном методе отражения процессов и явлений, происходящих в окружаю­щей среде. Космические методы удачно дополняют традиционные наземные и аэрометоды. Их совместное использование обеспе­чивает исследования одновременно на локальном, региональном и глобальном уровнях.

Основной продукт космического мониторинга - снимок. Сни­мок - двумерное изображение, полученное в результате дистан­ционной регистрации техническими средствами собственного или отраженного излучения и предназначаемое для обнаружения, каче­ственного и количественного изучения объектов, явлений и про­цессов путем дешифрирования, измерения и картографирования.

Космические снимки имеют большую познавательную цен­ность, усиленную их особыми свойствами, такими как большая обзорность, генерализованность изображения, комплексное отоб­ражение всех компонентов геосферы, регулярная повторяемость через определенные интервалы времени, оперативность поступ­ления информации, возможность ее получения для объектов, не­доступных изучению другими средствами.

Генерализация изображения на космических снимках включает геометрическое и тоновое обобщение рисунка изображения и за­висит от ряда факторов - технических (масштаба и разрешения снимков, метода и спектрального диапазона съемки) и природ­ных (влияния атмосферы, особенностей территории). В результате такой генерализации изображение многих черт земной поверхно­сти на снимках освобождается от частностей, в то же время раз­розненные детали объединяются в единое целое, поэтому более четко выступают объекты высших таксономических уровней, круп­ные региональные и глобальные структуры, зональные и плане­тарные закономерности.

Влияние генерализации изображения на дешифрируемость кос­мических снимков - двойственное. Сильно обобщенное изобра­жение уменьшает возможность высокоточного и детального картографирования по космическим снимкам, в частности влечет ошибки дешифрирования. Недаром стремятся к использованию снимков высокого разрешения. Однако обобщенность изображе­ния космического снимка относится к его достоинствам. Это свой­ство позволяет также использовать космические снимки для непосредственного составления тематических карт в средних и мелких масштабах без трудоемкого детального многоступенчатого перехода от крупных масштабов карт к мелким, что обеспечивает экономию времени и средств. Во-вторых, оно дает преимущества смыслового, содержательного, плана: на космических снимках выявляются важные объекты, скрытые на снимках более крупных масштабов .

Классификация космических снимков. Космические снимки мож­но классифицировать по разным признакам: в зависимости от выбора регистрируемых излучательных и отражательных характе­ристик, что определяется спектральным диапазоном съемки; от тех­нологии получения изображений и передачи их на Землю, во мно­гом обусловливающей качество снимков; от параметров орбиты космического носителя и съемочной аппаратуры, определяющих масштаб съемки, обзорность, разрешение снимков и т.п.

По спектральному диапазону (рис. 4.6) космические снимки де­лятся на три основные группы :

В видимом и ближнем инфракрасном (световом) диапазоне;

В тепловом инфракрасном диапазоне;

Снимки в радиодиапазоне.

По технологии получения изображения, способам получения сним­ков и передачи на Землю снимки в видимом и ближнем инфра­красном (световом) диапазоне подразделяют на:

Фотографические;

Телевизионные и сканерные;

Многоэлементные ПЗС-снимки на основе приборов с зарядовой связью;

Фототелевизионные.

Снимки в тепловом инфракрасном диапазоне представляют собой тепловые инфракрасные радиометрические снимки. Снимки в радиодиапазоне делятся в зависимости от использования актив­ного или пассивного принципа съемки на микроволновые радио­метрические, получаемые при пассивной регистрации излучения, и радиолокационные, получаемые при активной локации.

По масштабу космические снимки делятся на три группы:

1) мелкомасштабные (1:10 000 000 -1:100 000 000);

2) среднемасштабные (1:1 000000- 1:10 000 000);

3) крупномасштабные (крупнее 1:1 000 000).

По обзорности (площадному охвату территории одним снимком) снимки подразделяются на:

Глобальные (охватывающие всю планету, точнее, освещенную
часть одного полушария);

Региональные, на которых изображаются части материков или
крупные регионы;

Локальные, на которых изображаются части регионов.

По разрешению (минимальной линейной величине на местности изображающихся объектов) снимки различаются на снимки:

Очень низкого разрешения, измеряющееся десятками кило­
метров;

Низкого разрешения, измеряющегося километрами;

Среднего разрешения, измеряющегося сотнями метров;

Снимки высокого разрешения, измеряющегося десятками мет­ров (которые, в свою очередь, делят на снимки относительно высо кое качество снимков, получаемых в видимом и ближнем ин­фракрасном диапазоне, их геометрические и фотометрические свой­ства зависят от технологии получения снимков и передачи их на Землю.

Фотографические снимки в этом диапазоне получают с пилоти­руемых кораблей и орбитальных станций или с автоматических спутников. Известные недостатки фотографического метода свя­заны с необходимостью возвращения пленки на Землю и ограни­ченным ее запасом на борту. Однако этот метод дает снимки наи­более высокого качества, с хорошими геометрическими и фото­метрическими характеристиками. Разрешение фотографических снимков с околоземных орбит высотой 100 - 400 км может быть доведено до десятков сантиметров, но такие снимки не обладают большой обзорностью. Фотографические снимки, сделанные первыми советскими космонавтами с корабля «Восток», представ­лены в альбоме «Наша планета из космоса» (1964). На них разли­чались береговые линии морей, реки, леса. Однако возможности их использования были весьма ограниченны. Затем в нашей стране фотографическая съемка производилась с космических кораблей серии «Союз», с орбитальных станций «Салют» и сменивших их в 1986 г. станций «Мир». Основной объем фотографической ин­формации поступает в нашей стране со специальных автомати­ческих спутников серии «Космос». Система этих спутников получи­ла теперь наименование «Ресурс-Ф» (как фотографическая под­система общегосударственной космической системы исследования природных ресурсов) (подробнее о спутниках и установленной на них аппаратуре см. раздел 4.8).

Телевизионная и сканерная съемка в этом диапазоне дает воз­можность систематического получения изображения всей поверх­ности Земли с искусственных спутников в течение длительного времени при быстрой передаче его на приемные станции. При выполнении съемки этим методом используются кадровые и ска­нирующие системы. В первом случае на борту спутника имеется миниатюрная телевизионная камера (видикон), в которой опти­ческое изображение, построенное объективом на экране при считывании электронным лучом, переводится в форму электро­сигналов и по радиоканалам передается на Землю. Во втором слу­чае качающееся зеркало сканера на борту носителя улавливает отраженный от Земли световой поток, поступающий на фотоум­ножитель. Преобразованные сигналы сканера также по радиока­налам передаются на Землю, где на приемных станциях они при­нимаются и записываются в виде изображений. При этом каждый сигнал относится к определенной площадке - элементу изображе­ния, - для которой передается интегральная яркость. Колебание зеркала реализует строки изображения, а благодаря движению носителя происходит накопление строк и формируется снимок, что обусловливает строчно-сетчатую поэлементную структуру изоб­ражения.

Телевизионные и сканерные снимки могут передаваться на Землю в реальном масштабе прохождения спутника над объектом съемки. Оперативность получения снимков составляет отличитель­ную черту этого метода. Телевизионная и сканирующая аппарату­ра устанавливается на полярно-орбитальных спутниках Земли.

Важной особенностью сканерной съемки является поступле­ние информации со спутника в цифровой форме, что облегчает ее обработку.

Получение многоэлементных ПЗС-снимков связано с примене­нием электронных камер (иногда их называют электронными ска­нерами). В них используются многоэлементные линейные и мат­ричные приемники излучения, состоящие из нескольких тысяч миниатюрных (размером 10 - 20 мкм) светочувствительных эле­ментов-детекторов - так называемых приборов с зарядовой свя­зью (ПЗС). Их малые размеры обеспечивают высокое разрешение подобных снимков. Линейный ряд детекторов (так называемая линейка ПЗС) реализует сразу целую строку снимка, а накопле­ние строк обеспечивается за счет движения носителя аппаратуры. Эта аппаратура не имеет колеблющихся или вращающихся эле­ментов конструкции, что вместе с высоким разрешением обус­ловливает лучшие геометрические свойства снимков.

Снимки этого типа впервые были получены в 1980 г. с помощью экспериментальной системы МСУ-Э на спутнике «Метеор-30». На спутнике «Ресурс-01» с 1988 г. аппаратура МСУ-Э дает снимки в 3 спектральных зонах с разрешением 45 м при охвате 45 км; для расширения полосы охвата используются 2 сканера. Информация с этих спутников поступает в цифровой форме и предназначена для автоматизированной обработки.

Фототелевизионные снимки получают с помощью фотокамеры, обеспечивающей хорошее качество изображения. Передача экс­понированного и проявленного на борту изображения на Землю идет по телевизионным каналам связи. Фототелевизионный метод съемки сыграл важную роль при съемке планет.

Применение фототелевизионных снимков относится к первым годам космических исследований, когда качество телевизионных изображений заставляло обращаться к фотографированию с бор­та космических носителей даже при невозможности доставки от­снятой пленки на Землю, используя телевизионный метод для передачи снимков. Использование этих снимков было особенно Важно при исследованиях Луны и Марса.

Снимки в тепловом инфракрасном диапазоне. Тепловой инфра­красный диапазон охватывает длины волн от 3 до 1000 мкм, одна­ко большая часть его лучей не пропускается атмосферой. Имеются только три окна прозрачности с длинами волн 3 - 5, 8 -14 и 30 - 80 мкм, первые два из которых используются для съемки. Интен­сивность излучения Солнца в этом диапазоне незначительна, но зато на волны длиной 10 - 12 мкм приходится максимум собствен­ного теплового излучения Земли. Поскольку у различных объек­тов земной поверхности (суши, воды, по-разному увлажненных почв и т.п.) оно неодинаково, появляется возможность по дан­ным регистрации этого излучения судить о характере излучаю­щих объектов. Регистрирующие приборы, работающие в этом ди­апазоне (тепловые инфракрасные радиометры), дают сигналы разной силы для объектов с различной температурой. При по­строении по этим сигналам изображения - теплового инфракрас­ного снимка - получают пространственно зафиксированные тем­пературные различия объектов съемки. Обычно на таких снимках наиболее холодные объекты выглядят светлыми, теплые - темны­ми со всей гаммой температурных переходов. Съемку можно вести ночью - на затененной стороне Земли, а также в условиях по­лярной ночи. Съемке мешает облачность, так как в этом случае регистрируются температуры не земной поверхности, а верхней кромки облаков.

Помимо прямого определения температурных режимов види­мых объектов и явлений (как природных, так и искусственных) тепловые снимки позволяют косвенно выявлять то, что скрыто под землей - подземные реки, трубопроводы и т. п. Снимки по­зволяют отслеживать динамику лесных пожаров, нефтяные и га­зовые факелы, процессы подземной эрозии .

Дистанционное зондирование в тепловой инфракрасной обла­сти спектра - более сложная задача, чем в видимой и ближней инфракрасной областях. Это обусловлено тем, что в тепловой об­ласти измерения чувствительны к температуре, которая характе­ризуется следующими свойствами для соответствующих природ­ных объектов:

Эти объекты могут запасать и через какое-то время высвобождать сохраненное тепло, т.е. фактическая температура определяется не только текущими условиями измерений, но и предысто­рией нагревания того или иного объекта;

На земной поверхности тепловая энергия зависит не только
от солнечной радиации, но и от турбулентного теплообмена поверхности и испарения влаги .

Тем самым при определении температуры земной поверхности по данным дистанционного зондирования с точки зрения иден­тификации тепловых свойств объектов исследования необходимо учитывать обмен и изменения энергетических потоков и эволю­цию температуры поверхности во времени. Обычно поверхность суши и океаны поглощают солнечную энергию в дневное время суток и переизлучают часть запасенной энергии в тепловой обла­сти спектра в ночное время. Вместе с тем атмосфера имеет собственное тепловое излучение, что определяет сложный характер баланса радиационных и тепловых потоков. В ночное время суток эта «усложненная» тепловая энергия переизлучается до следую­щего цикла солнечного нагревания неодинаково для разных гор­ных пород, почвенно-растительного покрова и водных поверхно­стей вследствие их разной теплоинерционной способности .

Снимки в радиодиапазоне. Для дистанционного изучения Земли используется ультракоротковолновый диапазон радиоволн с дли­нами 1 мм - 10 м, точнее, его наиболее коротковолновая часть (1 мм - 1 м), называемая сверхвысокочастотным (СВЧ) диапазо­ном (в зарубежной литературе его называют микроволновым). Он в значительной мере свободен от влияния атмосферы: окно про­зрачности охватывает длины волн от 1 см до 10 м. При съемке в ультракоротковолновом диапазоне фиксируется либо собственное излучение Земли этого диапазона (пассивная радиометрия), либо отраженное искусственное излучение (активная радиолокация).

При пассивной съемке получают микроволновые радиометри­ческие снимки. С помощью микроволновых радиометров регистри­руется микроволновое излучение различных объектов - так на­зываемые радиояркостные температуры. Такая съемка называется радиотепловой или микроволновой радиометрической. По сигна­лам излучения строится пространственное изображение - мик­роволновый радиометрический снимок, на котором по-разному изображаются объекты, обладающие неодинаковыми излучатель-ными свойствами. Излучательные характеристики различных при­родных и искусственных объектов в этом диапазоне неодинаковы. Так, излучение металлов минимально, практически равно 0; излу­чение растительности и сухой почвы определяется коэффициен­том 0,9, а воды - 0,3. Это позволяет разделять на снимках объекты с различными излучательными свойствами, в частности разные по влажности почвы, воды с разной степенью солености, объекты с разной кристаллической структурой, промерзание грунтов. На таких снимках по-разному выглядят морские льды различного воз­раста - однолетние и многолетние, - которые могут не разли­чаться на обычных снимках в оптическом диапазоне.

При активной радиолокационной съемке получают собственно радиолокационные снимки. На носителе устанавливается активный источник радиоизлучения с антенной, действующий по принципу просмотра местности поперек линии маршрута. Посылаемый к Земле узконаправленный сигнал по-разному отражается поверхностью и улавливается регистрирующей аппаратурой. Из таких построчных сигналов формируются радиолокационные снимки, на которых отображаются шероховатость поверхности, ее микрорельеф, осо­бенности структуры и состав пород, слагающих поверхность.

При размерах неровностей поверхности меньше полудлины волны поверхность объекта для радиоволн как бы гладкая (зеркалит) и изображается на радиолокационных снимках наиболее тем­ным тоном (песчаные пляжи, солончаки, такыры, гладкая вод­ная поверхность). При размере неровностей больше полудлины волны происходит рассеивание и диффузное отражение энергии, зависящее от величины неровностей, их формы, ориентировки по отношению к радиолучу. Они изображаются серым тоном раз­ной плотности. Растительность увеличивает поглощение радиоволн и изображается светлым тоном. Такое радиолокационное поверх­ностное зондирование ведут, используя волны сантиметрового диапазона. Генерируя излучение различных длин волн, можно получать информацию об объектах на некоторой глубине. Радио­локаторы подповерхностного зондирования работают в децимет­ровом и метровом диапазоне (1-30 м). Они обнаруживают под­поверхностные неоднородности грунтов, позволяя определять глу­бину их залегания и мощность. Например, в диапазоне 0,5 - 1 м фиксируются пресные грунтовые воды в песках на глубине до 20 м.

Радиолокационные снимки могут применяться для изучения волнения и приповерхностных ветров, исследования поверхност­ных и подповерхностных структур, поисков линз подземных вод, изучения растительности, картографирования использования зе­мель, изучения городов и решения других задач.

Пассивная и активная съемка в радиодиапазоне отличается от остальных видов съемки своей всепогодностью, обусловленной абсолютной прозрачностью атмосферы для волн этого диапазона спектра. Она может производиться ночью, при сплошной облач­ности, тумане, дожде. Именно поэтому важно применение дан­ного диапазона для космических съемок, в особенности для опе­ративных целей.

Введение

Аналитическая химия- это наука об определение химического состава вещества и отчасти их химического строения. Методы аналитической химии позволяют отвечать на вопросы о том, из чего состоит вещество, какие компоненты входят в его состав. Еще важнее: каково количество этих компонентов или какова их концентрация. Эти методы часто дают возможность узнать, в какой форме данный компонент присутствует в веществе.

В задачу аналитической химии входит разработка теоретических основ методов, установление границ их применимости, оценка метрологических и других характеристик, создание методик анализа различных объектов

Можно выделить три функции аналитической химии как области знания:

1) Решение общих вопросов анализа

2) Разработка аналитических методов

3) Решение конкретных задач анализа

Химический анализ может быть различным. Качественный и количественный, валовый и локальный, диструктивный и недиструктивный, контактный и дистанционный.

Целью данного реферата является более подробное изучение дистанционного анализа, его механизма.


Дистанционное зондирование.

Дистанционное зондирование – это сбор информации об объекте или явлении с помощью регистрирующего прибора, не находящегося в непосредственном контакте с данным объектом или явлением. Термин "дистанционное зондирование" обычно включает в себя регистрацию (запись) электромагнитных излучений посредством различных камер, сканеров, микроволновых приемников, радиолокаторов и других приборов такого рода. Дистанционное зондирование используется для сбора и записи информации о морском дне, об атмосфере Земли, о Солнечной системе. Оно осуществляется с применением морских судов, самолетов, космических летательных аппаратов и наземных телескопов. Науки, ориентированные на полевые работы, к числу которых относятся такие, как геология, лесоводство и география, также обычно используют дистанционное зондирование для сбора данных в целях проведения своих исследований.



Дистанционное зондирование охватывает теоретические исследования, лабораторные работы, полевые наблюдения и сбор данных с борта самолетов и искусственных спутников Земли. Теоретические, лабораторные и полевые методы важны также для получения информации о Солнечной системе, и когда-нибудь их начнут использовать для изучения других планетных систем Галактики. Некоторые наиболее развитые страны регулярно запускают искусственные спутники для сканирования поверхности Земли и межпланетные космические станции для исследований дальнего космоса.

В системе такого типа имеются три основных компонента: устройство для формирования изображения, среда для регистрации данных и база для проведения зондирования. В качестве простого примера такой системы можно привести фотографа-любителя (база), использующего для съемки реки 35-мм фотоаппарат (прибор-визуализатор, формирующий изображение), который заряжен высокочувствительной фотопленкой (регистрирующая среда). Фотограф находится на некотором расстоянии от реки, однако регистрирует информацию о ней и затем сохраняет ее на фотопленке.
Приборы, формирующие изображения, делятся на четыре основные категории: фото- и кинокамеры, многоспектральные сканеры, радиометры и активные радиолокаторы. Современные однообъективные зеркальные фотокамеры создают изображение, фокусируя ультрафиолетовое, видимое или инфракрасное излучение, приходящее от объекта, на фотопленке. После проявления пленки получается постоянное (способное сохраняться длительное время) изображение. Видеокамера позволяет получать изображение на экране; постоянной записью в этом случае будет соответствующая запись на видеоленте или фотоснимок, сделанный с экрана. Во всех других системах визуализации изображений используются детекторы или приемники, обладающие чувствительностью на определенных длинах волн спектра. Фотоэлектронные умножители и полупроводниковые фотоприемники, используемые в сочетании с оптико-механическими сканерами, позволяют регистрировать энергию ультрафиолетового, видимого, а также ближнего, среднего и дальнего ИК-участков спектра и преобразовывать ее в сигналы, которые могут давать изображения на пленке. Энергия микроволн (диапазон сверхвысоких частот, СВЧ) подобным же образом трансформируется радиометрами или радиолокаторами. В сонарах для получения изображений на фотопленке используется энергия звуковых волн.
Приборы, используемые для визуализации изображений, размещают на различных базах, в том числе на земле, судах, самолетах, воздушных шарах и космических летательных аппаратах. Специальные камеры и телевизионные системы повседневно используются для съемки представляющих интерес физических и биологических объектов на земле, на море, в атмосфере и космосе. Специальные камеры замедленной киносъемки применяются для регистрации таких изменений земной поверхности, как эрозия морских берегов, движение ледников и эволюция растительности.
Фотоснимки и изображения, сделанные в рамках программ аэрокосмической съемки, надлежащим образом обрабатываются и сохраняются. В США и России архивы для таких информационных данных создаются правительствами. Один из основных архивов такого рода в США, EROS (Earth Resources Obsevation Systems) Data Center, подчиненный Министерству внутренних дел, хранит ок. 5 млн. аэрофотоснимков и ок. 2 млн. изображений, полученных со спутников "Лендсат", а также копии всех аэрофотоснимков и космических снимков поверхности Земли, хранящихся в Национальном управлении по аэронавтике и исследованию космического пространства (НАСА). К этой информации имеется открытый доступ. Обширные фотоархивы и архивы других изоматериалов имеются у различных военных и разведывательных организаций.
Самая важная часть дистанционного зондирования - анализ изображений. Такой анализ может выполняться визуально, визуальными методами, усиленными применением компьютера, и целиком и полностью компьютером; последние два включают в себя анализ данных в цифровой форме. Первоначально большинство работ по анализу данных, полученных дистанционным зондированием, выполнялось визуальным исследованием индивидуальных аэрофотоснимков или путем использования стереоскопа и наложения фотоснимков с целью создания стереомодели. Фотоснимки были обычно черно-белыми и цветными, иногда черно-белыми и цветными в ИК-лучах или - в редких случаях - многозональными. Основные пользователи данных, получаемых при аэрофотосъемке, - это геологи, географы, лесоводы, агрономы и, конечно, картографы. Исследователь анализирует аэрофотоснимок в лаборатории, чтобы непосредственно извлечь из него полезную информацию, нанести ее затем на одну из базовых карт и определить области, в которых надо будет побывать во время полевых работ. После проведения полевых работ исследователь еще раз оценивает аэрофотоснимки и использует полученные из них и в результате полевых съемок данные для окончательного варианта карты. Такими методами подготавливают к выпуску множество разных тематических карт: геологических, карт землепользования и топографических, карт лесов, почв и посевов. Геологи и другие ученые ведут лабораторные и полевые исследования спектральных характеристик различных природных и цивилизационных изменений, происходящих на Земле. Идеи таких исследований нашли применение в конструкции многоспектральных сканеров MSS, которые используются на самолетах и КЛА. Искусственные спутники Земли "Лендсат" 1, 2 и 4 имели на борту MSS с четырьмя спектральными полосами: от 0,5 до 0,6 мкм (зеленая); от 0,6 до 0,7 мкм (красная); от 0,7 до 0,8 мкм (ближняя ИК); от 0,8 до 1,1 мкм (ИК). На спутнике "Лендсат 3" используется, кроме того, полоса от 10,4 до 12,5 мкм. Стандартные составные изображения с применением метода искусственного окрашивания получаются при комбинированном использовании MSS с первой, второй и четвертой полосами в сочетании с синим, зеленым и красным фильтрами соответственно. На спутнике "Лендсат 4" c усовершенствованным сканером MSS тематический картопостроитель позволяет получать изображения в семи спектральных полосах: трех - в области видимого излучения, одной - в ближней ИК-области, двух - в средней ИК-области и одной - в тепловой ИК-области. Благодаря этому прибору пространственное разрешение было улучшено почти втрое (до 30 м) по сравнению с тем, что давал спутник "Лендсат", на котором использовался только сканер MSS. Поскольку чувствительные датчики спутников не предназначались для стереоскопической съемки, дифференцировать те или иные особенности и явления в пределах одного конкретного изображения пришлось, используя спектральные различия. Сканеры MSS позволяют различать пять широких категорий земных поверхностей: вода, снег и лед, растительность, обнаженная порода и почва, а также объекты, связанные с деятельностью человека. Научный работник, хорошо знакомый с исследуемой областью, может выполнить анализ изображения, полученного в одной широкой полосе спектра, каким, например, является черно-белый аэрофотоснимок, который в типичном случае получается при регистрации излучений с длинами волн от 0,5 до 0,7 мкм (зеленая и красная области спектра). Однако с увеличением числа новых спектральных полос глазам человека становится все труднее проводить различия между важными особенностями похожих тонов в различных участках спектра. Так, например, только один съемочный план, снятый со спутника "Лендсат" с помощью MSS в полосе 0,5-0,6 мкм, содержит ок. 7,5 млн. пикселов (элементов изображения), у каждого из которых может быть до 128 оттенков серого в пределах от 0 (черный цвет) до 128 (белый цвет). При сравнении двух изображений одной и той же области, сделанных со спутника "Лендсат", приходится иметь дело с 60 млн. пикселов; одно изображение, полученное с "Лендсат 4" и обработанное картопостроителем, содержит около 227 млн. пикселов. Отсюда с очевидностью следует, что для анализа таких изображений необходимо использовать компьютеры.
При анализе изображений компьютеры используются для сравнения значений шкалы серого (диапазона дискретных чисел) каждого пиксела снимков, сделанных в один и тот же день либо в несколько разных дней. Системы анализа изображений выполняют классификацию специфических особенностей съемочного плана в целях составления тематической карты местности. Современные системы воспроизведения изображений позволяют воспроизводить на цветном телевизионном мониторе одну или несколько спектральных полос, отработанных спутником со сканером MSS. Подвижный курсор устанавливают при этом на один из пикселов или на матрицу пикселов, находящихся в пределах некоторой конкретной особенности, например водоема. Компьютер выполняет корреляцию всех четырех MSS-полос и классифицирует все другие части изображения, полученного со спутника, которые характеризуются аналогичными наборами цифровых чисел. Исследователь может затем пометить цветным кодом участки "воды" на цветном мониторе, чтобы составить "карту", показывающую все водоемы на спутниковом снимке. Эта процедура, известная под названием регулируемой классификации, позволяет систематически классифицировать все части анализируемого снимка. Имеется возможность идентификации всех основных типов земной поверхности. Описанные схемы классификации с помощью компьютера довольно просты, однако окружающий нас мир сложен. Вода, например, совсем не обязательно имеет единственную спектральную характеристику. В пределах одного съемочного плана водоемы могут быть чистыми или грязными, глубокими или мелкими, частично покрытыми водорослями или замерзшими, и каждый из них обладает собственной спектральной отражательной способностью (а значит, и своей цифровой характеристикой). В системе интерактивного анализа цифрового изображения IDIMS используется схема нерегулируемой классификации. IDIMS автоматически помещает каждый пиксел в один из нескольких десятков классов. После компьютерной классификации сходные классы (например, пять или шесть водных классов) могут быть собраны в один. Однако многие участки земной поверхности имеют довольно сложные спектры, что затрудняет однозначное установление различий между ними. Дубовая роща, например, может оказаться на изображениях, полученных со спутника, спектрально неотличимой от кленовой рощи, хотя на земле эта задача решается очень просто. По спектральным же характеристикам дуб и клен относятся к широколиственным породам. Компьютерная обработка алгоритмами идентификации содержания изображения позволяет заметно улучшить MSS-изображение по сравнению со стандартным.
Данные дистанционного зондирования служат основным источником информации при подготовке карт землепользования и топографических карт. Метеорологические и геодезические спутники NOAA и GOES используются для наблюдения за изменением облачности и развитием циклонов, в том числе таких, как ураганы и тайфуны. Изображения, получаемые со спутников NOAA, используются также для картирования сезонных изменений снегового покрова в северном полушарии в целях климатических исследований и изучения изменений морских течений, знание которых позволяет сократить продолжительность морских перевозок. Микроволновые приборы на спутниках "Нимбус" используются для картирования сезонных изменений в состоянии ледового покрова в морях Арктики и Антарктики.
Данные дистанционного зондирования с самолетов и искусственных спутников во все более широких масштабах используются для наблюдения за природными пастбищами. Аэрофотоснимки очень эффективны в лесоводстве благодаря достигаемому на них высокому разрешению, а также точному измерению растительного покрова и его изменения со временем.

Данные, полученные дистанционным зондированием, составляют важную часть исследований в гляциологии (имеющих отношение к характеристикам ледников и снегового покрова), в геоморфологии (формы и характеристики рельефа), в морской геологии (морфология дна морей и океанов), в геоботанике (ввиду зависимости растительности от лежащих под ней месторождений полезных ископаемых) и в археологической геологии. В астрогеологии данные дистанционного зондирования имеют первостепенное значение для изучения других планет и лун Солнечной системы, а также в сравнительной планетологии для изучения истории Земли. Однако наиболее захватывающий аспект дистанционного зондирования состоит в том, что спутники, выведенные на околоземные орбиты, впервые предоставили ученым возможность наблюдать, отслеживать и изучать нашу планету как целостную систему, включая ее динамичную атмосферу и облик суши, изменяющийся под влиянием природных факторов и деятельности человека. Изображения, получаемые со спутников, возможно, помогут найти ключ к предсказанию изменений климата, вызванных в том числе естественными и техногенными факторами. Хотя США и Россия с 1960-х годов ведут дистанционное зондирование, другие страны также вносят свой вклад. Японское и Европейское космические агентства планируют вывести на околоземные орбиты большое число спутников, предназначенных для исследования суши, морей и атмосферы Земли.


Дистанционные методы исследования почвенного покрова.

Применение аэрокосмических методов в почвоведении дало ощутимый толчок развитию почвенного картографирования и мониторинга почвенного покрова. Еще в 30-е годы ХХ века, на заре применения аэрометодов для изучения природных ресурсов, отмечались значительные возможности использования дистанционных снимков при составлении детальных почвенных карт и для оценки состояния посевов.

Дистанционные методы изучения почвенного покрова основаны на том, что разные по происхождению и степени вторичных изменений почвы по-разному отражают, поглощают и излучают электромагнитные волны различных зон спектра. Как следствие, каждый почвенный объект имеет свой спектрально-яркостный образ, запечатленный на аэро- и космических материалах. Применяя различные методы обработки аэрокосмических снимков, можно идентифицировать различные почвы и их отдельные характеристики.

Многолетние исследования ученых показывают, что почвы в зависимости от содержания гумуса, влажности, механического состава, карбонатности, наличия солей, эродированности и других особенностей изображаются на снимках широкой гаммой тонов. Спектральная отражательная способность достаточно полно изучена, в этой связи следует сослаться на фундаментальные исследования И. И. Карманова, который измерил при помощи спектрофотометра СФ-10 коэффициенты спектрального отражения в диапазоне 400–750 нм 4 тыс. почвенных образцов.

На черно-белых снимках почвы имеют серый, темно-серый тон, тогда как растительность – светлый, светло-серый. Исключение составляют солончаковые, эродированные и песчаные почвы. В ближней инфракрасной зоне (0,75–1,3 мкм) для почв отмечается плавный подъем кривых. Характер и уровень спектральных кривых позволяют довольно надежно определять генетические разности почв. Для изучения почв при многозональной съемке используют различия коэффициента спектральной яркости почв в разных диапазонах спектра.

При проведении дистанционных почвенных исследований очень часто отмечается возможность идентификации засоленных и солонцеватых почв. Во многих случаях это касается участков естественного засоления, а также локального засоления, обусловленного ирригационными мероприятиями. Практически отсутствуют работы по дистанционной оценке техногенного засоления в связи с разработкой месторождений нефти и газа.

Техногенное засоление почв на нефтяных месторождениях явление довольно частое, оно вызвано изливающимися на поверхность техногенными потоками, отличающимися высокой минерализацией вод с преобладанием в солевом комплексе хлорида натрия. Засоление обусловливает резкое изменение свойств почв и вызывает обеднение или перерождение растительного покрова. В первую очередь, это касается солонцеватых почв. Почвенные коллоиды, насыщенные натрием, подвергаются пептизации, почвенные агрегаты распадаются, и физические свойства почвы меняются. Наиболее очевидны изменения плотности, агрегатного и механического состава почв. Не менее существенны и трансформации органической составляющей почв. Прежде всего, это выражается в перераспределении исходных запасов почвенного органического углерода по генетическим горизонтам из-за усиления потечности гумуса при образовании гуматов и фульватов натрия.

Из сказанного следует, что техногенное засоление резко меняет различные характеристики почв и, как следствие, спектрально-яркостный образ засоленных и солонцеватых почв на нефтепромыслах характеризуется ощутимым своеобразием. В то же время для их идентификации и картирования может быть использован довольно богатый опыт изучения природных засоленных территорий и почвенных массивов, подвергшихся засолению в результате ирригационных мероприятий.

Идея о возможности оценки засоления орошаемых почв по дистанционным данным зародилась в 60-е годы ХХ ст., но первые данные оказались весьма скудными. В дальнейшем на основании исследований аридных, в основном хлопкосеющих, областей были получены более детальные результаты, появились представления о том, какую информацию о засолении почв можно получить по снимкам и каковы дешифровочные признаки почв разного типа засоления.

С необходимостью выявлять засоленные и солонцеватые почвенные разности приходится сталкиваться при крупномасштабном почвенном картировании. Отмечается, что такие разности хорошо фиксируются на аэро- и космических снимках благодаря изменению тона (цвета) и рисунка изображения. По данным Ю. П. Киенко и Ю. Г. Кельнера космические снимки с разрешением более 10 м передают 100% информации о формах элементарных почвенных структур, для фотоснимков с более низким разрешением (20–30 м) изображаются не более 80% почвенных ареалов.

Прикладное дешифрирование космических снимков предполагает работу с сериями снимков. Рекомендуется использовать снимки одной и той же местности, различающиеся яркостью изображения идентичных точек в зависимости от свойств и состояния объектов или условий и параметров съемки. Наиболее часто применяемые из них: снимки в разных спектральных диапазонах, многозональные снимки с расчленением по длинам волн, разновременные снимки, снимки при разных условиях освещения, разном направлении съемки, снимки разных масштабов, разрешения. Одним из эффективных методических приемов является последовательное дешифрирование, которое применяется в тех случаях, когда на разных зональных снимках отображаются различные объекты. Например, солончаки и степень засоления хорошо фиксируются на снимках в голубой зоне, заболоченные участки и степень увлажнения – на снимках в ближней инфракрасной зоне. Последовательное дешифрирование предусматривает анализ отдельных временных срезов с составлением разновременных схем дешифрирования.

На методике «поточечного» или «попиксельного» сравнения дистанционного сигнала для аэрокосмического мониторинга динамики почвенного покрова останавливается Б. В. Виноградов. Эта методика состоит в сравнении дистанционного сигнала, измеренного в фотометрических или радиометрических единицах, одних и тех же участков в разные годы и интерпретации соответствующих им почвенных показателей. Способ поточечного сравнения фотометрических и радиометрических измерений разных лет достаточно корректен, но сложен. Он требует стандартизации природных и технических условий съемки, которые бы позволили правильную идентификацию одних и тех же точек на последовательных снимках. Кроме того, при фотометрическом и радиометрическом поточечном сравнении необходим учет пространственно-временной неоднородности исследуемого участка местности. Временные неоднородности исключаются путем сравнения снимков, полученных в одни и те же агрофенологические фазы. Для учета пространственной неоднородности вычисляются средневзвешенные характеристики из элементов, составляющую каждую последующую «мишень» . Для сравнения используются опознанные на последовательных снимках точки, расположенные на распаханных полях и посевах культур с покрытием растительности до 30%. Так при сравнении раннелетних панхроматических снимков крупного масштаба была выявлена динамика содержания гумуса в почвах Казахстана. Для стандартизации были использованы два оптических «реперных» участка, коэффициент отражения почв которых заведомо стабилен: это сурчины с выбросами лессов на поверхность, где содержание гумуса ничтожно мало, а коэффициент отражения в спектральном интервале 0,3–0,32; и потяжины с лугово-каштановыми почвами, где содержание гумуса более 5%, а коэффициент отражения самый низкий – 0,08–0,12.

Задача выявления засоляющихся почв является одной из наиболее важных в процессе дистанционных почвенно-мелиоративных исследованиях. При наблюдении за солевым режимом орошаемых почв оценивают степень и тип засоления почв, направленность изменения засоленности пород, запасы солей, причины засоления. Засоление почв обнаруживается дистанционными методами как при непосредственном появлении солей на поверхности почв, так и изменении отражательной способности сельскохозяйственных культур вследствие выпадения отдельных растений, их угнетения и появления галофитных сорняков. За счет указанных явлений изменяются тон и рисунок изображения засоленных почв. Подобные исследования широко проводились на орошаемых массивах в бассейнах Амударьи и Сырдарьи [

Большой опыт дистанционной оценки почвенных свойств получен при составлении государственной почвенной карты СССР с использованием космической информации . При этом применялись многозональные снимки, составители пользовались преимущественно двумя каналами: 0,6–0,7 (красная зона) и 0,8–1,1 мкм (инфракрасная зона).

Выявление засоленных почв производилось при составлении мелкомасштабной почвенной карты Узбекистана Во время работы над картой использовались черно-белые космические снимки разных масштабов. Для солончаков установлены пятнистая и мелкопятнистая структура фотоизображения и от светло-серого до темно-серого тон.

Специализированная карта «Засоления почв» составлена для Памиро-Алая Как указывают авторы, на космических снимках солончаки и сильнозасоленные почвы дешифрировались довольно уверенно по фототону и структуре фотоизображения. На космических снимках также дешифрируются небольшие пятна слабо- и среднезасоленных почв, развитых среди незасоленных сероземно-луговых почв, эти почвы на снимках имеют пятнистое изображение с расплывчатыми границами светло-серого и серого фототонов.

Процессы засоления оценивались дистанционными средствами в Южном Ставрополье. Природное засоление в этом регионе проявляется преимущественно в почвах, формирующихся на майкопских глинах в условиях повышенного гидроморфизма. Преобладающие слабо- и среднесолончаковатые почвы имеют на аэрофотоснимках серый тон, фоновый для подобных территорий. На этом фоне хорошо выделяются мелкие очень светлые пятна сильнозасоленных почв.

Дешифрирование засоления орошаемых почв аридных территорий проводится по состоянию хлопчатника. Дешифрирование по открытой поверхности почвы в этих условиях невозможно, поскольку коэффициенты спектральной яркости незасоленных аридных почв и засоленных почв очень близки. Основными дешифровочными признаками засоления являются тон и рисунок фотоизображения. За основу взяты две контрастные градации тона: темный – для участков с хорошим состоянием хлопчатника и светлый – для поверхности, лишенной растительности. Процент светлых пятен в пределах поля или контура и их размер позволили установить и на основе наземных данных статистически обосновать связь фотоизображения со степенью засоления в метровом слое почв. Этот принцип позволил выделить при визуальном дешифрировании на снимках крупного масштаба четыре градации почв по засолению, на снимках среднего масштаба – три, на космических снимках – две.

Изучение явлений вторичного засоления в зоне влияния инфильтрационных вод проводилось по материалам аэрофотосъемки на Право-Егорлыкской оросительной системе в Ставропольском крае (Россия).
В 80–90 годы ХХ ст. дешифрирование почвенных комплексов на космических снимках осуществлялось преимущественно средствами структурно-зонального анализа. Последний состоит в оптическом преобразовании фотоснимков и получении количественной оценки пространственно-частотного спектра путем оптической фильтрации наиболее информативных признаков, характеризующих пространственную структуру изображении. В настоящее время спутники оснащены оптической сканирующей аппаратурой высокого разрешения, позволяющей получать изображение в цифровом виде. В связи с этим вместо оптического когерентного спектрального анализа применяются другие приемы обработки цифровых исходных данных.

Суть методики слияния данных состоит в использовании комплексного подхода при получении, обработке и интерпретации аэрокосмической информации. К методике слияния данных обращаются тогда, когда изучаемая методами дистанционного зондирования система является слабоструктурированной и достаточно изменчивой во времени. Безусловно, информация о почвенном засолении относится к этой категории, поэтому наиболее интересные работы по засолению почв, опубликованы в последнее время.

В 2003 г. опубликован довольно объемный обзор, посвященный современному состоянию методов дистанционного зондирования как инструмента для оценки солености почв. В этой статье рассматриваются различные датчики (в т.ч. аэрофотографические, спутниковые и самолетные мультиспектральные, микроволновые, видео, аэрогеофизические, гиперспектральные, электромагнитные индуктометры) и подходы, использованные для дистанционной индикации и картирования засоленных площадей. Отмечается важная роль обработки исходных данных дистанционного зондирования, среди наиболее эффективных для оценки засоленных почв обсуждаются такие методики, как спектральное разделение, классификация по максимальному правдоподобию, классификация на основе нечетких множеств, совмещение диапазонов, анализ главных компонент, корреляционные уравнения. Наконец, статья показывает моделирование временной и пространственной изменчивости солености с использованием комбинированных подходов с привлечением методик слияния и разделения данных.

Масштабные экспериментальные работы по использованию дистанционного зондирования для картирования почвенного засоления проведены в 1998-99 г.г. в провинции Альберта (Канада). В рамках этих работ были изучены два ключевых участка, один с естественным засолением, второй – засоленный вследствие искусственного орошения. Почвенная соленость контролировалась с помощью наземного электромагнитного индуктометра солености в слое почвы от 0 до 60 см. Дистанционные исследования проводились с использованием мультиспектрального датчика, установленного на самолете. В первый год исследований были получены снимки с разрешением 3-4 м, во второй – 0,5 м. Использованы четыре диапазона электромагнитных волн: голубой (0,45–0,52 μм), зеленый (0,52–0,60 μм), красный, так или иначе, используют элементы Data Fusion Technology.

Процедуры «ERDAS Image 8.4» для анализа космических снимков и классификации земной поверхности Крымского п-ова использовали В. И. Придатко и Ю. М. Штепа. На основе дешифрирования четырех снимков «Landsat-7 ETM», полученных в 1999 и 2000 годах, разработаны классификации земной поверхности Крыма, в том числе выделены засоленные территории.

Применение метода нечетких множеств (fuzzy modelling) для повышения эффективности выделения типов засоленных почв по данным дистанционного зондирования рассматривает Д. А. Матернайт. Ею изучались снимки Landsat TM, полученные над засоленной площадью Боливии. Моделирование с использованием нечетких множеств позволило повысить точность результатов, отделение почв с хлорид-сульфатным типом засоления от сульфат-хлоридного достигнуто в 44% случаев. Более высокая точность получена при разделении сульфат-хлоридных солончаков и солонцеватых почв, наиболее информативными оказались данные в ближнем и тепловом инфракрасных диапазонах спектра.

Для картирования засоленных почв предложено использовать интегрированные разновременные классификации данных дистанционного зондирования, физические и химические свойства почв и атрибуты форм земли]. Три экспертные системы, использующие нечеткие множества и лингвистические правила нечетких множеств для формализации экспетных знаний об актуальной возможности изменений, обработаны и внесены в ГИС. Системы используют подход семантического импорта не нечетких множеств, что позволяет интегрировать разнородные данные в базы данных по правилам нечетких множеств. Выход системы – три карты, представляющие «правдоподобные изменения», «природу изменений» и «магнитуду (размеры) изменений». Эти карты затем комбинируются с ландшафтной информацией, представленной на различных слоях ГИС.

В другой работе Д. А. Матернайт показано, что растительность, толерантная к солям, как индикатор для отделения солончаков и солонцеватых почв от неизмененных почв не всегда применима в случае использования оптических датчиков Landstat TM или Spot. Более эффективны для этой цели радиолокационные материалы. Метод нечетких множеств применен для классификации радиолокационных спутниковых образов (JERS-1). Полученный опыт свидетельствует, что классификация радиолокационных данных обеспечивает надежное определение (общая точность равна 81%) площадей, деградированных из-за процессов засоления и осолонцевания. Основные проблемы появляются вследствие различной шероховатости почв, определенные классы поверхностей по шероховатости с засоленными и солонцеватыми почвами ошибочно относятся к неизмененным.

Методики дистанционного зондирования, использующие в качестве показателя степени засоления почв тип и состояние растительности, были применены для обеспечения широкой пространственной оценки солености и подтопления в Восточном и Западном графствах Укаро (Австралия). В бассейне рек Муррей и Дарлинг (Австралия) производились исследования спектральных особенностей засоленных почв на участках орошения.

Исследования с целью оценки влияния солености почв на урожай путем применения ГИС и технологий дистанционного зондирования предприняты в юго-восточной части долины Харран (Турция), где довольно широко распространены засоленные почвы.

Комплексная интерпретация аэрофотоматериалов использовалась для выделения в различной степени засоленных пахотных земель и пустошей в провинции Шаньси (Китай) по данным авторов была достигнута воспроизводимость 90% Для оценки степени засоления почв и урбанизации сельскохозяйственных территорий в дельте Нила и в прилежащей к ней районах обрабатывались снимки Landsat TM, датированные 1984-93 годами Результаты обработки разновременных снимков показали, что для 3,74% сельскохозяйственных земель в дельте продуктивность почв уменьшается.

Исследование возможности установления солености гипсоносных почв, используя данные Landsat TM, предпринято в провинции Исмаилия в Египте]. Используя классификацию контролируемых образов, отделены гипсоносные почвы от засоленных почв и от других почв. Наиболее эффективно для разделения гипсоносных и засоленных почв использование теплового диапазона.

Применение материалов космических съемок позволили развить новое направление в исследовании засоления почв. Как показывает обзор, исследования проводятся во многих странах, независимо от того, являются они владельцами космических аппаратов или нет. Наиболее широко для исследований применяются космические снимки спутников Landsat, достоинством которых является наличие многих каналов съемки, доступность, разрешающая способность, хорошая привязка и коррекция.

Проблема дистанционной индикации почвенного засоления стоит остро, особенно в странах с засушливым климатом (Австралия, Индия, Турция, юг России и др.). Почти всегда использование для оценки природного и ирригационного засоления почв дистанционных методов приносит хорошие плоды. Во многих случаях исследователи опираются не столько на изучение почвенных характеристик, сколько на степень деградации растительности на солончаках и солонцах. Для выявления и оценки техногенно засоленных почв также можно использовать изменение растительного покрова. Но для них характерны и такие отличительные черты, как своеобразная конфигурация ореолов и резкое отличие от неизмененных почв по многим характеристикам, в том числе и в верхнем приповерхностном слое. Современные приемы обработки исходных космических снимков с соответствующим разрешением позволяют достаточно уверенно идентифицировать такие эффекты. Поскольку техногенное засоление почв всегда связано с наличием технологического объекта, то зону поиска участков загрязнения можно существенно сократить, имея точную карту объектов – потенциальных загрязнителей почв. Такая карта создается с использованием ГИС-технологий, а наличие космических снимков среднего и высокого разрешения с космических аппаратов (КА) Landsat, SPOT, Ikonas, QuickBird в комплексе со средствами обработки, заложенными в современных программах, например ERDAS Imagine, позволяет решить задачу оценки техногенного засоления почв на нефтегазовых месторождениях.

Классификация методов строятся по различным признакам. Исаченко за основу классификации методов принимает их деление на главные иерархические уровни .

· высший уровень – главные мировоззренческие методы, как правило, разрабатываемые философией (диалектический, метафизический).

· собственно-научные исследования, которые делятся на

1) общенаучные методы (их называют еще научными подходами). Систематический, генетический и ряд других.

2) специализированные – научные методы имеют применение в отдельных системах наук или областях.

Более широкую классификацию дал Ф.Н. Мельков, который строит классификацию методов по степени их универсальности (по широте использования). Все методы на 3 категории:

  1. Общенаучные методы – материалистическая диалектика, ее законы и основные положения составляет методологию физической географии.

Исторический метод - системный подход к объекту исследования.

Системный подход рассматривает ПТК как сложное образование, состоящее из различных блоков, которые взаимодействуют между собой.

  1. Междисциплинарные методы – общие для группы наук, но в каждой определенной науке преобладающие характерные черты.

ü Математические методы – применение математических знаний для решения научных задач географии. Математическая статистика, теория вероятности, математический анализ, теория множеств и т.д.

ü Геохимический метод – это метод исследования взаимосвязей, протекающие в природе посредством изучения миграции химических элементов ПТК.

ü Геофизический метод – это совокупность приемов при помощи, которых изучаются физические свойства ПТК: процессы обмена веществом, энергией и информацией ПТК с окружающей средой и внутри себя.

ü Метод моделирования – исследование структуры ПТК, связей, процессов между ними и внутри их, а также с другими явлениями в реальности с помощью модели. Модели делятся на несколько групп:

Вербальные (словесные) – это развернутое название ПТК, которое составляется в процессе исследования.



Матричные модели – это таблица, в которой по ряду граф ранжируются ПТК.

Графические (картографическая модель ландшафтов ПТК). К числу графических моделей относят КФГП

Математические модели позволяют в виде формул выразить характер процесса.

ü Метод районирования – разделение территории на однородные регионы с учетом одной или нескольких. Используется физико-географическое районирование (на основе учета характера природного компонента) и ландшафтное, которое строится на основе анализа и структуры ландшафтов на определенной территории.

ü Географический прогноз – научная разработка представлений о геокомплексах будущего, их коренных свойствах и разнообразии переменных составляющих, в том числе обусловленные преднамеренными и непреднамеренными результатами деятельности человека.

ü Геоэкологический метод – изучение ПТК и ПАК с позиции гуманитарно-экологической точки зрения.

Глобальные - экологические проблемы изучения на уровне географической оболочки.

Региональные – решаются на уровне ландшафтных областей, провинций и районов.

Локальные - проблемы решаются на уровне ландшафтов и урочищ.

  1. Специфические методы – это методы, которые используются в какой-то конкретной науке (частными, конкретными, специализированными). Следующие специфические методы:

ü Ландшафтные – изучение распространения структуры, функционирования, динамики, генезиса, тенденции ПТК. Широко используются

ü Литературно-картографический - изучение ПТК на основе анализа литературных и картографических источников.

ü Сравнительно-описательный метод используется при проведении полевых исследовательских работ, при составлении легенд карт, при написании текста.

ü Экспедиционный метод – одна из организационных форм полевых исследований, которая связана с маршрутным перемещением.

ü Стационарный метод – изучение состояний и изменения свойств ПТК и их компонентов, основанное на длительных наблюдениях в одном месте (года). Создаются специальные физико-географические стационары, зональные полигоны. Такие наблюдения называются мониторингом.

ü Полустационарный метод – это метод краткосрочных наблюдений, которые проводятся не круглый год, а лишь в его период.

ü Дистанционные методы – исследование ПТК и воздействующих на них факторов, с помощью средств находится на расстоянии от объекта или от наблюдателя.

ü Аэрокосмические методы – наблюдения и съемка с самолета или с вертолета. Космическая съемка – со спутника.

4 типа исследований:

1. визуальные

2. фотографические

3. электронные

4. геофизические

Метод ГИС технологий – это набор программных инструментов, используемых для ввода, хранения, манипулирования, анализа и отображения всей имеющейся информации. Создаются комплексные БД о ПТК.

Палеографический метод – суть: раскрыть историю развития ПТК по следам прошлого ПТК, следовательно используется различные палеогеографические методы (реликтовых растений, остатки и отпечатки разложений)

По признаку научной новизны, т.е. данности их использования. Жучкова и Раковская классифицируют:

· Традиционные (сравнительно-описательные, экспедиционные,районирования).

· Новые или современные точные методы (ландшафтные, геофизические, геохимические, стационарные, математические, аэрофотосъемка).

· Новейшие методы (космические, моделирования, прогнозирования, Гис-технологий и др. методы).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Институт экологии и географии

Кафедра географии и картографии

Реферат

Дистанционные методы исследования Земли

Выполнил студент III курса

группы № 02-106

Ялалов Д.

Научный руководитель:

Денмухаметов Р.Р.

Казань - 2013

Введение

1. Дистанционные методы

2. Возникновение космических методов

3. Аэрофотосъемка

3.1. Возникновение аэрофотосъемки

3.2. Использование аэрофотосъемки в народном хозяйстве

4. Дистанционные исследования при поисках полезных ископаемых

5. Методики автоматизации дешифрирования космических материалов

Заключение

Список использованных источников

Введение

Стремительное развитие космонавтики, успехи в изучение околоземного и межпланетного космического пространства, выявилось весьма высокая эффективность использования околоземного космоса и космических технологий в интересах многих наук о Земле: география, гидрология, геохимия, геология, океанология, геодезия, гидрология, землеведение.

Использование искусственных спутников Земли для связи и телевидения, оперативного и долгосрочного прогнозирования погоды и гидрометеорологической обстановки, для навигации на морских путях и авиационных трассах, для высокоточной геодезии, изучения природных ресурсов Земли и контроля среды обитания становится все более привычным. В ближайшей и в более отдаленной перспективе разностороннее использование космоса и космической техники в различных областях хозяйства значительно возрастет

1. Дистанционные методы

Дистанционные методы - общее название методов изучения наземных объектов и космических тел неконтактным путём на значительном расстоянии (например, с воздуха или из космоса) различными приборами в разных областях спектра (Рис.1). Дистанционные методы позволяют оценивать региональные особенности изучаемых объектов, выявляемые на больших расстояниях. Термин получил распространение после запуска в 1957 первого в мире искусственного спутника Земли и съёмки обратной стороны Луны советской автоматической станцией "Зонд-3" (1959).

Рис. 1. Основные геометрические параметры сканирующей системы: - угол обзора; Х и У - линейные элементы сканирования; dx и dy - элементы изменения мгновенного угла зрения; W - направление движения

Различают активные дистанционные методы, основанные на использовании отражённого объектами излучения после облучения их искусственными источниками, и пассивные , которые изучают собственное излучение тел и отражённое ими солнечное. В зависимости от расположения приёмников дистанционные методы подразделяют на наземные (в том числе надводные), воздушные (атмосферные, или аэро-) и космические. По типу носителя аппаратуры дистанционные методы различают самолётные, вертолётные, аэростатные, ракетные, спутниковые дистанционные методы (вгеолого-геофизических исследованиях - аэрофотосъёмка, аэрогеофизическая съёмка и космическая съёмка). Отбор, сравнение и анализ спектральных характеристик в разных диапазонах электромагнитного излучения позволяют распознать объекты и получить информацию об их размере, плотности, химическом составе, физических свойствах и состоянии. Для поисков радиоактивных руд и источников используется g-диапазон, для установления химического состава горных пород и почв - ультрафиолетовая часть спектра; световой диапазон наиболее информативен при изучении почв и растительного покрова, инфракрасная (ИК) - даёт оценки температур поверхности тел, радиоволны - информацию о рельефе поверхности, минеральном составе, влажности и глубинных свойствах природных образований и об атмосферных слоях.

По типу приёмника излучения дистанционные методы подразделяют на визуальные, фотографические, фотоэлектрические, радиометрические и радиолокационные. В визуальном методе (описание, оценка и зарисовки) регистрирующим элементом является глаз наблюдателя. Фотографические приёмники (0,3-0,9 мкм) обладают эффектом накопления, однако они имеют различную чувствительность в разных областях спектра (селективны). Фотоэлектрические приёмники (энергия излучения преобразуется непосредственно в электрический сигнал при помощи фотоумножителей, фотоэлементов и других фотоэлектронных приборов) также селективны, но более чувствительны и менее инерционны. Для абсолютных энергетических измерений во всех областях спектра, и особенно в ИК, используют приёмники, преобразующие тепловую энергию в другие виды (чаще всего в электрические), для представления данных в аналоговой или цифровой форме на магнитных и других носителях информации для их анализа при помощи ЭВМ. Видеоинформация, полученная телевизионными, сканерными (рис.), панорамными камерами, тепловизионными, радиолокационными (бокового и кругового обзора) и другими системами, позволяет изучить пространственное положение объектов, их распространённость, привязать их непосредственно к карте.

2. Возникновение космических методов

В истории космического фотографирования может быть выделено три этапа. К первому этапу следует отнести фотографирование Земли с высотных, а затем с баллистических ракет, относящееся к 1945--1960 гг. Первые фотография земной поверхности были получены еще в конце XIX в. - начале ХХ в., то есть еще до использования в этих целях авиации. Первые опыты по подъему фотоаппаратов на ракетах начал проводить в 1901--1904 гг. немецкий инженер Альфред Мауль в Дрездене. Первые снимки были получены с высоты 270--800 м, имели размер кадра 40х40 мм. В этом случае фотографирование проводилось при спуске ракеты с фотоаппаратом на парашюте. В 20--30 гг. ХХ в. в ряде стран производились попытки использования ракет для съемки земной поверхности, однако в связи с малыми высотами подъема (10-12 км) они оказались не эффективными.

Съемки Земли с баллистических ракет сыграли важную роль в предыстории изучения природных ресурсов с различных космических летательных аппаратов. С помощью баллистических ракет были получены первые мелкомасштабные изображения Земли с высоты более 90-100 км. Самые первые космические фотографии Земли были сделаны в 1946 г. с помощью баллистической ракеты "Викинг-2" с высоты около 120 км на полигоне Уайт-Сэнд (Нью-Мексико, США). В течение 1946--1958 гг. на этом полигоне производились запуски баллистических ракет в вертикальном направлении и после достижения максимальной высоты (около 400 км) происходило их падение на Землю. На траектории падения осуществлялось получение фотографических изображений земной поверхности в масштабе 1:50 000 - 1:100 000. В 1951--1956 гг. на советских метеорологических ракетах также стала устанавливаться фотоаппаратура. Снимки выполнялись при спуске на парашюте головной части ракеты. В 1957--1959 гг. для съемок в автоматическом режиме использовались геофизические ракеты. В 1959--1960 гг. на высотных стабилизированных в полете оптических станциях были установлены фотографические камеры кругового обзора, с помощью которых были получены фотографии Земли с высоты 100-120 км. Фотографирование производилось в разные стороны, в разное время года, в разные часы дня. Это позволило проследить сезонные изменения космического изображения природных особенностей Земли. Снимки, полученные с баллистических ракет, были весьма несовершенны: были большие расхождения в масштабе изображения, малая площадь, нерегулярность запусков ракет. Но эти работы были необходимы для отработки техники и методики съемок земной поверхности с искусственных спутников Земли и пилотируемых кораблей.

Второй этап фотографирования Земли из Космоса охватывает период с 1961 по 1972 г. и носит название экспериментального. 12 апреля 1961 г. первый космонавт СССР (России) Ю. А. Гагарин впервые вел визуальное наблюдение Земли через иллюминаторы корабля "Восток". 6 августа 1961 г. космонавт Г. С. Титов на корабле "Восток-2" выполнял наблюдение и съемку земной поверхности. Съемка производилась через иллюминаторы отдельными сеансами на протяжении всего полета. Уникальную научную ценность имеют исследования, выполненные в этот период на космических пилотируемых кораблях серии "Союз". С борта корабля "Союз-3" проводилось фотографирование дневного и сумеречного горизонта Земли, земной поверхности, а также наблюдение тайфунов, циклонов, лесных пожаров. С борта корабля "Союз-4" и "Союз-5" велись визуальные наблюдения за земной поверхностью, фото- и киносъемка, в том числе районов Каспийского моря. Эксперименты большого хозяйственного значения были выполнены по совместной программе научно-исследовательским судном "Академик Ширшов", спутником "Метеор" и пилотируемым космическим кораблем "Союз-9". Программой исследований в этом случае было предусмотрено наблюдение Земли с использованием оптических приборов, фотографирование геолого-географичеких объектов с целью составления геологических карт и возможных районов залегания полезных ископаемых, наблюдение и фотографирование атмосферных образований с целью составления метеорологических прогнозов. В этот же период была проведена радиолокационная и тепловая съемка Земли и экспериментальное фотографирование в разных зонах видимого солнечного спектра, позднее названного многозональным фотографированием.

3. Аэрофотосъемка

Аэрофотосъемка - это фотографирование земной поверхности с самолета или вертолета. Оно производится вертикально вниз или наклонно к плоскости горизонта. В первом случае получаются плановые снимки, во втором - перспективные. Чтобы иметь изображение обширного района, делается серия аэрофотоснимков, а затем они монтируются вместе. Снимки делаются с перекрытием, чтобы один и тот же участок попал на соседние кадры. Два кадра составляют стереопару. Когда мы рассматриваем их в стереоскоп, изображение выглядит объемным. Аэрофотосъемка производится с использованием светофильтров. Это позволяет видеть особенности природы, которые не заметишь невооруженным глазом. Если произвести съемку в инфракрасных лучах, то можно увидеть не только земную поверхность, но и некоторые черты геологического строения, условия залегания грунтовых вод.

Аэрофотосъемка широко используется для изучения ландшафтов. С ее помощью составляются точные топографические карты без проведения многочисленных трудных съемок местности на поверхности Земли. Она помогает археологам находить следы древних цивилизаций. Открытие в Италии погребенного этрусского города Спины было осуществлено с помощью аэрофотосъемок. Об этом городе упоминали географы прошлых лет, но найти его никак не удавалось, пока в болотистой дельте реки По не стали проводить осушительные работы. Мелиораторы использовали аэрофотоснимки. Некоторые из них привлекли внимание ученых-специалистов. На этих снимках была запечатлена плоская поверхность низины. Так вот, на снимках этой местности просматривались контуры каких-то правильных геометрических фигур. Когда начали раскопки, стало ясно, что здесь процветал некогда богатый портовый город Спина. Аэрофотоснимки позволили по неприметным с земли изменениям растительности, заболоченности увидеть расположение его домов, каналов, улиц.

Большую помощь аэроснимки оказывают геологам, помогая прослеживать простирание горных пород, рассматривать геологические структуры, обнаруживать выходы коренных пород на поверхность.

В наше время в одних и тех же районах аэрофотосъемка многократно проводится в течение долгих лет. Если сравнить полученные снимки, можно определить характер и масштабы изменений природной обстановки. Аэрофотосъемка помогает регистрировать степень воздействия человека на природу. Повторные снимки показывают участки нерационального природопользования, и на основе этих снимков планируются мероприятия по охране природы.

3.1 Возникновение аэрофотосъемки

Возникновение аэрофотосъемки относится к концу XIX в. Первые фотографии земной поверхности были сделаны с воздушных шаров. Хотя они отличались множеством недостатков, сложностью получения и последующей обработки, изображение на них было достаточно четким, что позволяло различить множество деталей, а также получить общую картину исследуемого региона. Дальнейшее развитие и совершенствование фотографии, фотоаппаратов а также воздухоплавания привели к тому, что съемочные устройства стали устанавливать на летающих аппаратах, называемых аэропланами. Во время Первой мировой войны фотографирование с аэропланов производилось с целью воздушной разведки. Фотографировались расположение войск противника, их укрепления, количество техники. Эти данные использовались для разработки оперативных планов ведения боевых действий.

После окончания Первой мировой войны, уже в послереволюционной России, аэрофотосъемку стали использовать для нужд народного хозяйства.

3.2 Использование аэрофотосъемки в народном хозяйстве

В 1924 г. под г. Можайск был создан аэрофотосъемочный полигон, на котором производилось испытание вновь создаваемых аэрофотоаппаратов, аэрофотосъемочных материалов (фотопленки, специальной бумаги, оборудования для проявления и печатания снимков). Эту аппаратуру устанавливали на существовавшие тогда самолеты типа Як, Ил, новый самолет Ан. Эти исследования давали положительные результаты, что и позволило перейти к широкому использованию аэрофотосъемки в народном хозяйстве. Аэрофотографирование производилось с помощью специального фотоаппарата, который устанавливался в днище самолета с приспособлениями, устраняющими вибрацию. Кассета фотоаппарата имела пленку длиной от 35 до 60 м и шириной 18 или 30 см, отдельный снимок имел размеры 18х18 см, реже - 30х30 см. До 50-х гг. ХХ в. изображение на снимках было черно-белым, позже стали получать цветные, а затем спектральные изображения.

Спектральные изображения выполняются с помощью светофильтра в определенной части видимого солнечного спектра. Например, возможно фотографирование в красной, синей, зеленой, желтой части спектра. При этом используется двухслойная эмульсия, покрывающая пленку. Такой способ фотографирования передает ландшафт в необходимых цветах. Так, например, смешанный лес при спектральном фотографировании дает изображение, которое легко можно подразделять по породам, имеющим на снимке разные цвета. После проявления и сушки пленки готовят контактные отпечатки на фотобумаге размером соответственно 18х18 см или 30х30 см. Каждый снимок имеет номер, круглый уровень, по которому можно судить о степени горизонтальности снимка, а также часы, фиксирующие время в момент получения данного снимка.

Фотографирование какой-либо местности осуществляется в полете, при котором самолет совершает перелеты с запада на восток, затем с востока на запад. Аэрофотоаппарат работает в автоматическом режиме и выполняет снимки, располагающиеся по маршруту самолета один за другим, перекрывая друг друга на 60 %. Перекрытие снимков между маршрутами составляет 30 %. В 70-х гг. ХХ в. на базе самолета Ан был сконструирован для этих целей специальный самолет Ан-30. Он снабжен пятью фотоаппаратами, управление которыми осуществляется с помощью счетной машины, а в настоящее время - с помощью компьютера. Кроме того, самолет обеспечен противовибрационным устройством, исключающим боковой снос за счет ветра. Он может выдерживать заданную высоту полета. Первые опыты использования аэрофотосъемки в народном хозяйстве относятся к концу 20-х гг. ХХ в. Снимки были использованы в труднодоступных местах в бассейне реки Мологи. С их помощью производилось изучение, обследование и определение качества и продуктивности (таксация) лесов этой территории. Кроме того, немного позже производилось изучение фарватера Волги. Эта река на некоторых участках часто меняла фарватер, возникали мели, косы, пересыпи, сильно мешающие судоходству до создания водохранилищ.

Аэрофотосъемочные материалы позволили выявить закономерности в образовании и отложении речных наносов. Во время Второй мировой войны аэрофотосъемка также широко использовалась в народном хозяйстве для разведки полезных ископаемых, а также на фронте для выявления перемещения живой силы и техники противника, съемки укреплений, возможных театров военных действий. В послевоенный период аэрофотосъемка также использовалась во многих направлениях.

4. Дистанционные исследования при поисках полез ных ископаемых

Так, для обеспечения разведки месторождений углеводородного сырья, проектирования, строительства и эксплуатации объектов добычи, переработки и транспортировки нефти и газа с использованием аэрокосмической информации производят изучение рельефа, растительности, почв и грунтов, их состояния в разные времена года, в том числе в экстремальных природных условиях, например, при наводнениях, засухах или сильных морозах, анализ наличия и состояния селитебной и транспортной инфраструктуры, изменений компонентов ландшафтов в результате хозяйственного освоения территории, в том числе в результате аварий на нефтяных и газовых промыслах и трубопроводах и т.д.

При необходимости применяют цифрирование, фотограмметрическую и фотометрическую обработку изображений, их геометрическую коррекцию, масштабирование, квантование, контрастирование и фильтрацию, синтезирование цветных изображений, в том числе с использованием различных фильтров и т.д.

Подбор аэрокосмических материалов и дешифрирование изображений производятся с учетом времени суток и сезона проведения съемки, влияния метеорологических и иных факторов на параметры изображения, маскирующего действия облачности, аэрозольного загрязнения.

Для того, чтобы расширить возможности анализа аэрокосмической информации, используются не только прямые дешифровочные признаки, априорно известные или выявляемые в процессе целенаправленного исследования аэрокосмических изображений, но и косвенные признаки, широко используемые при визуальном дешифрировании. Они, прежде всего, основаны на индикационных свойствах рельефа, растительности, поверхностных вод, почв и грунтов.

Различные результаты наблюдаются при съемке одних и тех же объектов в разных зонах спектра. Например, съемки в инфракрасном и радиотепловом диапазонах лучше фиксируют температуру и влажность земной поверхности, наличие на водной поверхности нефтяной пленки, но точность результатов такой съемки может быть перечеркнута сильным влиянием физической неоднородности поверхности суши или волнения на водной поверхности.

5. Методики автоматизации дешифрирования космических материалов

Специфика использования материалов космических съемок связана с целевым подходом к дешифрированию дистанционных материалов, которые содержат информацию о многих территориально связанных параметрах (географических, сельскохозяйственных, геологических, техногенных и т.п.) природной среды. В основу компьютерного визуального дешифрирования положены измерения четырехмерных (две пространственных координаты, яркостная и временная) и пятимерных (дополнительно, цветное изображение при многозональной съемке) распределений радиационных потоков, отражаемых элементами и объектами местности. Тематическая обработка изображения включает в себя логические и арифметические операции, классификации, фильтрацию и/или линеаментный анализ и серию других методических приемов. Сюда же следует отнести визуальное дешифрирование изображения на экране компьютера, которое осуществляется с помощью стереоэффекта, а также и всего арсенала средств компьютерной обработки и преобразования изображений. Широкие возможности для исследователя открывают автоматические классификации многозональных изображений (с предварительным обучением на эталонах или с задаваемыми параметрами). Классификации основаны на том, что различные природные объекты имеют в разных диапазонах электромагнитного спектра отличающиеся друг от друга яркости. Анализ яркостей объектов в разных зонах (СОХ - спектральные оптические характеристики) позволяет идентифицировать и оконтурить представительные виды ландшафта, структурно-вещественные (производственные и социальные) комплексы и конкретные геологические и техногенные тела. Технология обновления по космическим снимкам цифровых топографических карт на основе визуального дешифрирования должна обеспечивать следующую совокупность функций:

1) экспорт/импорт цифровой картографической информации и цифровых изображений местности;

2) дешифрирование космических фотоснимков с соблюдением оптимальных условий их обработки:

Подготовка исходных материалов для идентификации элементов местности на увеличенных позитивах (на пленке);

Оценка разрешения снимков до и после первичной обработки;

Определение прямых и косвенных дешифровочных признаков, а также использование фотообразов типовых элементов местности и справочных материалов;

4) оцифровку космических снимков и результатов дешифрирования;

5) трансформирование (ортотрансформирование) цифровых космических снимков;

6) подготовку статистических и иных характеристик информационных признаков элементов местности;

7) редактирование элементов содержания цифровой карты по результатам дешифрирования снимков;

8) формирование обновленной цифровой топографической карты;

9) оформление цифровой топографической или тематической карты для пользователя совместно со снимком - создание композитной цифровой фототопографической карты.

При автоматическом и интерактивном дешифрировании дополнительно возможно моделирование полей сигналов на входе приемной аппаратуры аэрокосмических систем мониторинга окружающей среды; фильтрация изображения и операции распознавания образов.

Но совместное наблюдение на экране слоя, получение которого возможно различными методами, векторной цифровой карты и растрового снимка создают новые, ранее не использованные, возможности для автоматизированного дешифрирования и обновления карт.

Координаты контура площадного или линейного элемента местности на цифровой карте могут служить "песмейкером" - указателем для снятия данных с пикселов растрового изображения местности с последующим вычислением осреднённых характеристик окрестной области, задаваемых размеров, и оконтуриванием площади или нанесением соответствующей кривой в новом слое. При нестыковке параметров растра в очередном пикселе изображения возможен переход на следующий соответствующий тому же элементу на карте и с последующей интерактивной ликвидацией разрывов. Возможен алгоритм прерывного получения статистических характеристик осреднённых окрестностей пикселов (точек отрезков между экстремумами или на сплайнах) с учетом допустимого изменения характеристик растротона, а не всего массива равноотстоящих пробных областей вдоль кривой.

Использование данных карты о рельефе местности позволяет значительно усилить автоматизацию алгоритмов дешифрирования, особенно для гидрологических и геологических массивов информации по прямым признакам, используя тот же приём сопоставления, на базе геологических и гравитационных отношений.

Заключение

Применение аэрокосмических технологий в дистанционном зондировании является одним из наиболее перспективных путей развития этого направления. Конечно, как и любые методы исследования аэрокосмическое зондирование имеет свои достоинства и недостатки.

Одним из основных недостатков этого метода является его относительная дороговизна и на сегодняшний день недостаточная четкость получаемых данных.

Выше перечисленные недостатки являются устранимыми и малозначимыми на фоне тех возможностей, которые открываются благодаря аэрокосмическим технологиям. Это возможность наблюдать обширные территории на протяжении длительного времени, получение динамической картинки, рассмотрение влияние различных факторов на территорию и их взаимосвязь между собой. Это открывает возможность системного изучения Земли и ее отдельных районов.

аэрофотосъемка земная дистанционные космические

Список использованных источников

1. С.В. Гарбук, В.Е. Гершензон «Космические системы дистанционного зондирования Земли», «Скан-Экс», Москва 1997г., 296 стр.

2. Виноградов Б. В. Космические методы изучения природной среды. М., 1976.

3. Методики автоматизации дешифрирования космических материалов - http://hronoinfotropos.narod.ru/articles/dzeprognos.htm

4. Дистанционные методы изучения земной поверхности-http://ib.komisc.ru

5. Аэрокосмические методы. Фотосъемки - http://referatplus.ru/geografi

Размещено на Allbest.ru

Подобные документы

    дипломная работа , добавлен 15.02.2017

    Дешифрирование - анализ материалов аэро- и космических съемок с целью извлечения из них информации о поверхности Земли. Получение информации путем непосредственных наблюдений (контактный способ), недостатки способа. Классификация дешифрирования.

    презентация , добавлен 19.02.2011

    Геология как наука, объекты исследований и ее научные направления. Геологические процессы, формирующие рельеф земной поверхности. Месторождение полезных ископаемых, классификация их по применению в народном хозяйстве. Руды черных и легированных металлов.

    контрольная работа , добавлен 20.01.2011

    Гидрогеологические исследования при поисках, разведке и разработке месторождений твердых полезных ископаемых: задачи и геотехнологические методы. Сущность и применение подземного выщелачивания металлов, выплавки серы, скважинной гидродобычи рыхлых руд.

    реферат , добавлен 07.02.2012

    Вещественный состав Земной коры: главные типы химических соединений, пространственное распределение минеральных видов. Распространенность металлов в земной коре. Геологические процессы, минералообразование, возникновение месторождений полезных ископаемых.

    презентация , добавлен 19.10.2014

    Аэросъемка и космическая съемка - получение изображений земной поверхности с летательных аппаратов. Схема получения первичной информации. Влияние атмосферы на электромагнитное излучение при съемках. Оптические свойства объектов земной поверхности.

    презентация , добавлен 19.02.2011

    Влияние добычи полезных ископаемых на природу. Современные способы добычи полезных ископаемых: поиск и разработка месторождений. Охрана природы при разработке полезных ископаемых. Обработка поверхности отвалов после прекращения открытой выработки.

    реферат , добавлен 10.09.2014

    Этапы разработка пластов полезных ископаемых. Определение ожидаемых величин сдвижений и деформаций земной поверхности в направлении вкрест простирания пласта. Вывод о характере мульды сдвижения и необходимости применения конструктивных мероприятий.

    практическая работа , добавлен 20.12.2015

    Поисковые работы как процесс прогнозирования, выявления и перспективной оценки новых месторождений полезных ископаемых, заслуживающих разведки. Поля и аномалии как современная основа поисков полезных ископаемых. Проблема изучения полей и аномалий.

    презентация , добавлен 19.12.2013

    Метод геологических блоков и параллельных разрезов подсчета запасов ископаемых. Преимущества и недостатки рассматриваемых методов. Применение различных методов по оценке эксплуатационных запасов подземных вод. Определение расхода подземного потока.

Последние материалы раздела:

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...

Генрих Мореплаватель: биография и интересные факты
Генрих Мореплаватель: биография и интересные факты

Португальский принц Энрике Мореплаватель совершил множество географических открытий, хотя сам выходил в море всего три раза. Он положил начало...

Последнее восстание интеллектуалов Франция 1968 год волнения студентов
Последнее восстание интеллектуалов Франция 1968 год волнения студентов

Любой революции предшествует идеологическая аргументация и подготовка. «Майская революция» 1968 года, бесспорно, не является исключением. Почему к...