В какой элемент превращается таллий. Таллий – история открытия и основные вехи использования

Ванадий (vanadium), v, химический элемент v группы периодической системы Менделеева; атомный номер 23, атомная масса 50,942; металл серо-стального цвета. Природный В. состоит из двух изотопов: 51 v (99,75%) и 50 v (0,25%); последний слабо радиоактивен (период полураспада Т 1/2 = 10 14 лет). В. был открыт в 1801 мексиканским минералогом А. М. дель Рио в мексиканской бурой свинцовой руде и назван по красивому красному цвету нагретых солей эритронием (от греч. erythr o s - красный). В 1830 шведский химик Н. Г. Сефстрём обнаружил новый элемент в железной руде из Таберга (Швеция) и назвал его В. в честь древнескандинавской богини красоты Ванадис. Английский химик Г. Роско в 1869 получил порошкообразный металлический В. восстановлением vcl 2 водородом. В промышленном масштабе В. добывается с начала 20 в.

Содержание В. в земной коре составляет 1,5-10 -2 % по массе, это довольно распространённый, но рассеянный в породах и минералах элемент. Из большого числа минералов В. промышленное значение имеют патронит, роскоэлит, деклуазит, карнотит, ванадинит и некоторые др. Важным источником В. служат титаномагнетитовые и осадочные (фосфористые) железные руды, а также окисленные медно-свинцово-цинковые руды. В. извлекают как побочный продукт при переработке уранового сырья, фосфоритов, бокситов и различных органических отложений (асфальтиты, горючие сланцы).

Физические и химические свойства. В. имеет объёмноцентрированную кубическую решётку с периодом a = 3,0282 å. В чистом состоянии В. ковок, легко поддаётся обработке давлением. Плотность 6,11 г / см 3 , t пл 1900 ± 25°С, t кип 3400°С; удельная теплоёмкость (при 20-100°С) 0,120 кал / гград ; термический коэффициент линейного расширения (при 20-1000°С) 10,6·10 -6 град -1 , удельное электрическое сопротивление при 20 °С 24,8·10 -8 ом · м (24,8·10 -6 ом · см ), ниже 4,5 К В. переходит в состояние сверхпроводимости. Механические свойства В. высокой чистоты после отжига: модуль упругости 135,25 н / м 2 (13520 кгс / мм 2), предел прочности 120 нм / м 2 (12 кгс / мм 2), относительное удлинение 17%, твердость по Бринеллю 700 мн / м 2 (70 кгс / мм 2). Примеси газов резко снижают пластичность В., повышают его твёрдость и хрупкость.

При обычной температуре В. не подвержен действию воздуха, морской воды и растворов щелочей; устойчив к неокисляющим кислотам, за исключением плавиковой. По коррозионной стойкости в соляной и серной кислотах В. значительно превосходит титан и нержавеющую сталь. При нагревании на воздухе выше 300°С В. поглощает кислород и становится хрупким. При 600-700°С В. интенсивно окисляется с образованием пятиокиси v 2 o 5 , а также и низших окислов. При нагревании В. выше 700°С в токе азота образуется нитрид vn (t пл 2050°С), устойчивый в воде и кислотах. С углеродом В. взаимодействует при высокой температуре, давая тугоплавкий карбид vc (t пл 2800°С), обладающий высокой твёрдостью.

В. даёт соединения, отвечающие валентностям 2, 3, 4 и 5; соответственно этому известны окислы: vo и v 2 o 3 (имеющие основной характер), vo 2 (амфотерный) и v 2 o 5 (кислотный). Соединения 2- и 3-валентного В. неустойчивы и являются сильными восстановителями. Практическое значение имеют соединения высших валентностей. Склонность В. к образованию соединений различной валентности используется в аналитической химии, а также обусловливает каталитические свойства v 2 o 5 . Пятиокись В. растворяется в щелочах с образованием ванадатов .

Получение и применение. Для извлечения В. применяют: непосредственное выщелачивание руды или рудного концентрата растворами кислот и щелочей; обжиг исходного сырья (часто с добавками nacl) с последующим выщелачиванием продукта обжига водой или разбавленными кислотами. Из растворов методом гидролиза (при рН = 1-3) выделяют гидратированную пятиокись В. При плавке ванадийсодержащих железных руд в домне В. переходит в чугун, при переработке которого в сталь получают шлаки, содержащие 10-16% v 2 o 5 . Ванадиевые шлаки подвергают обжигу с поваренной солью. Обожжённый материал выщелачивают водой, а затем разбавленной серной кислотой. Из растворов выделяют v 2 o 5 . Последняя служит для выплавки феррованадия (сплавы железа с 35-70% В.) и получения металлического В. и его соединений. Ковкий металлический В. получают кальциетермическим восстановлением чистой v 2 o 5 или v 2 o 3 ; восстановлением v 2 o 5 алюминием; вакуумным углетермическим восстановлением v 2 o 3 ; магниетермическим восстановлением vc1 3 ; термической диссоциацией йодида В. Плавят В. в вакуумных дуговых печах с расходуемым электродом и в электроннолучевых печах.

Чёрная металлургия - основной потребитель В. (до 95% всего производимого металла). В. входит в состав быстрорежущей стали, её заменителей, малолегированных инструментальных и некоторых конструкционных сталей. При введении 0,15-0,25% В. резко повышаются прочность, вязкость, сопротивление усталости и износоустойчивость стали. В., введённый в сталь, является одновременно раскисляющим и карбидообразующим элементом. Карбиды В., распределяясь в виде дисперсных включений, препятствуют росту зерна при нагреве стали. В. в сталь вводят в форме лигатурного сплава - феррованадия. Применяют В. и для легирования чугуна. Новым потребителем В. выступает быстро развивающаяся промышленность титановых сплавов; некоторые титановые сплавы содержат до 13% В. В авиационной, ракетной и др. областях техники нашли применение сплавы на основе ниобия, хрома и тантала, содержащие присадки В. Разрабатываются различные по составу жаропрочные и коррозионностойкие сплавы на основе В. с добавлением ti, nb, w, zr и al, применение которых ожидается в авиационной, ракетной и атомной технике. Интересны сверхпроводящие сплавы и соединения В. с ga, si и ti.

Чистый металлический В. используют в атомной энергетике (оболочки для тепловыделяющих элементов, трубы) и в производстве электронных приборов.

Соединения В. применяют в химической промышленности как катализаторы, в сельском хозяйстве и медицине, в текстильной, лакокрасочной, резиновой, керамической, стекольной, фото и кинопромышленности.

Соединения В. ядовиты. Отравление возможно при вдыхании пыли, содержащей соединения В. Они вызывают раздражение дыхательных путей, лёгочные кровотечения, головокружения, нарушения деятельности сердца, почек и т.п.

В. в организме. В. - постоянная составная часть растительных и животных организмов. Источником В. служат изверженные породы и сланцы (содержат около 0,013% В.), а также песчаники и известняки (около 0,002% В.). В почвах В. около 0,01% (в основном в гумусе); в пресных и морских водах 1·10 7 -2·10 7 %. В наземных и водных растениях содержание В. значительно выше (0,16-0,2%), чем в наземных и морских животных (1,5·10 -5 -2·10 -4 %). Концентраторами В. являются: мшанка plumatella, моллюск pleurobranchus plumula, голотурия stichopus mobii, некоторые асцидии, из плесеней - чёрный аспергилл, из грибов - поганка (amanita muscaria). Биологическая роль В. изучена на асцидиях, в кровяных клетках которых В. находится в 3- и 4-валентном состоянии, то есть существует динамическое равновесие.

Физиологическая роль В. у асцидии связана не с дыхательным переносом кислорода и углекислого газа, а с окислительно-восстановительными процессами - переносом электронов при помощи так называемой ванадиевой системы, вероятно имеющей физиологическое значение и у др. организмов.

Лит.: Меерсон Г. А., Зеликман А. Н., Металлургия редких металлов, М., 1955; Поляков А. Ю., Основы металлургии ванадия, М., 1959; Ростокер У., Металлургия ванадия, пер. с англ., М., 1959; Киффер p., Браун Х., Ванадий, ниобий, тантал, пер. с нем., М., 1968; Справочник по редким металлам, [пер. с англ.], М., 1965, с. 98-121; Тугоплавкие материалы в машиностроении. Справочник, М., 1967, с. 47-55, 130-32; Ковальский В. В., Резаева Л. Т., Биологическая роль ванадия у асцидии, «Успехи современной биологии», 1965, т. 60, в. 1(4); Воwen Н. j. М., trace elements in biochemistry, l. - n. y., 1966.

И. Романьков. В. В. Ковальский.

Ванадий представляет собой химический элемент, обозначаемый символом «V». Атомная масса ванадия 50,9415 а. е. м., атомный номер - 23. Это твердый серебристо-серый, ковкий и плавкий металл, редко встречающийся в природе. Входит в состав более чем 60 минералов и даже может содержаться в ископаемом топливе.

Непризнанное открытие

Металл ванадий впервые был обнаружен мексиканским минерологом испанского происхождения Андресом Мануэлем Дель Рио в 1801 году. Исследователь извлек новый элемент из образца добытой в Мексике «коричневой» свинцовой руды. Как оказалось, соли металла обладают большим разнообразием цветов, поэтому Дель Рио первоначально назвал его «panchromium» (от греческого "παγχρώμιο" - «разноцветный»).

Позже минеролог переименовал элемент в erythronium (от греческого "ερυθρός" - «красный»), потому что большая часть солей приобретала красной оттенок при нагревании. Казалось бы, невероятная удача улыбнулась малоизвестному в Европе ученому. Открытие нового химического элемента ванадия сулило если не славу, то, как минимум, признание коллег. Однако из-за отсутствия весомого авторитета в научном мире достижение мексиканца проигнорировали.

В 1805 году французский химик Ипполит Виктор Колле-Декотильс предположил, что новый элемент, исследованный Дель Рио, был всего лишь образцом хромата свинца с примесями. В конечном итоге мексиканский исследователь, чтобы окончательно не потерять лицо перед ученой братией, принял утверждение Колле-Декотиля и отказался от своего открытия. Впрочем, его достижение не кануло в небытие. Сегодня Андрес Мануэль Дель Рио признан как первооткрыватель редкого металла.

Повторное открытие

В 1831 году швед Нильс Габриэль Сефстрём вновь обнаружил химический элемент ванадий в оксиде, полученном им при работе с железной рудой. В качестве его обозначения ученый выбрал литеру «V», которая еще не была присвоена ни одному элементу. Сефстрём назвал новый металл из-за его красивой и богатой окраски в честь древнескандинавской богини красоты Ванадис.

Новость вызвала повышенный интерес в научном сообществе. Сразу вспомнили о работах мексиканского минеролога. В том же 1831 году Фридрих Вёлер перепроверил и подтвердил предыдущее открытие Дель Рио. А геолог Джордж Уильям Фезерстонхауп даже предложил назвать металл «рионием» в честь первооткрывателя, но инициатива поддержана не была.

Неуловимый

Выделение металла ванадия в чистом виде оказалось затруднительным. До этого ученые работали лишь с его солями. Именно поэтому истинные свойства ванадия били неизвестны. В 1831 году Берцелиус сообщил о получении металлизированного вещества, но Генри Энфилд Роско доказал, что Берцелиус фактически произвел нитрид ванадия (VN). В конечном итоге Роско произвел металл в 1867 году путем восстановления хлорида ванадия (VCl 2) под действием водорода. С 1927 года чистый ванадий получают путём восстановления пентаоксида ванадия с участием кальция.

Первое серийное промышленное использование элемента относится к 1905 году. Металл добавляли в стальной сплав для изготовления шасси гоночных автомобилей, а позже - в Ford Model T. Характеристики ванадия позволяют снизить вес конструкции, одновременно увеличивая прочность на растяжение. Кстати, немецкий химик Мартин Хенце обнаружил ванадий в клетках крови (или целомических клетках) морских обитателей - акцидий - в 1911 году.

Физические свойства

Ванадий представляет собой ковкий серо-синий металл средней твёрдости со стальным блеском и плотностью 6,11 г/см³. Некоторые источники описывают материал как мягкий, имея ввиду его высокую пластичность. Кристаллическая структура элемента сложнее большинства металлов и сталей.

Ванадий обладает хорошей устойчивостью к коррозии, щелочам, серной и соляной кислотам. Он окисляется на воздухе при температуре около 660°С (933К, 1220°F), хотя пассивация оксида происходит даже при комнатной температуре. Плавится данный материал при достижении температуры 1920°С, а при 3400°С - закипает.

Химические свойства

Ванадий под воздействием кислорода образует четыре типа оксидов:

Соединения ванадия типа (II) являются восстановителями, а соединения типа (V) - окислителями. Соединения (IV) часто существуют как производные катиона ванадила.

Оксид

Наиболее коммерчески важным соединением является пятиокись ванадия. Это коричнево-жёлтое твёрдое вещество, хотя при свежевыпакованном осаждении из водного раствора его цвет является тёмно-оранжевым.

Оксид используется в качестве катализатора для получения серной кислоты. Это соединение окисляет диоксид серы (SO 2) в триоксид (SO 3). В этой окислительно-восстановительной реакции сера окисляется от +4 до +6, а ванадий снижается с +5 до +4. Формула ванадия выглядит следующим образом:

V 2 O 5 + SO 2 → 2VO 2 + SO 3

Катализатор регенерируется окислением кислорода:

2VO 2 + O 2 → V 2 O 5

Аналогичные процессы окисления используются в производстве малеинового ангидрида, фталевого ангидрида и нескольких других объемных органических соединений.

Этот оксид также применяют при получении феррованадия. Его нагревают с железом и ферросилицием с добавлением извести. При использовании алюминия получают железо-ванадиевый сплав вместе с оксидом алюминия в качестве побочного продукта. Из-за высокого коэффициента теплового сопротивления оксид ванадия (V) находит применение в качестве материала-детектора в болометрах и микроболометрических массивах в тепловизионных приборах.

Характеристики

Редкий металл имеет следующие характеристики:

  • Кристаллическая структура: кубическая объёмно-центрированная.
  • Звукопроводность: 4560 м/с (при 20°C).
  • Валентность ванадия: V (реже IV, III, II).
  • Тепловое расширение: 8,4 мкм/(м·К) (при 25°С).
  • Теплопроводность: 30,7 Вт/(м·К).
  • Электрическое сопротивление: 197 nΩ·м (при 20°C).
  • Магнетизм: парамагнитный.
  • Магнитная восприимчивость: +255·10 -6 см 3 /моль (298K).
  • Модуль упругости: 128 ГПа.
  • Модуль сдвига: 47 ГПа.
  • Объёмный модуль упругости: 160 ГПа.
  • Коэффициент Пуассона: 0,37.
  • Твёрдость по шкале Мооса: 6,7.
  • Твердость по Виккерсу: 628-640 МПа.
  • Твердость по Бринеллю: 600-742 Мпа.
  • Категория элемента: переходный металл.
  • Электронная конфигурация: 3d 3 4s 2 .
  • Теплота плавления: 21,5 кДж/моль.
  • Теплота испарения: 444 кДж/моль.
  • Молярная теплоёмкость: 24,89 Дж/(моль·К).

Ванадий в таблице Менделеева находится в 5-й группе (подгруппа ванадия), 4-м периоде, d-блоке.

Распространение

Ванадий в масштабах Вселенной составляет примерно 0,0001% от общего объёма вещества. Он распространён так же часто, как медь и цинк. Метал обнаружен в спектральном свечении Солнца и других звёзд.

Элемент является 20-м по распространённости в земной коре. Металл ванадий в кристаллической форме достаточно редок, но соединения этого материала встречаются в 65 различных минералах. Экономически значимыми из них являются патронит (VS 4), ванадинит (Pb 5 (VO 4) 3 Cl) и карнотит (K 2 (UO 2) 2 (VO 4) 2 · 3 H 2 O).

Ионы ванадила в изобилии распространены в морской воде и имеют среднюю концентрацию 30 нМа. Некоторые источники минеральной воды также содержат данные ионы в высоких концентрациях. Например, источники возле горы Фудзи содержат до 54 мкг/л.

Добыча

Большую часть этого редкого металла получают из ванадиевого магнетита, обнаруженного в ультраосновных магматических габбровых породах. Сырьё добывается главным образом в Южной Африке, северо-западном Китае и на востоке России. В 2013 году эти страны произвели более 97 % всего ванадия (79 000 тонн в весовом выражении).

Металл также присутствует в бокситах и месторождениях сырой нефти, угля, горючих сланцев и битуминозных песков. В сырой нефти сообщалось о концентрациях до 1200 промилле. Из-за окислительных свойств ванадия (некоторых его оксидов) после сжигания таких нефтепродуктов остатки элемента могут вызвать коррозию в двигателях и котлах.

По оценкам, 110 000 тонн вещества ежегодно попадает в атмосферу путем сжигания ископаемого топлива. Сегодня разрабатываются технологии по извлечению ценного вещества из углеводородов.

Производство

В основном ванадий используется в качестве добавок к стальным сплавам, называемым ферросплавами. Феррованадий получают непосредственно путем восстановления смеси из оксида ванадия с валентностью (V), оксидов железа и чистого железа в электрической печи.

Металл получают с использованием многоступенчатого процесса, который начинается с обжига измельченной ванадий-магнетитовой руды с добавлением хлорида натрия (NaCl) или карбоната натрия (Na 2 CO 3) при температуре около 850°С с получением метаванадата натрия (NaVO 3). Водный экстракт этого вещества подкисляют, получая поливанадатную соль, которая восстанавливается кальциевым металлом. В качестве альтернативы мелкосерийному производству пятиокись ванадия восстанавливается водородом или магнием.

Также используются многие другие методы, во всех из которых ванадий производится как побочный продукт других процессов. Его очистка возможна иодидным методом, разработанным Антоном Эдуардом ван Аркелем и Яном Хендриком де Бором в 1925 году. Он подразумевает образование иодида ванадия (III) и его последующее разложение с получением чистого металла:

2 V + 3I 2 ⇌ 2 VI 3

Достаточно экзотический способ получения этого элемента придумали японцы. Они разводят на подводных плантациях асцидии (тип хордовые), которые поглощают ванадий из морской воды. Затем их собирают и сжигают. Из образовавшегося пепла извлекают ценный метал. Кстати, его концентрация в этом случае гораздо выше, чем на самых богатых месторождениях.

Сплавы

Что собой представляют сплавы ванадия? Приблизительно 85 % производимого редкого металла используют для получения феррованадия или в качестве добавки к стали. В начале XX века было обнаружено, что даже небольшое количество ванадия значительно увеличивает прочность стали. Данный элемент образует стабильные нитриды и карбиды, что приводит к улучшению характеристик сталей и сплавов.

С этого времени отмечено применение ванадия в осях, рамах, коленчатых валах, шестернях и других важных компонентах колесного транспорта. Существуют две группы сплавов:

  • Высокоуглеродистые с содержанием от 0,15 % до 0,25 % ванадия.
  • Быстрорежущие инструментальные стали (HSS) с содержанием от 1% до 5% данного элемента.

Для сталей марки HSS может быть достигнута твердость выше HRC 60. Они используются в хирургических инструментах. В порошковой металлургии сплавы могут содержать до 18 % ванадия. Высокое содержание карбидов в этих сплавах значительно повышает износостойкость. Из них изготавливают инструменты и ножи.

Благодаря своим свойствам, ванадий стабилизирует бета-форму титана, повышает его прочность и температурную стабильность. Смешанный с алюминием в титановых сплавах, он используется в реактивных двигателях, высокоскоростных летательных аппаратах и зубных имплантатах. Наиболее распространенным сплавом для бесшовных труб является титан 3/2,5, содержащий 2,5 % ванадия. Данные материалы широко распространены в аэрокосмической, оборонной и велосипедной промышленности. Другим распространенным сплавом, выпускаемым главным образом в листах, является титан 6AL-4V, где 6 % алюминия и 4% ванадия.

Несколько ванадиевых сплавов демонстрируют сверхпроводящие свойства. Первый фазовый сверхпроводник А15 представлял собой соединение ванадия V 3 Si, которое было получено в 1952 году. Ванадиево-галлиевая лента используется в сверхпроводящих магнитах. Структура сверхпроводящей фазы A15 V 3 Ga аналогична структуре более распространенных сверхпроводников: станнида триниобия (Nb 3 Sn) и ниобий-титана (Nb 3 Ti).

Недавно учёные выяснили, что в Средние века в некоторые образцы дамасской и булатной стали добавляли небольшое количество ванадия (от 40 до 270 частей на миллион). Это улучшало свойства клинков. Однако неясно, где и как добывали редкий металл. Возможно, он входил в состав некоторых руд.

Применение

Помимо металлургии, ванадий используется и для других задач. Сечение теплового нейтронного захвата и короткий период полураспада изотопов, образующихся при захвате нейтронов, делают данный металл подходящим материалом для использования внутри термоядерного реактора.

Наиболее распространенный оксид ванадия - пентаоксид V 2 O 5 - используется в качестве катализатора при производстве серной кислоты и в качестве окислителя в производстве малеинового ангидрида. Пеноксид ванадия используется при изготовлении керамических изделий.

Металл является важным компонентом смешанных металлоксидных катализаторов, используемых при окислении пропана и пропилена в акролеин, акриловую кислоту или аммоксидирование пропилена до акрилонитрила. Другой оксид ванадия - двуокись VO 2 - используется при производстве стеклянных покрытий, которые блокируют инфракрасное излучение при определенной температуре.

Ванадиевая редокс-батарея представляет собой гальванический элемент, состоящий из водных ионов ванадия в различных состояниях окисления. Батареи такого типа были впервые предложены в 1930 годах, а коммерческое использование началось с 1980-х. Ванадат можно использовать для защиты стали от коррозии.

Ванадий имеет важное значение для здоровья человека. Он помогает регулировать углеродный и липидный обмен, участвует в выработке энергии. В сутки рекомендовано потреблять 6-63 мкг (данные ВОЗ) вещества, поступающего с пищевыми продуктами. Его вполне достаточно в крупах, бобовых, овощах, зелени, фруктах.

Оставался «безработным» в течение 60 лет после открытия Крукса. Но к началу -20-х годов нашего столетия были открыты специфические свойства таллиевых препаратов, и сразу же появился спрос на них. В 1920 г. в Германии был получен патентованный яд против грызунов, в состав которого входил сульфат таллия Tl 2 SO 4 . Это вещество без вкуса и запаха иногда в состав инсектицидов и зооцидов и в наши дни. В том же 1920 г. в журнале « Physical Review » появилась статья Кейса, который обнаружил, что электропроводность одного из соединений таллия (его оксисульфида) изменяется под действием света.

Вскоре были изготовлены первые фотоэлементы, рабочим телом которых было именно это вещество. Особо чувствительными они оказались к инфракрасным лучам.Другие соединения элемента № 81, в частности смешанные кристаллы бромида и иодида одновалентного таллия, хорош:) пропускают инфракрасные лучи. Такие кристаллы впервые получили в годы второй мировой войны. Их выращивали в платиновых тиглях при 470° С и использовали в приборах инфракрасной сигнализации, а также для обнаружения снайперов противника. Позже TlBr и TlI применяли в сцинтилляционных счетчиках для регистрации альфа- и бета-излучения… Общеизвестно, что загар на нашей коже появляется главным образом благодаря ультрафиолетовым лучам и что эти лучи обладают к тому же бактерицидным действием.

Однако, как установлено, не все лучи ультрафиолетовой части спектра одинаково эффективны. Медики выделяют излучения эритемального, или эритемного (от латинского aeritema - «покраснение»), действия - подлинные «лучи загара». И, конечно, материалы, способные преобразовывать первичное ультрафиолетовое излучение в лучи эритемального действия, очень важны для физиотерапии. Такими материалами оказались некоторые и фосфаты щелочноземельных металлов, активированные талием. Медицина использует и другие соединения элемента № 81. Их применяют, в частности, для удаления волос при стригущем лишае - соли таллия в соответствующих дозах приводят к временному облысению.

Широкому применение таллия солей в медицине препятствует обстоятельство, что разница между терапевтическими и токсичными дозами этих солей невелика. Токсичность же таллия и его солей требует, чтобы с ними обращались внимательно и осторожно. До сих пор, рассказывая о практической пользе таллия, мы касались лишь его соединений. Можно добавить, что карбонат таллия Тl 2 СO 3 используют для получения стекла с большим коэффициентом преломления световых лучей. А что же сам ? Его тоже применяют, хотя, мо жет быть, не так широко, как соли. Металлический входит в состав некоторых сплавов, придавая им кислотостойкость, прочность, износоустойчивость.

Чаще всего таллий вводят в на основе родственного ему свинца. Подшипниковый сплав -72% Рb, 15 %Sb, 5% Sn и 8% Тl превосходит лучшие оловянные подшипниковые . Сплав 70% Рb, 20% Sn и 10% Тl устойчив к действию азотной и соляной кислот. Несколько особняком стоит сплав таллия с ртутью - таллия, содержащая примерно 8,5% элемента № 81. В обычных условиях она жидкая и, в отличие от чистой ртути, остается в жидком состоянии при температуре до -60° С. Сплав используют в жидкостных затворах, переключателях, термометрах, работающих в условиях Крайнего Севера, в опытах с низкими температурами.В химической промышленности металлический таллий, как и некоторые его соединения, используют в качестве катализатора, в частности при восстановлении нитробензола водородом.Не остались без работы и радиоизотопы таллия. Таллий -204 (период полураспада 3,56 года) - чистый бета-излучатель.

Его используют в контрольно-измерительной аппаратуре, предназначенной для измерения толщины покрытий и тонкостенных изделий. Подобными установками с радиоактивным таллием снимают заряды статического электричества с готовой продукции в бумажной и текстильной промышленности.Думаем, что уже приведенных примеров вполне достаточно, чтобы считать безусловно доказанной полезность элемента № 81. А о том, что та-лйий сделает эпоху в химии, мы не говорили -это все Дюма. Не Александр Дюма, правда (что при его фантазии было бы вполне объяснимо) , а Жан Батист Андрэ Дюма - однофамилец писателя, вполне серьезный химик.Но, заметим, что и химикам фантазия приносит больше пользы, чем вреда…

ЕЩЕ НЕМНОГО ИСТОРИИ. Французский химик Лами открыл таллий независимо от Крукса. Он обнаружил зеленую спектральную линию, исследуя шламы другого сернокислотного завода. Онже первым получил немного элементарного таллия, установил его металлическую природу и изучил некоторые свойства. Крукс опередил Лам и всего на несколько месяцев.

О МИНЕРАЛАХ ТАЛЛИЯ. В некоторых редких минералах - ло рандите, врбаите, гутчинсоните, крукезите - содержание элемента № 81 очень велико -от 16 до 80%. Жаль только, что все эти очень редки. Последний минерал таллия, представляющий почти чистую окись трехвалентного таллия Тl2О 3 (79,52% Тl), найден в 1956 г. па территории Узбекистана. Этот минерал назвал авиценнитом - в честь мудреца, врача и философа Авиценны, или правильнее Абу Али ибн Сины.

ТАЛЛИЙ В ЖИВОЙ ПРИРОДЕ. Таллий обнаружен в растительныхи животных организмах. Он содержится в табаке, корнях цикория, шпинате, древесине бука, в винограде, свекле и других растениях. Из животных больше всего таллия содержат медузы, актинии, морские звезды и другие обитатели морей. Некоторые растения аккумулируют таллий в процессе жизнедеятельности. Таллий был обнаружен в свекле, произраставшей на почве, в которой самыми тонкими аналитическими методами не удавалось обнаружить элемент № 81. Позже было установлено, что даже при минимальной концентрации таллия в почве свекла способна концентрировать и накапливать его.

НЕ ТОЛЬКО ИЗ ДЫМОХОДОВ. Первооткрыватель таллия нашел его в летучей пыли сернокислотного завода. Сейчас кажется естественным, что таллий, по существу, нашли в дымоходе - ведь при температуре плавки руд соединения таллия становятся летучими. В пыли, уносимой в дымоход, они конденсируются, как правило, в виде окиси и сульфата. Извлечь таллий из смеси (а, пыль - это смесь многих веществ) помогает хорошая большинства соединений одновалентного таллия. Их извлекают из пыли подкисленной горячей водой. Повышенная помогает успешно очищать таллий от многочисленных примесей. После этого получают металлический таллий.

Способ получения металлического таллия зависит от того, какое его соединение было конечным продуктом предыдущей производственной стадии. Если был получен карбонат, сульфат или перхлорат таллия, из них элемент № 81 извлекают электролизом; если же был получен хлорид пли оксалат, прибегают к обычному восстановлению. Наиболее технологичен растворимый в воде сульфат таллия Tl 2 SO 4 . Он сам служит электролитом, при электролизе которого на катодах из алюминия оседает губчатый таллий. Эту губку затем прессуют, плавят и отливают в форму. Следует помнить, что таллий всегда по лучают попутно: попутно со свинцом, цинком, кадмием и некоторыми другими элементами. Таков удел рассеянных…

Таллий – это металл серебристо-белого цвета с голубым отливом. Распознать его на вкус и запах невозможно. Но и вряд ли кто-то рискнет пробовать это вещество. Ведь таллий – это яд, причем высокого уровня токсичности сродни свинцу и мышьяку . Отравление большими дозами нередко заканчивается летальным исходом. При постепенном воздействии на организм имеет свойство накапливаться в почках, легких, печени и головном мозге. Приводит к необратимым изменениям в работе органов и систем, крайне тяжело подается выведению.

Область применения

Благодаря уникальным физико-химическим свойствам соединения таллия активно применяют в промышленности :

  • при производстве очков ночного виденья и оптических линз;
  • при исследовании минеральных горных пород, руды;
  • в низкоградусных лабораторных термометрах;
  • в составе проводниковых веществ и смесей;
  • в пиротехнической отрасли;
  • в составе светящихся красок;
  • в производстве ядохимикатов для обработки растений и отравы для грызунов;
  • в легкой промышленности для обработки бумажных изделий и текстиля (таллий используется в форме радиоактивного изотопа);
  • при изготовлении искусственных драгоценных минералов.

Метод активации таллием щелочноземельных фосфатов используется в некоторых физиотерапевтических процедурах, оказывающих тепловое действие на человека. А соединения таллия представляют интерес в качестве вспомогательного лечения при стригущем лишае. Но ввиду высокой степени токсичности металла, широкое применение в медицинской практике таллий – яд – не нашел.

Причины отравления

Отравление таллием может носить различный характер и проявиться как в острой, так и в хронической форме. Чаще всего в медицинской практике сталкиваются именно с острой формой заболевания. Нередко на больничную койку попадают дети, по неосторожности или в качестве экспериментов проглотившие отраву для грызунов или гранулы пестицидов, в которых содержится смертельный токсин.

Хроническая форма заболевания характерна для людей, работающих на производстве и ежедневно контактирующих с ядовитым веществом . Большего всего подвержены рискам люди, занятые на плавлении руд, обжиге серного колчедана, сжигания угля и получения цемента. Попадание токсина в организм происходит преимущественно через дыхательные пути. Возможно употребление пищевых продуктов, покрытых пылью с примесями яда.

В истории криминалистики описано немало прецедентов суицида и убийств с использованием ядовитого вещества.

Симптомы острого отравления таллием


При острой форме отравления большинство симптомов проявляется спустя несколько часов после попадания яда в организм
. Время может меняться и будет зависеть от величины дозировка. В отличие от обычного пищевого отравления токсическое поражение ядом характеризуется более тяжелыми проявлениями:

  • Со стороны желудочно-кишечного тракта отмечаются сильные боли в эпигастральной области, тошнота, частые эпизоды рвоты, жидкий стул с примесью крови.
  • Поражение периферической нервной системы проявляется тремором конечностей, повышение артериального давления, учащенным сердцебиением, мышечными болями и общей слабостью.

Продолжительность данного периода составляет не более 6 часов с момента поступления таллия в организм. Если на данном этапе человеку не будет оказана профессиональная медицинская помощь, токсины всасываются из желудка и продолжают поражать нервные клетки организма. Появляются новые симптомы отравления, усугубляющиеся с каждой минутой:

  • расстройство психики, спутанность сознания;
  • нарушение устойчивости и координации движений;
  • судороги;
  • потеря зрения вследствие паралича глазных мышц.

Если дозировка ядовитого вещества была критичной, на последней стадии речь идет о множественном поражении нервов и нервных окончаний . Варианты развития событий могут быть самыми различными, но ни один из них не является благополучным (инсульт, инфаркт, кома).

Истории наших читателей

Владимир
61 год

Смерть от таллия наступает при употреблении дозы в 600 мг. Вероятность спасти пациента при такой дозировке ядом нулевая.

Клиническое течение хронического отравления

При регулярном попадании в организм соединений таллия в минимальной дозировке симптомы отравления начинают проявляться несколько позже и при этом имеют менее выраженный характер. Если, работая во вредных условиях, человек начинает испытывать головные боли и слабость в теле, необходимо срочно обратиться к инфекционисту . Возможно, опасения напрасны, но полностью исключать вероятность отравления не стоит.

Если яд продолжает накапливаться в организме и отравлять его, постепенно состояние больного будет все больше ухудшаться. Среди клинических признаков хронического отравления таллием выделяют:

  • непроходящий кашель, появление одышки, на более поздних стадиях может развиваться отек легких, паралич мышц дыхательной системы;
  • боли в области сердца, скачки артериального давления, тахикардия;
  • появление сыпи на различных участках тела, незаживающие дерматиты;
  • появление белых вкраплений на ногтях;
  • выпадение волос на голове, облысение также может затрагивать брови и ресницы;
  • у мужчин нарушается работа половой системы, возникает импотенция;
  • снижение остроты зрения, полная его потеря вследствие атрофии сетчатки.

Резкое ухудшение здоровья отмечается на последних стадиях заболевания, когда помочь человеку уже крайне сложно . Возможен летальный исход вследствие отека легких, инсульта, инфаркта, комы.

При хроническом течении признаки расстройства пищеварительной системы отсутствуют. Вероятность кишечных кровотечений и частых эпизодов рвоты минимальна.

Диагностика

По первым симптомам сложно установить, что их проявление спровоцировано непосредственно таллием. Так как клинические проявления схожи со многими другими заболеваниями, в том числе с патологиями желудочно-кишечного тракта. Поэтому при постановке диагноза очень важно уделить внимание опросу пациента о его месте работы и возможном контакте с токсическим веществом .

Подтвердить подозрения и начать действовать помогает анализ мочи и анализ крови. Во время исследований в крови обнаруживается повышенное содержание мочевины, а исследуемая моча показывает наличие конкретного токсина. Целесообразно проведения и рентгенографии. В просвете рентгена обнаруживается не только попавшее с едой вещество, но и давность его употребления из расчета уровня его нахождения в отделах пищеварительного тракта.

Лечение


При остром отравлении таллием первая помощь пострадавшему основана на промывании желудка для предотвращения проникновения токсинов в общий кровоток
. Так как яд быстро распространяется по организму, процедуру рекомендуется провести еще до приезда бригады скорой помощи. Также в домашних условиях можно принять слабительный препарат для очищения кишечника от токсинов и диуретик для усиления выведения таллия вместе с мочой.

Лечение острого отравления таллием проводится в условиях стационара. На начальном этапе терапия направлена на выведение из организма как самого токсического вещества в неизменном виде, так и продуктов его распада. После этого пациенту назначается антидот, нейтрализующий действие яда. В данном случае в роли антидота выступает прусская синь, способствующая выведению остатков таллия вместе с каловыми массами.

В качестве вспомогательных средств лечения отравления применяются:

  • многократные сеансы гемодиализа для поддержания работы почек ;
  • внутривенное введение препаратов калия для предупреждения обратного всасывания токсинов в каналах мочевой системы;
  • при нарушении дыхательной функции пациенту вводится любелина гидрохлорид внутривенно или внутримышечно;
  • препараты для нормализации сердечной деятельности при аритмии и тахикардии;
  • для устранения симптомов расстройства нервной системы применяются витамины группы В.

Возможные последствия, профилактика

Продолжительная интоксикация соединениями таллия может грозить импотенцией, бесплодием и риском рождения ребенка с врожденными патологиями .

К последствиям отравления также можно отнести хронические патологии пищеварительного тракта, заболевания органов дыхания, психоэмоциональные расстройства, нарушение гормонального фона.

Очень высока вероятность смертельного исхода вследствие инфаркта миокарда или инсульта даже после пройденного стационарного лечения.

При своевременно оказанной помощи и содержании незначительной дозы яда период полного выведения таллия составляет 2-3 месяца. И это при условии крепкого здорового организма до отравления.

Учитывая такие не радужные перспективы, в условиях работы с ядовитым веществом стоит проявлять максимальную осторожность. Если ваша профессиональная деятельность напрямую связана с соединениями таллия, обязательно придерживайтесь мер предосторожности:

  1. Если техникой безопасности прописано использование средств индивидуальной защиты и ношение специальной одежды, не пренебрегайте этими нормами. Респиратор и перчатки могут спасти вашу жизнь, и это не преувеличение.
  2. По окончании рабочего дня сразу принимайте душ, чтобы смыть с кожи остатки ядовитых веществ.
  3. На рабочем месте нельзя есть и пить. Пыль с частицами таллия легко оседает на всех окружающих предметах, в том числе на пищевых продуктах.
  4. Дважды в год проходите профилактические осмотры. И делайте это не для штампа в санитарной книжке, а для своего здоровья.

И следите за своими детьми. Уж слишком часты случаи смертельного исхода по причине неосторожного обращения с химикатами. И процент смертности среди маленьких пациентов очень высокий . Ведь именно их неокрепшему организму сложнее всего бороться с тяжелым поражением органов.

Последние материалы раздела:

Роль Троцкого в Октябрьской революции и становлении советской власти
Роль Троцкого в Октябрьской революции и становлении советской власти

«Лента.ру»: Когда началась Февральская революция, Троцкий находился в США. Чем он там занимался и на какие деньги жил?Гусев: К началу Первой...

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...