В каком гальваническом элементе. Принцип работы гальванического элемента

Гальванический элемент - это химический источник тока, в котором энергия, выделяющаяся при протекании на электродах окислительно-восстановительной реакции, непосредственно преобразуется в электрическую энергию.

Рис. 9.2. Схема гальванического элемента Даниэля - Якоби

Здесь I - стакан, содержащий раствор ZnSO 4 в воде с погруженной в него цинковой пластинкой; II - стакан, содержащий раствор CuSO 4 в воде с погруженной в него медной пластинкой; III - солевой мостик (электролитический ключ), который обеспечивает перемещение катионов и анионов между растворами; IV - вольтметр (нужен для измерения ЭДС, но в состав гальванического элемента не входит).

Стандартный электродный потенциал цинкового электрода . Стандартный электродный потенциал медного электрода . Так как , то атомы цинка будут окисляться:

Электрод, на котором идет реакция восстановления или которыйпринимает катионы из электролита , называется катодом.

Через электролитический ключ происходит движение ионов в растворе: анионов SO 4 2- к аноду, катионов Zn 2+ к катоду. Движение ионов в растворе замыкает электрическую цепь гальванического элемента.

Реакции (а) и (б) называются электродными реакциями.

Складывая уравнения процессов, протекающих на электродах, получаем суммарное уравнение окислительно-восстановительной реакции, протекающей в гальваническом элементе:

В общем случае, суммарное уравнение окислительно-восстановительной реакции, протекающей в произвольном гальваническом элементе, можно представить в виде:

Схема гальванического элемента Даниэля - Якоби имеет вид:

Zn | ZnSO 4 || CuSO 4 | Cu

Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента Е . Она вычисляется по формуле;

где n - число электронов в элементарном окислительно-восстановительном акте, F - число Фарадея.

Величина изменения изобарно-изотермического потенциала токообразующей реакции при стандартных условиях?G 0 связана с константой равновесия этой реакции К равн соотношением

(9.6)

Гальванические элементы являются первичными (однократно используемыми) химическими источниками тока (ХИТ). Вторичными (многократно используемыми) ХИТ являются аккумуляторы. Процессы, протекающие при разряде и заряде аккумуляторов, взаимнообратны.

Гальванические элементы, у которых электроды выполнены из одного и того же металла и опущены в растворы своих солей разной концентрации, называются концентрационными . Функцию анода в таких элементах выполняет металл, опущенный в раствор соли с меньшей концентрацией, например:

Пример 1. Составьте схему гальванического элемента, в основе которого лежит реакция: Mg + ZnSO 4 = MgSO 4 + Zn. Что является катодом и анодом в этом элементе? Напишите уравнения процессов, протекающих на этих электродах. Рассчитайте ЭДС элемента при стандартных условиях. Вычислите константу равновесия для токообразующей реакции.

Маломощные источники электрической энергии

Для питания переносной электро- и радиоаппаратуры применяют гальванические элементы и аккумуляторы.

Гальванические элементы - это источники одноразового действия, аккумуляторы - источники многоразового действия.

Простейший гальванические элемент

Простейший элемент может быть изготовлен из двух полосок: медной и цинковой, погруженных в воду, слегка подкисленную серной кислотой. Если цинк достаточно чист, чтобы быть свободным от местных реакций, никаких заметных изменений не произойдет до тех пор, пока медь и цинк не будут соединены проводом.

Однако полоски имеют разные потенциалы одна по отношению к другой, и когда они будут соединены проводом, в нем появится . По мере этого действия цинковая полоска будет постепенно растворяться, а близ медного электрода будут образовываться пузырьки газа, собирающиеся на его поверхности. Этот газ - водород, образующийся из электролита. Электрический ток идет от медной полоски по проводу к цинковой полоске, а от нее через электролит обратно к меди.

Постепенно серная кислота электролита замещается сульфатом цинка, образующимся из растворенной части цинкового электрода. Благодаря этому напряжение элемента уменьшается. Однако еще более сильное падение напряжения вызывается образованием газовых пузырьков на меди. Оба эти действия производят «поляризацию». Подобные элементы не имеют почти никакого практического значения.

Важные параметры гальванических элементов

Величина напряжения, даваемого гальваническими элементами, зависит только от их типа и устройства, т. е. от материала электродов и химического состава электролита, но не зависит от формы и размеров элементов.

Сила тока, которую может давать гальванический элемент, ограничивается его внутренним сопротивлением.

Очень важной характеристикой гальванического элемента является . Под электрической емкостью подразумевается то количество электричества, которое гальванический или аккумуляторный элемент способен отдать в течение всего времени своей работы, т. е. до наступления окончательного разряда.

Отданная элементом емкость определяется умножением силы разрядного тока, выраженной в амперах, на время в часах, в течение которого разряжался элемент вплоть до наступления полного разряда. Поэтому электрическая емкость выражается всегда в ампер-часах (А х ч).

По величине емкости элемента можно также заранее определить, сколько примерно часов он будет работать до наступления полного разряда. Для этого нужно емкость разделить на допустимую для этого элемента силу разрядного тока.

Однако электрическая емкость не является величиной строго постоянной. Она изменяется в довольно больших пределах в зависимости от условий (режима) работы элемента и конечною разрядного напряжения.

Если элемент разряжать предельной силой тока и притом без перерывов, то он отдаст значительно меньшую емкость. Наоборот, при разряде того же элемента током меньшей силы и с частыми и сравнительно продолжительными перерывами элемент отдаст полную емкость.

Что же касается влияния на емкость элемента конечного разрядного напряжения, то нужно иметь в виду, что в процессе разряда гальванического элемента его рабочее напряжение не остается на одном уровне, а постепенно понижается.

Распространенные виды гальванических элементов

Наиболее распространены гальванические элементы марганцево-цинковой, марганцево-воздушной, воздушно-цинковой и ртутно-цинковой систем с солевым и щелочным электролитами. Сухие марганцево-цинковые элементы с солевым электролитом имеют начальное напряжение от 1,4 до 1,55 В, продолжительность работы при температуре окружающей среды от -20 до -60 о С от 7 ч до 340 ч.

Сухие марганцево-цинковые и воздушно-цинковые элементы со щелочным электролитом имеют напряжение от 0,75 до 0,9 В и продолжительность работы от 6 ч до 45 ч.

Сухие ртутно-цинковые элементы имеют начальное напряжение от 1,22 до 1,25 В и продолжительность работы от 24 ч до 55 ч.

Наибольший гарантийный срок хранения, достигающий 30 месяцев, имеют сухие ртутно-цинковые элементы.

Это вторичные гальванические элементы. В отличие от гальванических элементов в аккумуляторе же сразу после сборки никакие химические процессы не возникают.

Чтобы в аккумуляторе начались химические реакции, связанные с движением электрических зарядов, нужно соответствующим образом изменить химический состав его электродов (а частью и электролита). Это изменение химического состава электродов происходит под действием пропускаемого через аккумулятор электрического тока.

Поэтому, чтобы аккумулятор мог давать электрический ток, его предварительно нужно «зарядить» постоянным электрическим током от какого-нибудь постороннего источника тока.

От обычных гальванических элементов аккумуляторы выгодно отличаются также тем, что после разряда они опять могут быть заряжены. При хорошем уходе за ними и при нормальных условиях эксплуатации аккумуляторы выдерживают до нескольких тысяч зарядов и разрядок.
Устройство аккумулятора

В настоящее время наиболее часто на практике применяют свинцовые и кадмиево-никелевые аккумуляторы. У первых электролитом служит раствор серной кислоты, а у вторых - раствор щелочей в воде. Свинцовые аккумуляторы называют также кислотными, а кадмиево-никелевые - щелочными.

Принцип работы аккумуляторов основан на поляризации электродов . Простейший кислотный аккумулятор устроен следующим образом: это две свинцовые пластины, опущенные в электролит. В результате химической реакции замещения пластины покрываются слабым налетом сернокислого свинца PbSO4, как это следует из формулы Pb + H 2 SO 4 = PbSO 4 + Н 2 .

Устройство кислотного аккумулятора

Такое состояние пластин соответствует разряженному аккумулятору. Если теперь аккумулятор включить на заряд, т. е. подсоединить его к генератору постоянного тока, то в нем вследствие электролиза начнется поляризация пластин. В результате заряда аккумулятора его пластины поляризуются, т. е. изменяют вещество своей поверхности, и из однородных (PbSO 4) превращаются в разнородные (Pb и Рb О 2 ).

Аккумулятор становится источником тока, причем положительным электродом у него служит пластина, покрытая двуокисью свинца, а отрицательным - чистая свинцовая пластина.

К концу заряда концентрация электролита повышается вследствие появления в нем дополнительных молекул серной кислоты.

В этом одна из особенностей свинцового аккумулятора: его электролит не остается нейтральным и сам участвует в химических реакциях при работе аккумулятора.

К концу разряда обе пластины аккумулятора опять покрываются сернокислым свинцом, в результате чего аккумулятор перестает быть источником тока. До такого состояния аккумулятор никогда не доводят. Вследствие образования сернокислого свинца на пластинах, концентрация электролита в конце разряда понижается. Если аккумулятор поставить на заряд, то вновь можно вызвать поляризацию, чтобы опять поставить его на разряд и т. д.

Как зарядить аккумулятор

Существует несколько способов заряда аккумуляторов. Наиболее простой - нормальный заряд аккумулятора, который происходит следующим образом. Вначале на протяжении 5 - 6 ч заряд ведут двойным нормальным током, пока напряжение на каждой аккумуляторной банке не достигнет 2,4 В.

Нормальный зарядный ток определяют по формуле I зар = Q/16

Где Q - номинальная емкость аккумулятора, Ач.

После этого зарядный ток уменьшают до нормального значения и продолжают заряд и течение 15 - 18 ч, до появления признаков конца заряда.

Современные аккумуляторы

Кадмиево-никелевые, или щелочные аккумуляторы, появились значительно позже свинцовых и по сравнению с ними представляют собой более совершенные химические источники тока. Главное преимущество щелочных аккумуляторов перед свинцовыми заключается в химической нейтральности их электролита по отношению к активным массам пластин. Благодаря этому саморазряд у щелочных аккумуляторов получается значительно меньше, чем у свинцовых. Принцип действия щелочных аккумуляторов также основан на поляризации электродов при электролизе.

Для питания радиоаппаратуры выпускают герметичные кадмиево-никелевые аккумуляторы, которые работоспособны при температурах от -30 до +50 о С и выдерживают 400 - 600 циклов заряд-разряд. Эти аккумуляторы выполняют в форме компактных параллелепипедов и дисков с массой от нескольких граммов до килограммов.

Выпускают никель-водородные аккумуляторы для энергоснабжения автономных объектов. Удельная энергия никель-водородного аккумулятора составляет 50 - 60 Вт ч кг -1 .

Гальванический элемент — это химический источник электрического тока, в котором происходит непосредственное преобразование химической энергии в электрическую. Поэтому он является . Внешний вид наиболее распространенных элементов питания приведен на рисунке 1.


Рисунок 1. Внешний вид пальчиковых гальванических элементов

Существуют солевые (сухие), щелочные и литиевые элементы. Гальванические элементы часто называют батарейками, однако это название неверно, т.к. батареей является соединение нескольких одинаковых устройств. Например, при последовательном соединении трех гальванических элементов образуется широко используемая 4,5 вольтовая батарейка.

Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. Напряжение зависит от использованных металлов. Некоторые из этих химических источников тока приведены в таблице 1.

Тип источников тока Катод Электролит Анод Напряжение,
В
Марганцево-цинковый MnO 2 KOH Zn 1,56
Марганцево-оловянный MnO 2 KOH Sn 1,65
Марганцево-магниевый MnO 2 MgBr 2 Mg 2,00
Свинцово-цинковый PbO 2 H 2 SO 4 Zn 2,55
Свинцово-кадмиевый PbO 2 H 2 SO 4 Cd 2,42
Свинцово-хлорный PbO 2 HClO 4 Pb 1,92
Ртутно-цинковый HgO KOH Zn 1,36
Ртутно-кадмиевый HgO 2 KOH Cd 1,92
Окисно-ртутно-оловянный HgO 2 KOH Sn 1,30
Хром-цинковый K 2 Cr 2 O 7 H 2 SO 4 Zn 1,8-1,9

В продаже в основном представлены Марганцево-цинковые элементы, которые называют солевыми. Производители батареек обычно не указывают их химический состав. Это самые дешевые гальванические элементы, которые можно применять только в устройствах с низким потреблением, таких как часы, электронные термометры или пульты дистанционного управления. На рисунке 2 приведены внешний вид и внутреннее устройство солевого элемента питания.



Рисунок 2. Внешний вид и устройство "сухого" гальванического элемента

Не менее распространенным элементом питания являются щелочные марганцевые батарейки. В продаже их называют алкалиновыми, не утруждая себя переводом названия на русский язык. Внутреннее устройство алкалинового гальванического элемента показано на рисунке 2.



Рисунок 3. Внутреннее и устройство щелочного гальванического элемента

Эти химические источники тока обладают большей емкостью (2...3 A/ч) и они могут обеспечивать больший ток в течение длительного времени.Больший ток стал возможным, т.к. цинк используется не в виде стакана, а в виде порошка, обладающего большей площадью соприкосновения с электролитом. В качестве электролита применяется гидрооксид калия. Именно благодаря способности данного вида гальванических элементов в течение длительного времени отдавать значительный ток (до 1 A), наиболее распространен в настоящее время.

Еще одним достаточно распространенным видом гальванических элементов являются литиевые барарейки. Благодаря использованию щелочного металла они обладают высокой разностью потенциалов. Напряжение литиевых элементов равно 3 В. Однако на рынке представлены и 1,5 В литиевые батарейки. Эти элементы питания обладают наивысшей емкостью на единицу массы и длительным временем хранения. Применяются в основном для питания часов на материнских платах компьютеров и фототехнике. В качестве недостатка можно назвать высокую стоимость. Внешний вид литиевых батареек приведен на рисунке 4.



Рисунок 4. Внешний вид литиевых элементов питания

Следует отметить, что практически все гальванические элементы способны подзаряжаться от сетевых источников питания. Исключение составляют литиевые батарейки, которые при попытке подзаряда могут взорваться .

Для применения в различных устройствах батарейки были стандартизированы. Наиболее распространенные виды корпусов гальванических элементов приведены в таблице 2.

Для крепления батареек внутри корпуса радиоэлектронных устройств в настоящее время предлагаются готовые батарейные отсеки. Применение их позволяет значительно упростить разработку корпуса радиоэлектронного устройства и удешевить его производство. Внешний вид некоторых из них приведен на рисунке 5.



Рисунок 5. Внешний вид отсеков для крепления гальванических элементов питания

Первый вопрос, который волнует покупателей батареек — это время их работы. Оно зависит от технологии производства гальванического элемента. График типовой зависимости выходного напряжения от технологии производства элемента питания приведен на рисунке 5.



Рисунок 6. График времени работы элемента питания в зависимости от технологии производства при токе разряда 1 А

Результаты тестов батареек различных фирм, проведенные на сайте http://www.batteryshowdown.com/ приведены на рисунке 7.



Рисунок 7. График времени работы батареек различных фирм при токе разряда 1 А

И, наконец, давайте сделаем выводы где какой тип батареек имеет смыст применять, так как при приобретении батареек мы всегда стараемся получить максимум полезного эффекта при минимуме затрат.

  1. Не стоит покупать батарейки в киосках или на рынке. Обычно они там достаточно долго лежат и поэтому за счет саморазряда практически теряют свою емкость. Это может быть даже опасно для аппаратуры, т.к. при использовании дешевых гальванических элементов (батареек) из них может протечь электролит. Это приведет к выходу аппаратуры из строя! Покупать лучше в магазинах с хорошим оборотом товара.
  2. щелочные (алкалиновые) батарейки следует применять в устройствах, потребляющих достаточно большой ток, таких как фонарики, плееры или фотоаппараты. В малопотребляющих устройствах их срок работы не отличается от солевых батареек.
  3. Солевые («обычные», угольно-цинковые гальванические элементы), будут отлично работать в часах, ИК пультах и прочих устройствах, рассчитанных на работу от одного комплекта батарей в течении года и более. При этом они не могут работать на морозе.
  4. Самые экономически выгодные батарейки на сегодня — пальчиковые АА. Как мизинчиковые (АAА), так и большие (R20), при одной и той же емкости стоят дороже. Ёмкость современных батареек R20 почти такая же как и пальчиковых батареек АА, и это при в три раза больших размерах!
  5. Не стоит обращать внимание на раскрученные бренды. Гальванические элементы фирм Duracell и Energizer стоят в полтора-два раза дороже батареек остальных фирм и при этом работают примерно столько-же

В электротехнике с давних пор используются различные гальванические элементы. Можно сказать, что именно они стояли у истоков научных исследований такого явления, как электричество. Чтобы разобраться в природе электрического тока, необходимо, прежде всего, уяснить, что такое гальванический элемент.

Характеристики

Каждый гальванический элемент является химическим источником тока. Вырабатывание электрической энергии здесь происходит в результате окислительно-восстановительных реакций. Получается прямое преобразование химической энергии в электрический ток.

Стандартный гальванический элемент включает в себя разнородные электроды, в одном из которых содержится окислитель, а в другом - восстановитель. В процессе реакции, оба они вступают в контакт с электролитом. По сроку действия, элементы могут быть одноразовыми, многоразовыми и непрерывного действия. Наибольшее распространение получила обыкновенная электрическая , использующаяся во множестве современных устройств.

Принцип работы

В состав элемента входят два металлических электрода, разнородных по своим физическим свойствам. Как правило, они размещаются в электролите, представляющем собой вязкую или жидкую среду. Когда электроды соединяются с помощью внешней электрической цепи, начинается течение химической реакции. В это время начинается движение электронов от одного электрода к другому, благодаря чему и появляется электрический .

Отрицательный полюс элемента состоит из электрода, теряющего свои электроны, его материалов служат литий или цинк. В процессе реакции, он исполняет роль восстановителя. Соответственно, другой электрод является окислителем и выполняет функцию положительного полюса. Материалом для него служат окислы магния, реже применяется ртуть или соли металлов.

Сам электролит, где находятся электроды, является веществом, не способным в обычных условиях пропускать электрический ток. Когда электрическая цепь становится замкнутой, начинается распад вещества на ионы, благодаря чему появляется электропроводность. Материалами для электролитов, чаще всего, служат растворенные или расплавленные кислоты, а также соли калия и натрия.

Вся конструкция гальванического элемента размещается в металлической емкости. Электроды выполнены в виде металлических сеточек, куда напыляется окислитель и восстановитель. Со временем, электрохимические реакции становятся слабыми, поскольку запасы окислительных и восстановительных материалов постепенно уменьшаются.

1. Гальванический элемент

Гальванический элемент - химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. ЭДС гальванического элемента зависит от материала электродов и состава электролита. Это первичные ХИТ, которые из-за необратимости протекающих в них реакций, невозможно перезарядить.

Гальванические элементы являются источниками электрической энергии одноразового действия. Реагенты (окислитель и восстановитель) входят непосредственно в состав гальванического элемента и расходуются в процессе его работы. Гальванический элемент характеризуется ЭДС, напряжением, мощностью, емкостью и энергией, отдаваемой во внешнюю цепь, а также сохраняемостью и экологической безопасностью.

ЭДС определяется природой протекающих в гальваническом элементе процессов. Напряжение гальванического элемента U всегда меньше его ЭДС в силу поляризации электродов и потерь сопротивления:

U = Eэ – I(r1–r2) – ΔE,

где Еэ – ЭДС элемента; I – сила тока в режиме работы элемента; r1 и r2 – сопротивление проводников I и II рода внутри гальванического элемента; ΔЕ – поляризация гальванического элемента, складывающаяся из поляризаций его электродов (анода и катода). Поляризация возрастает с увеличением плотности тока (i), определяемой по формуле i = I/S, где S – площадь поперечного сечения электрода, и ростом сопротивления системы.

В процессе работы гальванического элемента его ЭДС и, соответственно, напряжение постепенно снижаются в связи с уменьшением концентрации реагентов и увеличением концентрации продуктов окислительно-восстановительных процессов на электродах (вспомним уравнение Нернста). Однако чем медленнее снижается напряжение при разряде гальванического элемента, тем больше возможностей его применения на практике. Емкостью элемента называют общее количество электричества Q, которое гальванический элемент способен отдать в процессе работы (при разрядке). Емкость определяется массой запасенных в гальваническом элементе реагентов и степенью их превращения. При увеличении тока разряда и снижении температуры работы элемента, особенно ниже 00С, степень превращения реагентов и емкость элемента снижаются.

Энергия гальванического элемента равна произведению его емкости на напряжение: ΔН = Q.U. Наибольшей энергией обладают элементы с большим значением ЭДС, малой массой и высокой степенью превращения реагентов.

Сохраняемостью называют продолжительность срока хранения элемента, в течение которого его характеристики остаются в заданных параметрах. С ростом температуры хранения и эксплуатации элемента, его сохраняемость уменьшается.

Состав гальванического элемента: восстановителями (анодами) в портативных гальванических элементах, как правило, служат цинк Zn, литий Li, магний Mg; окислителями (катодами) – оксиды марганца MnO2, меди CuO, серебра Ag2O, серы SO2, а также соли CuCl2, PbCl2, FeS и кислород О2.

Самым массовым в мире остается производство марганец–цинковых элементов Mn–Zn, широко применяемых для питания радиоаппаратуры, аппаратов связи, магнитофонов, карманных фонариков и т.п. Конструкция такого гальванического элемента представлена на рисунке

Токообразующими реакциями в этом элементе являются:

На аноде (–): Zn – 2ē → Zn2+ (на практике происходит постепенное растворение цинковой оболочки корпуса элемента);

На катоде (+): 2MnO2 + 2NH4+ + 2ē → Mn2O3 + 2NH3 + H2O.

В электролитическом пространстве также идут процессы:

У анода Zn2+ + 2NH3 →2+;

У катода Mn2O3 + H2O → или 2.

В молекулярном виде химическую сторону работы гальванического элемента можно представить суммарной реакцией:

Zn + 2MnO2 + 2NH4Cl → Cl2 + 2.

Схема гальванического элемента:

(–) Zn|Zn(NH3)2]2+|||MnO2 (С) (+).

ЭДС такой системы составляет Е= 1,25 ÷ 1,50В.

Гальванические элементы с подобным составом реагентов в щелочном электролите (КОН) имеют лучшие выходные характеристики, но они неприменимы в портативных устройствах в силу экологической опасности. Еще более выгодными характеристиками обладают серебряно-цинковые элементы Ag-Zn, но они чрезвычайно дороги, а значит, экономически неэффективны. В настоящее время известно более 40 различных типов портативных гальванических элементов, называемых в быту «сухими батарейками».

2. Электрические аккумуляторы

Электрические аккумуляторы (вторичные ХИТ)- перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить.

Аккумуляторы – это устройства, в которых под воздействием внешнего источника тока в системе накапливается (аккумулируется) химическая энергия (процесс зарядки аккумулятора), а затем при работе устройства (разрядка) химическая энергия снова превращается в электрическую. Таким образом, при зарядке аккумулятор работает как электролизер, а при разрядке – как гальванический элемент.

В упрощенном виде аккумулятор представляет собой два электрода (анод и катод) и ионный проводник между ними – электролит. На аноде как при разряде, так и при заряде протекают ре6акции окисления, а на катоде – реакции восстановления.

До последнего времени по-прежнему наиболее распространенными в России, да и в Приднестровье, остаются кислотные свинцовые и щелочные никель-кадмиевые и никель-железные аккумуляторы.


Электроды в нем представляют собой свинцовые решетки, из которых одна заполняется в порах порошком оксида свинца IV – PbO2. Электроды соединены с электролитом через пористый сепаратор. Всеь аккумулятор помещается в бак из эбонита или полипропилена.

При работе такого устройства в нем происходят следующие электродные процессы:

А). Разрядка или работа аккумулятора как источника электрической энергии.

На аноде: (–) Pb – 2ē → Pb2+;

на катоде: (+) PbO2 + 4H+ + 2ē → Pb2+ + 2H2O.

Образующиеся на электродах катионы свинца взаимодействуют с анионами электролита с выделением белого осадка сульфата свинца

Pb2+ + SO42– = ↓PbSO4.

Суммарная токообразующая реакция процесса разрядки аккумулятора:

Pb + PbO2 + 2H2SO4 = 2PbSO4↓ + 2H2O,


а схема работающего аккумулятора как гальванического элемента имеет вид (–) Pb|PbSO4||PbO2 (+).

Напряжение на клеммах работающего аккумулятора достигает величины 2,0÷2,5В. В процессе эксплуатации устройства электролит расходуется, а в системе накапливается осадок. Когда концентрация активных ионов водорода [Н+] становится критической для реакции на катоде, аккумулятор прекращает свою работу.

Б). Зарядка или восстановление химического потенциала аккумулятора для последующего его преобразования в электрическую энергию. Для этого аккумулятор подсоединяют к внешнему источнику тока таким образом, что к клемме «анод» подается отрицательный полюс, а к клемме «катод» - положительный. В этом случае на электродах под действием внешнего напряжения возникают обратные процессы, восстанавливающие их до первоначального состояния.

Металлический свинец восстанавливает поверхность электрода (–): PbSO4 + 2ē → Pb + SO42;

Образующийся оксид свинца IV заполняет поры свинцовой решетки (+): PbSO4 + 2H2O – 2ē → ↓PbO2 + 4H+ + SO42.

Суммарная восстановительная реакция: 2PbSO4 + 2H2O = Pb + PbO2 +2H2SO4.

Определить момент окончания процесса зарядки аккумулятора можно по появлению пузырьков газа над его клеммами («кипение»). Это связано с возникновением побочных процессов восстановления катионов водорода и окисления воды с ростом напряжения при восстановлении электролита:

2Н+ + 2ē → Н2; 2Н2О – 4ē → О2 + 2Н2.

Коэффициент полезного действия аккумулятора достигает 80% и рабочее напряжение длительное время сохраняет свое значение.

ЭДС аккумулятора может быть рассчитана по уравнению:


RT α4(H+)·α2(SO42–)

EЭ = EЭ0 + –––– ℓn –––––––––––––– (твердые фазы в Сравн. не

2F α2(H2O) учитываются).

Надо заметить, что в аккумуляторе нельзя использовать концентрированную серную кислоту (ω(H2SO4) > 30%), т.к. при этом уменьшается ее электрическая проводимость и увеличивается растворимость металлического свинца. Свинцовые аккумуляторы широко используются в автомобильном транспорте всех типов, на телефонных и электрических станциях. Однако из-за высокой токсичности свинца и его продуктов, свинцовые аккумуляторы требуют герметичной упаковки и полной автоматизации процессов их эксплуатации.

А) В щелочных аккумуляторах положительный электрод изготавливается из никелевой решетки, пропитанной гелеобразным гидрооксидом никеля II Ni(OH)2; а отрицательный – из кадмия или железа. Ионным проводником служит 20%-ый раствор гидрооксида калия КОН. Суммарные токообразующие и генерирующие реакции в таких аккумуляторах имеют вид:

2NiOOH + Cd + 2H2O ◄====== 2Ni(OH)2 + Cd(OH)2; ЕЭ0 = 1,45В.

2NiOOH + Fe + 2H2O ◄====== 2Ni(OH)2 + Fe(OH)2; ЕЭ0 = 1,48В.

К достоинствам этих аккумуляторов относят большой срок их службы (до 10 лет) и высокую механическую прочность, а к недостаткам – невысокие КПД и рабочее напряжение. Щелочные аккумуляторы используются для питания электрокар, погрузчиков, рудничных электровозов, аппаратуры связи и электронной аппаратуры, радиоприемников. Вспомним также, что кадмий является высокотоксичным металлом, что требует соблюдения правил безопасности при утилизации отработанных устройств.

ЭДС и тока. Необходимо помнить, что в батарею должны соединятся элементы с одинаковыми характеристиками. План работы Начертить схемы замещения: Схемы включения реостата Схемы включения потенциометра Схемы соединения гальванических элементов. Вывод Из построенных схем и условий каждая цепь имеет своё значение ЭДС на каждой схеме она определяется по разному. Ответы на...

Развития гальванотехники в XIX – XX вв. в значительной степени остаётся открытым. Представляется, что его можно решить на основании реконструкции процесса создания гальванического производства; прослеживания, каким областям науки и техники, их конкретным достижениям обязано оно своим становлением; рассмотрения социально-экономических предпосылок возникновения и становления гальванотехники. ...

Тока ниже, чем в гальваностегии; в железных гальванопластических ваннах она не превышает 10-30 а/м2, в то время как при железнении (гальваностегия) плотность тока достигает 2000-4000 а/м2. Гальванические покрытия должны иметь мелкокристаллическую структуру и равномерную толщину на различных участках покрываемых изделий - выступах и углублениях. Это требование имеет в гальваностегии особенно важное...

Последние материалы раздела:

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...