Уравнение плоскости. Как составить уравнение плоскости? Взаимное расположение плоскостей

Глава V*. Уравнения прямых и плокостей в пространстве.

§64. Общее уравнение плоскости

Рассмотрим в пространстве произвольную плоскость. Пусть M 0 (х 0 ; у 0 , z 0) - некоторая точка этой плоскости, а п = (А; В; С) - какой-либо ее нормальный вектор. В предыдущем параграфе доказано, что уравнение этой плоскости имеет вид

А(х - х 0) + В (у - у 0) + С (z - z 0) = 0.

Запишем его так:

Ах + By + Cz - Aх 0 - By 0 - Cz 0 = 0.

Обозначив число - Aх 0 - By 0 - Cz 0 через D, получим уравнение

Ах + By + Cz + D = 0. (1)

Таким образом, каждая плоскость в пространстве может быть задана уравнением (1), т. е. линейным уравнением с тремя переменными.

Справедливо и обратное утверждение: всякое линейное уравнение с тремя переменными, т. е. всякое уравнение вида (1), определяет плоскость.

В самом деле, в уравнении (1) по крайней мере один из коэффициентов А, В, С не равен нулю, иначе уравнение (1) не является линейным. Пусть, например, С =/= 0, тогда уравнение можно переписать следующим образом:

А (х - 0) + В(у -0) + С (z + D / C) = 0.

Согласно предыдущему параграфу полученное уравнение, а следовательно, и уравнение (1) определяют плоскость, проходящую через точку M 0 (0; 0; - D / C) перпендикулярно вектору п(А; В; С).

Уравнение (1) называется общим уравнением плоскости .

Подчеркнем, что в этом уравнении коэффициенты А, В, С являются координатами нормального вектора плоскости.

Например, если плоскость задана уравнением 3х + 4y - 5z + 17 = 0, то сразу можно сказать, что она перпендикулярна вектору (3; 4; -5).

Задача. Найти единичный нормальный вектор плоскости

7х + 4у - 4z + 1 = 0.

В качестве нормального вектора данной плоскости можно взять вектор п = (7; 4; -4). Найдем его длину: | п | = √49 + 16 + 16 = 9. Следовательно, единичным нормальным вектором является вектор (7 / 9 ; 4 / 9 ;- 4 / 9). Вектор, ему противоположный (- 7 / 9 ;- 4 / 9 ;- 4 / 9), также, очевидно, будет нормальным единичным вектором данной плоскости.

Рассмотрим, как располагается плоскость относительно системы координат в зависимости от значений А, В, С, D в общем уравнении плоскости.

а) Если в уравнении (1) А = 0, т. е. если это уравнение имеет вид By + Cz + D = 0, то нормальный вектор имеет координаты (0; В; С). Вектор с такими координатами перпендикулярен оси Ох , следовательно, плоскость параллельна этой оси. Если не только А = 0, но и D = 0, т. е. если уравнение имеет вид By + Cz = 0, то плоскость проходит через начало координат. Поэтому в случае А = D = 0 плоскость проходит через ось Ох , Аналогично рассматриваются случаи, когда В = 0 (плоскость параллельна оси ординат) или С = 0 (плоскость параллельна оси апликат).

б) Если в уравнении (1) А = 0 и В = 0, т. е. если уравнение имеет вид Cz + D = 0, то нормальный вектор имеет координаты (0; 0; С). Вектор с такими координатами перпендикулярен плоскости хОу , следовательно, в этом случае плоскость (1) параллельна координатной плоскости хОу . Если не только А = В = 0, но и D = 0, т. е. если уравнение имеет вид Cz = 0, то плоскость не только параллельна координатной плоскости хОу , но и проходит через начало координат. Поэтому в случае А = В = D = 0 уравнением (1) задается координатная плоскость хОу .

Аналогично рассматриваются случаи, когда какая-нибудь другая пара коэффициентов при переменных х, у, z в уравнении (1) равна нулю.

в) Если в уравнении (1) D = 0, т. е. если уравнение имеет вид Ах + By + Cz = 0, то плоскость проходит через начало координат перпендикулярно вектору (А; В; С).

г) Если в уравнении (1) все коэффициенты при переменных и свободный член отличны от нуля, то оно может быть преобразовано в уравнение плоскости в отрезках:

В этом случае плоскость пересекает координатные оси в точках:
(- D / A ; 0; 0), (0;- D / B ; 0), (0; 0; - D / C). По этим трем точкам плоскость легко построить.

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости α 1 и α 2 , заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α 1 и α 2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

.

Пример. Определить угол между плоскостями x +2y -3z +4=0 и 2x +3y +z +8=0.

Условие параллельности двух плоскостей.

Две плоскости α 1 и α 2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

или

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Примеры.

ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М 1 (x 1 , y 1 , z 1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t , что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М , лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x , y и z и точка М перемещается по прямой.


КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М 1 (x 1 , y 1 , z 1) – точка, лежащая на прямой l , и – её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор .

Ясно, что векторы и коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t . Действительно, из параметрических уравнений получаем или .

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюда x = 2 + 3t , y = –1 + 2t , z = 1 –t .

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox . Тогда направляющий вектор прямой перпендикулярен Ox , следовательно, m =0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t , получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осям Ox и Oy или параллельная оси Oz .

Примеры.

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагая z = 0:

Решив эту систему, найдем точку M 1 (1;2;0).

Аналогично, полагая y = 0, получим точку пересечения прямой с плоскостью xOz :

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М 1 на прямой и направляющий вектор прямой.

Координаты точки М 1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y = 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l : .


УГОЛ МЕЖДУ ПРЯМЫМИ

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим

В декартовых координатах каждая плоскость определяется уравнением первой степени относительно неизвестных х, у и z и каждое уравнение первой степени с тремя неизвестными определяет плоскость.

Возьмем произвольный вектор с началом в точке . Выведем уравнение геометрического места точек М(x,y,z), для каждой из которых вектор перпендикулярен вектору . Запишем условие перпендикулярности векторов:

Полученное уравнение линейное относительно x, y, z, следовательно, оно определяет плоскость, проходящую через точку перпендикулярно вектору . Вектор называют нормальным вектором плоскости. Раскрывая скобки в полученном уравнении плоскости и обозначая число
буквой D, представим его в виде:

Ax + By + Cz + D = 0. (13.2)

Это уравнение называют общим уравнением плоскости . А, В, С и D – коэффициенты уравнения, А 2 + В 2 + С 2 0.

1. Неполные уравнения плоскости.

Если в общем уравнении плоскости один, два или три коэффициента равны нулю, то уравнение плоскости называют неполным. Могут представиться следующие случаи:

1) D = 0 – плоскость проходит через начало координат;

2) А = 0 – плоскость параллельна оси Ох;

3) В = 0 – плоскость параллельна оси Оу;

4) С = 0 – плоскость параллельна оси Оz;

5) А = В = 0 – плоскость параллельна плоскости ХОY;

6) А = С = 0 – плоскость параллельна плоскости ХОZ;

7) В = С = 0 – плоскость параллельна плоскости YOZ;

8) А = D = 0 – плоскость проходит через ось Ох;

9) В = D = 0 – плоскость проходит через ось Оу;

10) С = D = 0 – плоскость проходит через ось Оz;

11) А = В = D = 0 – плоскость совпадает с плоскостью XOY;

12) А = С = D = 0 – плоскость совпадает с плоскостью XOZ;

13) С = В = D = 0 – плоскость совпадает с плоскостью YOZ.

2. Уравнение плоскости в отрезках.

Если в общем уравнении плоскости D 0, то его можно преобразовать к виду

, (13.3)

которое называют уравнением плоскости в отрезках. - определяют длины отрезков, отсекаемых плоскостью на координатных осях.

3. Нормальное уравнение плоскости.

Уравнение

где - направляющие косинусы нормального вектора плоскости , называют нормальным уравнением плоскости. Для приведения общего уравнение плоскости к нормальному виду его надо умножить на нормирующий множитель :
,

при этом знак перед корнем выбирают из условия .

Расстояние d от точки до плоскости определяют по формуле: .

4. Уравнение плоскости, проходящей через три точки

Возьмем произвольную точку плоскости М(x,y,z) и соединим точку М 1 с каждой из трех оставшихся. Получим три вектора . Для того, чтобы три вектора принадлежали одной плоскости, необходимо и достаточно, чтобы они были компланарны. Условием компланарности трех векторов служит равенство нулю их смешанного произведения, то есть .


Записывая это равенство через координаты точек, получим искомое уравнение:

. (13.5)

5. Угол между плоскостями.

Плоскости могут быть параллельны, совпадать или пересекаться, образуя двугранный угол . Пусть две плоскости заданы общими уравнениями и . Чтобы плоскости совпадали, нужно, чтобы координаты любой точки, удовлетворяющей первому уравнению, удовлетворяли бы и второму уравнению.

Это будет иметь место, если
.

Если , то плоскости параллельны.

Угол , образованный двумя пересекающимися плоскостями, равен углу, образованному их нормальными векторами. Косинус угла между векторами определяется по формуле:

Если , то плоскости перпендикулярны.

Пример 21 . Составить уравнение плоскости, которая проходит через две точки и перпендикулярно к плоскости .

Запишем искомое уравнение в общем виде: . Так как плоскость должна проходить через точки и , то координаты точек должны удовлетворять уравнению плоскости. Подставляя координаты точек и , получаем: и .

Из условия перпендикулярности плоскостей имеем: . Вектор расположен в искомой плоскости и, следовательно, перпендикулярен нормальному вектору: .

Лекция 9.

Аналитическая геометрия в пространстве.

Общее уравнение плоскости.

Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

где А, В, С – координаты вектора -вектор нормали к плоскости.

Возможны следующие частные случаи:

А = 0 – плоскость параллельна оси Ох

В = 0 – плоскость параллельна оси Оу

С = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

А = В = 0 – плоскость параллельна плоскости хОу

А = С = 0 – плоскость параллельна плоскости хОz

В = С = 0 – плоскость параллельна плоскости yOz

А = D = 0 – плоскость проходит через ось Ох

В = D = 0 – плоскость проходит через ось Оу

С = D = 0 – плоскость проходит через ось Oz

А = В = D = 0 – плоскость совпадает с плоскостью хОу

А = С = D = 0 – плоскость совпадает с плоскостью xOz

В = С = D = 0 – плоскость совпадает с плоскостью yOz

Уравнение плоскости, проходящей через три точки.

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М 1 (x 1 , y 1 , z 1), M 2 (x 2 , y 2 , z 2), M 3 (x 3 , y 3 , z 3) в декартовой системе координат.

Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М 1 , М 2 , М 3 необходимо, чтобы векторы
были компланарны т.е. их смешанное произведение:

(
) = 0

Таким образом,

Уравнение плоскости, проходящей через три точки:

Уравнение плоскости проходящей через две точки параллельно вектору.

Пусть заданы точки М 1 (x 1 , y 1 , z 1), M 2 (x 2 , y 2 , z 2) и вектор
.

Составим уравнение плоскости, проходящей через данные точки М 1 и М 2 и произвольную точку М(х, у, z) параллельно вектору .

Векторы
и вектор
должны быть компланарны, т.е.

(
) = 0

Уравнение плоскости:

Уравнение плоскости проходящей через точку параллельно двум векторам.

Пусть заданы два вектора
и
, коллинеарные плоскости и точка М 1 (х 1 , у 1 , z 1). Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы
должны быть компланарны.

Уравнение плоскости:

Уравнение плоскости проходящей через точку перпендикулярной вектору.

Теорема. Если в пространстве задана точка М 0 (х 0 , у 0 , z 0), то уравнение плоскости, проходящей через точку М 0 перпендикулярно вектору нормали (A, B, C) имеет вид:

A (x x 0 ) + B (y y 0 ) + C (z z 0 ) = 0.

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору
. Тогда скалярное произведение

= 0

Таким образом, получаем уравнение плоскости

Теорема доказана.

Уравнение плоскости в отрезках.

Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на -D

,

заменив
, получим уравнение плоскости в отрезках:

Числа a, b, c отрезки отсекаемые плоскостью при пересечении соответственно осей х, у, z декартовой прямоугольной системы координат.

Уравнение плоскости в векторной форме.

где

- радиус- вектор текущей точки М(х, у, z),

Единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат.

,  и  - углы, образованные этим вектором с осями х, у, z.

p – длина этого перпендикуляра.

В координатах это уравнение имеет вид:

xcos + ycos + zcos - p = 0.

Параметрическое уравнение плоскости

Пусть в пространстве задана точка М 0 (х 0 , у 0 , z 0) и два неколлинеарных вектора

(p 1 , p 2 , p 3) и (q 1 , q 2 , q 3). Пусть М(х, у, z) текущая точка плоскости. Так как векторы инеколлинеарны, то они на плоскости составляют базис, по которому разложим вектор
=t+s, где t,s – параметры. Поместим произвольно на плоскость декартову прямоугольную систему координат так, что бы оси Ох и Оу лежали в плоскости. Из центра О проведем в точки М 0 и M радиусы векторы и. Тогда
=-и

=+t+s .

Это параметрическое уравнение плоскости в векторной форме, а в скалярной форме

x=x 0 +p 1 t + q 1 s

y=y 0 +p 2 t + q 2 s

z=z 0 +p 3 t + q 3 s

Расстояние от точки до плоскости.

Расстояние от произвольной точки М 0 (х 0 , у 0 , z 0) до плоскости Ах+Ву+Сz+D=0 равно:

Пример. Найти уравнение плоскости, зная, что точка Р(4; -3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Таким образом, A = 4/13; B = -3/13; C = 12/13, воспользуемся формулой:

A(x – x 0 ) + B(y – y 0 ) + C(z – z 0 ) = 0.

Пример . Найти уравнение плоскости, проходящей через две точки

P(2; 0; -1) и Q(1; -1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.

Вектор нормали к плоскости 3х + 2у – z + 5 = 0
параллелен искомой плоскости.

Получаем:

Пример . Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и

В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0.

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор
(1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали(1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 112 + 71 - 24 + D = 0; D = -21.

Итак, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.

Пример . Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Находим координаты вектора нормали
= (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

Итак, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0

Пример . Даны координаты вершин пирамиды

А 1 (1; 0; 3), A 2 (2; -1; 3), A 3 (2; 1; 1), A 4 (1; 2; 5).

    Найти длину ребра А 1 А 2 .

    Найти угол между ребрами А 1 А 2 и А 1 А 4 .

Найти угол между ребром А 1 А 4 и гранью А 1 А 2 А 3 .

Сначала найдем вектор нормали к грани А 1 А 2 А 3 -как векторное произведение векторов
и
.

= (2-1; 1-0; 1-3) = (1; 1; -2);

Найдем угол между вектором нормали и вектором
.

-4 – 4 = -8.

Искомый угол  между вектором и плоскостью будет равен  = 90 0 - .

    Найти площадь грани А 1 А 2 А 3 .

    Найти объем пирамиды.

    Найти уравнение плоскости А 1 А 2 А 3 .

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

2x + 2y + 2z – 8 = 0

Последние материалы раздела:

Все, что нужно знать о бактериях
Все, что нужно знать о бактериях

Бактерии представляют собой одноклеточные безъядерные микроорганизмы, относящиеся к классу прокариотов. На сегодняшний день существует более 10...

Кислотные свойства аминокислот
Кислотные свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.Химические свойства аминокислотВ зависимости от соединений,...

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...