Температура в космосе на солнечной стороне. Температура в космосе

1 апреля 2014 в 06:33

Факты о космосе, в которые трудно поверить

  • Фототехника ,
  • Космонавтика ,
  • Физика

1 апреля принято всех обманывать или подшучивать, но я пойду против традиции. Даже в этот день я не могу позволить себе обман читателей. Поэтому расскажу о реальных фактах, которые вызвали мое удивление. Разумеется, для кого-то эти факты не станут новостью, но, надеюсь, хоть что-то сможет заинтересовать каждого. И еще надеюсь, что многие, подобно мне, и вопреки заветам Шерлока Холмса, тащат в свой мозговой чердак не только нужное, но и просто интересное. Буду рад, если эта первоапрельская подборка заставит кого-нибудь забраться поглубже в источники и перепроверить мои заявления.

Температура в космосе, на орбите Земли равна +4°С


Если быть точным, то не на орбите Земли, а на расстоянии от Солнца равному удаленности орбиты Земли. И для абсолютно черного тела, т.е. такого, которое полностью поглотит солнечные лучи, ничего не отразив обратно.

Считается, что температура в космосе стремится к абсолютному нулю. Во-первых, это не совсем так, поскольку вся известная Вселенная нагрета до 3 К, реликтовым излучением. Во-вторых, вблизи от звезд температура повышается. А мы обитаем довольно близко к Солнцу. Сильная теплозащита нужна скафандрам и космическим кораблям потому, что они входят в тень Земли, и наше светило уже не может их согревать до указанного +4°С. В тени температура может опускаться до -160° С, например ночью на Луне. Это холодно, но до абсолютного нуля еще далеко.

Вот, для примера, показания бортового термометра спутника TechEdSat , который вращался на низкой околоземной орбите:

На него оказывала влияние еще и земная атмосфера, но в целом график демонстрирует не те ужасные условия, которые принято представлять в космосе.

На Венере местами идет свинцовый снег

Это, наверно, самый поразительный факт о космосе, который я узнал не так давно. Условия на Венере настолько отличаются от всего, что мы могли бы вообразить, что венериане спокойно могли бы летать в земной ад, чтобы отдохнуть в мягком климате и комфортных условиях. Поэтому, как бы ни казалась фантастической фраза “свинцовый снег”, для Венеры - это реальность.

Благодаря радару американского зонда Magellan вначале 90-х, ученые обнаружили на вершинах венерианских гор некое покрытие, обладающее высокой отражающей способностью в радиодиапазоне. Поначалу предполагалось несколько версий: последствие эрозии, отложение железосодержащих материалов и т.п. Позже, после нескольких экспериментов на Земле, пришли к выводу , что это самый натуральный металлический снег, состоящий из сульфидов висмута и свинца. В газообразном состоянии они выбрасываются в атмосферу планеты во время извержений вулканов. Затем термодинамические условия на высоте 2600 м способствуют конденсации соединений и выпадению на возвышенностях.

В Солнечной системе 13 планет… или больше

Когда Плутон разжаловали из планет, правилом хорошего тона стало знание, что в Солнечной системе всего восемь планет. Правда, при этом же, ввели новую категорию небесных тел - карликовые планеты. Это “недопланеты”, которые имеют округлую (или близкую к ней) форму, не являются ничьими спутниками, но, при этом не могут очистить собственную орбиту от менее массивных конкурентов. Сегодня считается, что таких планет пять: Церера, Плутон, Ханумеа, Эрида и Макемаке. Ближайшая к нам - Церера. Через год мы узнаем о ней намного больше чем сейчас, благодаря зонду Dawn. Пока знаем только, что она покрыта льдом и с двух точек на поверхности у нее испаряется вода со скоростью 6 литров в секунду. О Плутоне тоже узнаем в следующем году, благодаря станции New Horizons. Вообще, как 2014 год в космонавтике станет годом комет, 2015 год обещает стать годом карликовых планет.

Остальные карликовые планеты находятся за Плутоном, и какие-либо подробности о них мы узнаем не скоро. Буквально на днях нашли еще одного кандидата, правда официально его в список карликовых планет не включили, так же как и его соседку Седну. Но не исключено, что найдут еще, несколько более крупных карликов, поэтому число планет в Солнечной системе еще вырастет.

Телескоп Hubble - не самый мощный

Благодаря колоссальному объему снимков и впечатляющим открытиям, совершенным телескопом Hubble, у многих существует представление, что этот телескоп обладает самым высоким разрешением и способен увидеть такие детали, которые не увидеть с Земли. Какое-то время так и было: несмотря на то, что на Земле можно собрать большие зеркала на телескопах, существенное искажение в изображения вносит атмосфера. Поэтому даже “скромное” по земным меркам зеркало диаметром 2,4 метра в космосе, позволяет добиться впечатляющих результатов.

Однако, за годы, прошедшие с момента запуска Hubble и земная астрономия не стояла на месте, было отработано несколько технологий, позволяющих, если не полностью избавиться от искажающего действия воздуха, то существенно снизить его воздействие. Сегодня самое впечатляющее разрешение способен дать Very Large Telescope Европейской Южной обсерватории в Чили. В режиме оптического интерферометра, когда вместе работают четыре основных и четыре вспомогательных телескопа, возможно достичь разрешающей способности превышающей возможности Hubble примерно в пятьдесят раз.

К примеру, если Hubble дает разрешение на Луне около 100 метров на пиксель (привет всем, кто думает, что так можно рассмотреть посадочные аппараты Apollo), то VLT может различить детали до 2 метров. Т.е. в его разрешении американские спускаемые аппараты или наши луноходы выглядели бы как 1-2 пикселя (но смотреть не будут из-за чрезвычайно высокой стоимости рабочего времени).

Пара телескопов обсерватории Keck, в режиме интерферометра, способны превысить разрешение Hubble в десять раз. Даже по отдельности, каждый из десятиметровых телескопов Keck, используя технологию адаптивной оптики, способны превзойти Hubble примено в два раза. Для примера фото Урана:

Впрочем Hubble без работы не остается, небо большое, а широта охвата камеры космического телескопа превышает наземные возможности. А для наглядности можно посмотреть сложноватый, но информативный

Человечество относится к космосу, как к чему-то неизведанному и таинственному. Космическое пространство — это пустота, существующая между небесными телами. Атмосферы твердых и газообразных небесных тел ( и планеты) не имеют фиксированного верхнего предела, но постепенно становятся тоньше по мере увеличения расстояния до небесного тела. На определенной высоте это называется началом пространства. Какая температура в космосе, и прочие сведения будут рассказаны в этой статье.

Вконтакте

Общее понятие

В космическом пространстве существует высокий вакуум с низкой плотностью частиц. Воздух в космосе отсутствует. Из чего состоит космос? Это не пустое пространство, оно содержит:

Абсолютный вакуум, или почти полный, делает пространство прозрачным, и позволяет наблюдать чрезвычайно удаленные объекты, такие как другие галактики. Но туман межзвездной материи также может серьезно затруднить представление о них.

Важно! Понятие пространства не следует отождествлять со Вселенной, которая включает в себя все космические объекты, даже звезды и планеты.

Поездки или перевозки в космическом пространстве или через него, называются космическими поездками.

Где начинается космос

Нельзя точно сказать с какой высоты начинается космическое пространство. Международная авиационная федерация определяет край пространства на высоте 100 км над уровнем моря, линия Кармана.

Нужно, чтобы летательный аппарат двигался с первой космической скоростью, тогда будет достигнута подъемная сила. ВВС США определили высоту в 50 миль (около 80 км), как начало пространства.

Обе высоты предложены в качестве пределов верхних слоёв . На международном уровне определения края пространства не существует.

Линия Кармана Венеры расположена примерно в 250 км высоты, Марса — около 80 километров. У небесных тел, которые не имеют, или почти не имеют никакой атмосферы, такие как Меркурий, Луна Земли или астероид, пространство начинается прямо на поверхности тела.

При повторном входе космического аппарата в атмосферу определяют высоту атмосферы для расчета траектории так, чтобы к точке повторного входа ее влияния было минимальным. Как правило, повторно начальный уровень, равен или выше, чем линия Карманы. НАСА использует значение 400000 футов (около 122 км).

Какое давление и температура в космосе

Абсолютный вакуум недостижим даже в космосе. Так как найдётся несколько атомов водорода на определённый объем. При этом, величины космического вакуума недостаточно, чтобы человек лопнул, как воздушный шарик, который перекачали. Не произойдет это той простой причине, что наше тело достаточно прочное, чтобы удержать свою форму, но это его всё равно не спасёт организм от смерти.

И дело тут не в прочности. И даже не в крови, хоть в ней есть примерно 50% воды, она находится в закрытой системе под давлением. Максимум – вскипит слюна, слёзы, и жидкости, что смачивают альвеолы в лёгких. Грубо говоря, человек погибнет от удушья. Даже на относительно малых высотах в атмосфере условия враждебны человеческому телу.

Ученый ведут спор : полный вакуум или нет в космосе, но все-таки склоняются ко мнению, полное значение недостижимо за счет молекул водорода.

Высота, в которой атмосферное давление соответствует давлению паров воды при температуре человеческого тела, н азывается линией Армстронга . Она расположена на высоте около 19.14 км. В 1966 году астронавт испытывал скафандр и был подвержен декомпрессии на высоте 36500 метров. За 14 секунд он отключился, но не взорвался, а выжил.

Максимальные и минимальные значения

Исходная температура в открытом космосе, установленная фоновым излучением Большого Взрыва, составляет 2.73 кельвина (К), что равно -270.45 °C.

Это самая низкая температура в космосе. Само пространство не имеет температуры, а только материя, которая в нем находится, и действующая радиация. Если быть более точным, то абсолютный ноль — это температура в -273.15 °C. Но в рамках такой науки как термодинамика, это невозможно.

Из-за радиации в космосе и держится температура в 2.7 К. Температура вакуума измеряется в единицах кинетической активности газа, как и на Земле. Излучение, заполняющее вакуум, имеет другую температуру, чем кинетическая температура газа, а это означает, что газ и излучение не находятся в термодинамическом равновесии.

Абсолютный ноль — это и есть самая низкая температур а в космосе.

Локально распределенная в пространстве материя может иметь очень высокие температуры . Земная атмосфера на большой высоте достигает температуры около 1400 К. Межгалактический плазменный газ с плотностью менее одного атома водорода на кубический метр может достигать температур нескольких миллионов К. Высокая температура в открытом космосе обусловлена ​скоростью частиц. Однако общий термометр будет показывать температуры вблизи абсолютного ноля, потому что плотность частиц слишком мала, чтобы обеспечить измеримую передачу тепла.

Вся наблюдаемая вселенная заполнена фотонами, которые были созданы во время Большого Взрыва. Он известен как космическое микроволновое фоновое излучение. Имеется большое количество нейтрино, называемое космическим нейтринным фоном. Текущая температура черного тела фонового излучения составляет около 3-4 К. Температура газа в космическом пространстве всегда является по меньшей мере температурой фонового излучения, но может быть намного выше. Например, корона имеет температуры, превышающие 1.2-2.6 миллионов К.

Человеческое тело

С температурой связано другое заблуждение, которое касается тела человека . Как известно, наше тело в среднем состоит на 70% из воды. Теплу, которое она выделяет в вакууме, некуда деться, соответственно, теплообмен в космосе не происходит и человек перегревается.

Но пока он успеет это сделать, то умрёт от декомпрессии. По этой причине, одной из проблем с которой сталкиваются космонавты – это жара. А обшивка корабля, который находится на орбите под открытым солнцем, может сильно нагреваться. Температура в космосе по Цельсию может составить 260 °C на металлической поверхности.


Твердые тела
в околоземном или межпланетном пространстве испытывают большое излучающее тепло на стороне, обращенной к солнцу. На солнечной стороне или, когда тела находятся в тени Земли, они испытывают сильный холод, потому что выделяют свою тепловую энергию в космос.

Например, костюм космонавта, совершающего выход в пространство на Международной космической станции, будет иметь температуру около 100 °C на стороне, обращенной к солнцу.

На ночной стороне Земли солнечное излучение затеняется, а слабое инфракрасное излучение земли заставляет скафандр остыть. Его температура в космосе по Цельсию будет составлять примерно до -100 °C.

Теплообмен

Важно! Теплообмен в космосе возможен одним единственным видом – излучением.

Это хитрый процесс и его принцип используется для охлаждения поверхностей аппаратов. Поверхность поглощает лучистую энергию, что падает на неё, и в то же время излучает в пространство энергию, которая равна сумме поглощённой и подводимой изнутри.

Неизвестно точно сказать, каким может быть давление в космосе, но оно очень маленькое.

В большинстве галактик наблюдения показывают, что 90% массы находится в неизвестной форме, называемой тёмной материей, которая взаимодействует с другим веществом через гравитационные, но не электромагнитные силы.

Большая часть массовой энергии в наблюдаемой вселенной, является плохо понимаемой вакуумной энергией пространства, которую астрономы и называют тёмной энергией. Межгалактическое пространство занимает большую часть объема Вселенной, но даже галактики и звёздные системы почти полностью состоят из пустого пространства.

Исследования

Люди начали в течение 20-го века с появлением высотных полетов на воздушном шаре, а затем пилотируемых ракетных запусков.

Земная орбита была впервые достигнута Юрием Гагариным из Советского Союза в 1961 году, а беспилотные космические аппараты с тех пор добрались до всех известных .

Из-за высокой стоимости полёта в космос, пилотируемый космический полет был ограничен низкой земной орбитой и Луной.

Космическое пространство представляет собой сложную среду для изучения человека из-за двойной опасности: вакуума и излучения. Микрогравитация также отрицательно влияет на физиологию человека, которая вызывает, как атрофию мышц, так и потерю костной массы. В дополнение к этим проблемам здравоохранения и окружающей среды, экономическая стоимость помещения объектов, в том числе людей, в космос очень высока.

Насколько холодно в космосе? Может быть температура еще ниже?

Температуры в разных точках вселенной

Вывод

Поскольку свет имеет конечную скорость, ограничиваются размеры непосредственно наблюдаемой вселенной. Это оставляет открытым вопрос о том, является ли Вселенная конечной или бесконечной. Космос продолжает быть загадкой для человека , полной феноменов. На многие вопросы современная наука пока не может дать ответы. Но какая температура в космосе, уже удалось выяснить, а какое давление в пространстве — со временем удастся измерять.

з наете ли вы, какой температурой обладает космическое пространство ? На самом деле для человека в нём царит холод – около -270 градусов. Космос – это по большей части незаполненная пустота, поэтому температура в нём имеет большое влияние. Те же объекты, которые находятся в космическом пространстве , приобретают его температуру.

Воздух здесь отсутствует, а передача тепла идёт за счёт инфракрасного излучения. То есть, постепенно тепло теряется. Объект, попадающий в глубины космоса, теряет его не моментально, а постепенно, по нескольку градусов. Чтобы замёрзнуть полностью в открытом космосе человеку потребуется несколько часов, но умереть от замерзания ему вряд ли придётся, так как в вакууме есть множество других явлений, которые убьют вас намного раньше. Курсирующие в космосе объекты обладают очень низкой температурой. Если вы прикоснетесь к ним, сразу же погибнете, так как они заберут всё ваше тепло.

Т ем не менее, ветер в космосе может быть очень горячим. Взять хотя бы Солнце, которое излучает инфракрасные волны высокой температуры. А оно такое не одно, есть большое количество звёздных облаков между звёздами, нагревающихся до нескольких тысяч градусов.

То, что поверхность Солнца обладает высокой температурой, оказывает влияние на жизнь на Земле. Та сторона орбиты нашей планеты, которая повернута к нему, может нагреваться выше 100 градусов, другая сторона орбиты, расположенная в тени, наоборот, имеет температуру около -100 градусов. Для человека оба варианта считаются неприемлемыми. Быстрые перепады температур он выдерживать тоже не в состоянии.

Температура поверхности других тел зависит от множества факторов. Роль играет и масса тела, и её форма, и удаленность от Солнца, и влияние других объектов космоса. К примеру, если отправить по направлению к Солнцу алюминий, находясь от звезды на расстоянии, равном расстоянию, на котором находится от неё наша планета, он приобретет температуру до 850 F. Если же взять непрозрачный элемент и покрыть его краской белого цвета, выше значения -40 F он не нагреется. Именно поэтому выход в открытый космос без использования скафандра чрезвычайно опасен для человека. Что касается инопланетян , быть может, они устроены по-другому, поэтому могут жить в вакууме без дополнительных приспособлений.

Температура кипения жидкости в космосе непостоянна. Она зависит от давления, влияющего на неё. На высокой местности вода кипит быстро, так как газ там жидкий. Так как за атмосферой воздуха нет, температура кипения становится ниже. Поэтому нахождение в вакууме человека так опасно, его кровь может просто закипеть в жилах. Это объясняет то, что в нем встречаются в основном твёрдые тела.

Люди, которые снимают кино, писатели, которые пишут фантастические произведения, своими трудами пытаются простым смертным привести пример. Что как только человек попадает в космическую среду, он сразу же погибает. Это связано с температурой, которая есть в этой среде. А какая температура в космосе?

Кинорежиссеры и фантасты утверждают, что температура в космической среде такая, что ни одно живое создание не способно выдержать ее без специального костюма. Нахождение человека в открытом космосе очень интересно описал Артур Кларк. В его произведении человек, как только попал в открытый космос сразу же погиб из-за жуткого мороза и сильнейшего внутреннего давления. А что говорят по этому поводу ученые?

Для начала, давайте определимся с понятиями. Температура – это движение атомов и молекул. Движутся они без конкретного направления. То есть хаотично. Эту величину имеет абсолютно любое тело.

Она зависит от интенсивности движения молекул и атомов. Если нет вещества, то не может идти речь о данной величине. Именно такое место представляет собой космическая среда.

Здесь очень мало материи. Те тела, которые обитают в межгалактической среде, имеют разные тепловые показатели. Эти показатели зависят от множества других факторов.

Как дела обстоят по-настоящему?

На самом деле в пространстве космоса действительно невероятно холодно. Градусы в этом пространстве представляет собой -454 градусов по цельсию. В открытом космическом пространстве важную роль играет именно температура.

Вообще открытое космическое пространство представляет собой пустоту, там нет совсем ничего. Объект, который попадает в космос и находится там, приобретает такую же температуру, как и в окружающей среде.

Воздуха в этом пространстве не существует. Все тепло, которое здесь присутствует, циркулирует, благодаря инфрокрасным лучам. Тепло, получаемое от этих инфракрасных лучей, потихоньку утрачивается. Что это значит? Что объекту, находящемуся в космосе, в итоге принадлежит температура всего пары градусов по Кельвину.

Однако справедливо будет заметить также то, что данный объект замерзает не в один момент. А именно таким образом это экранизируется в фильмах и описывается в художественной литературе. На самом деле, это медленный процесс.

Для того, чтобы абсолютно замерзнуть понадобится несколько часов. Но дело в том, что такая низкая температура, это не единственная опасность. Есть еще факторы, которые способны повлиять на жизнеспособность. В открытом космическом пространстве находятся и постоянно перемещаются разные объекты.

Так как они перемещаются там уже какое-то время, то их температурный режим тоже очень низкий. Если человек соприкоснется с одним из таких объектов, то он в один момент погибнет от обморожения. Поскольку такой предмет заберет у него все тепло.

Ветер

Несмотря на холод, ветер в космическом пространстве может быть достаточно горячим. Градусы верхней части солнца примерно 9 980 градусов по фаренгейту. Сама по себе планета солнце производит инфрокрасные лучи. Между звездами присутствуют газовые облака. Они тоже имеют довольно высокий температурный режим.

Опасность еще и вот в чем. Температура может быть критического значения. Она может действовать огромным давлением на объекты. Они находятся не только в границах атмосферы и конвекции. Орбита, которая обращается к солнцу, может иметь температуру 248 градусов по фаренгейту.

А теневая ее сторона может иметь температуру -148 градусов по фаренгейту. Получается, что разница в температурных режимах велика. В один момент может быть очень разной. Человеческий организм такую разницу в температурных режимах вынести просто не может.

Температура остальных предметов

Градусы других предметов в космосе зависят от разных факторов. От того, насколько они отражаются, от того, насколько они приближены к солнцу. Имеет значение также их форма, весовая категория. Важно, какой промежуток времени они находятся в этом месте.

Возьмем, к примеру, алюминий гладкого типа. Он обращен к солнцу, находится от солнца на том же расстоянии, что и планета Земля. Он нагревается до 850 градусов по фаренгейту. А вот материал, который окрашен белой краской не может иметь температурный режим больше, чем -40 градусов по фаренгейту. Увеличить эти градусы в данном случае не поможет и его обращенность к солнцу.

Нужно учитывать все эти факторы. Человеку никак нельзя попадать в космическую местность без специального снаряжения.

Космические скафандры специально разработаны. Чтобы иметь медленное вращение, чтобы одна сторона длительное время не была на солнце. А также, чтобы она слишком долго не оставалась в теневой части.

Кипение в этом пространстве

Возможно, вам также интересен вопрос, при каких градусах в космическом царстве начинает закипать жидкость? На самом деле, температурный режим, при котором начинает кипеть жидкости – это величина относительная. Она зависит от других величин.

От таких величин, как давление, которое действует на жидкость. Вот почему вода доходит до кипения гораздо быстрее, на более высокой местности. Все потому, что воздух на такой местности является более жидким. Соответственно за границами атмосферы, где воздух не присутствует, температурный режим, при котором начинается кипение, будет ниже.

В вакууме градусы, при которых начинает закипать вода будет ниже температуры в комнате. Именно по этой причине воздействие космической среды представляет собой опасность. В человеческом организме при этом закипает кровь в венах.

Как раз по этой причине в этой среде довольно редко присутствуют:

  • жидкости;
  • тела твердого характера;
  • газы.

Какая температура в космосе за пределами земной атмосферы? А в межзвездном пространстве? А если мы выйдем за пределы нашей галактики, будет ли там холоднее, чем внутри Солнечной системы? И можно ли вообще говорить о температуре применительно к вакууму? Попробуем разобраться.

Что такое тепло

Для начала необходимо понять, чем же в принципе является температура, как образуется тепло и отчего возникает холод. Чтобы ответить на эти вопросы, необходимо рассмотреть строение материи на микроуровне. Все вещества во Вселенной состоят из элементарных частиц - электронов, протонов, фотонов и так далее. Из их сочетания образуются атомы и молекулы.

Микрочастицы не являются неподвижными объектами. Атомы и молекулы постоянно колеблются. А элементарные частицы и вовсе перемещаются со скоростями, близкими к световым. Какая тут связь с температурой? Прямая: энергия движения микрочастиц - это и есть тепло. Чем сильнее колеблются молекулы в куске металла, например, тем горячее он будет.

Что такое холод

Но если тепло - это энергия движения микрочастиц, то какой будет температура в космосе, в вакууме? Конечно, межзвездное пространство не совсем пустое - сквозь него движутся фотоны, несущие свет. Но плотность материи там намного ниже, чем на Земле.

Чем меньше атомы сталкиваются друг с другом, тем слабее греется вещество, которое из них состоит. Если находящийся под большим давлением газ выпустить в разреженное пространство, его температура резко понизится. На этом принципе основана работа всем известного компрессорного холодильника. Таким образом, температура в открытом космосе, где частицы находятся очень далеко друг от друга и не имеют возможности сталкиваться, должна стремиться к абсолютному нулю. Но так ли это на практике?

Как происходит передача тепла

Когда вещество нагревается, его атомы испускают фотоны. Это явление тоже хорошо всем знакомо - накалившийся металлический волосок в электрической лампочке начинает ярко светиться. При этом фотоны переносят тепло. Таким образом энергия переходит от горячего вещества к холодному.

Космическое пространство не только пронизано фотонами, которые испускают бесчисленные звезды и галактики. Вселенная заполнена также так называемым реликтовым излучением, которое образовалось на ранних этапах ее существования. Именно благодаря этому явлению температура в космосе не может опуститься до абсолютного нуля. Даже вдали от звезд и галактик материя будет получать рассеянное по Вселенной тепло от реликтового излучения.

Что такое абсолютный нуль

Никакое вещество нельзя охладить ниже определенной температуры. Ведь остывание - это потеря энергии. В соответствии с законами термодинамики в определенной точке энтропия системы достигнет нуля. В этом состоянии вещество уже не сможет терять энергию. Это и будет предельно возможная низкая температура.

Наиболее яркой иллюстрацией этого явления может служить климат Венеры. Температура на ее поверхности достигает 477 °C. Благодаря атмосфере Венера жарче, чем Меркурий, который находится ближе к Солнцу.

Средняя температура поверхности Меркурия 349,9 °C днем и минус 170,2 °C ночью.

Марс может нагреваться до 35 градусов Цельсия летом на экваторе и охлаждаться до -143 °C зимой в районе полярных шапок.

На Юпитере температура достигает -153 °C.

Но холоднее всего на Плутоне. Температура его поверхности - минус 240 °C. Это лишь на 33 градуса выше абсолютного нуля.

Самое холодное место в космосе

Выше было сказано, что межзвездное пространство прогревается реликтовым излучением, а потому температура в космосе по Цельсию не опускается ниже минус 270 градусов. Но оказывается, могут существовать и более холодные участки.

В 1998 году телескоп Хаббл обнаружил газо-пылевое облако, которое стремительно расширяется. Туманность, названная Бумерангом, образовалась вследствие явления, известного как звездный ветер. Это очень интересный процесс. Суть его состоит в том, что из центральной звезды с огромной скоростью "выдувается" поток материи, которая попадая в разреженное космическое пространство охлаждается вследствие резкого расширения.

По оценкам ученых, температура в туманности Бумеранг составляет всего один градус по шкале Кельвина, или минус 272 °C. Это самая низкая температура в космосе, которую на данный момент удалось зафиксировать астрономам. Туманность Бумеранг находится на расстоянии 5 тысяч световых лет от Земли. Наблюдать ее можно в созвездии Центавра.

Самая низкая температура на Земле

Итак, мы выяснили, какая температура в космосе и какое место самое холодное. Теперь остается узнать, какие самые низкие температуры были получены на Земле. А произошло это в ходе недавних научных экспериментов.

В 2000 году исследователи из Технологического университета в Хельсинки охладили кусок металла родия почти до абсолютного нуля. В ходе эксперимента была получена температура равная 1*10 -10 Кельвина. Это всего на 0,000 000 000 1 градуса выше нижнего предела.

Целью исследований было не только получение сверхнизких температур. Основная задача заключалась в изучении магнетизма ядер атомов родия. Это исследование было весьма успешным и принесло ряд интересных результатов. Эксперимент помог понять, как магнетизм влияет на сверхпроводящие электроны.

Достижение рекордно низких температур состоит из нескольких последовательных этапов охлаждения. Вначале с помощью криостата металл охлаждается до температуры 3*10 -3 Кельвина. На следующих двух этапах используется метод адиабатического ядерного размагничивания. Родий охлаждается до температуры сначала 5*10 -5 Кельвина, а затем достигает рекордно низкой температуры.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....