Земля окружена воздушной оболочкой или атмосферой. Земная атмосфера

Атмосфера имеет слоистую структуру. Границы между слоями не резкие и их высота зависит от широты и времени года. Слоистая структура - результат температурных изменений на разных высотах. Погода формируется в тропосфере (нижние примерно 10 км: около 6 км над полюсами и более 16 км над экватором). И верхняя граница тропософеры выше летом, чем зимой.

От поверхности Земли вверх эти слои:

Тропосфера

Стратосфера

Мезосфера

Термосфера

Экзосфера

Тропосфера

Нижняя часть атмосферы, до высоты 10-15 км, в которой сосредоточено 4/5 всей массы атмосферного воздуха, носит название тропосферы. Для нее характерно, что температура здесь с высотой падает в среднем на 0.6°/100 м (в отдельных случаях распределение температуры по вертикали варьирует в широких пределах). В тропосфере содержится почти весь водяной пар атмосферы и возникают почти все облака. Сильно развита здесь и турбулентность, особенно вблизи земной поверхности, а также в так называемых струйных течениях в верхней части тропосферы.

Высота, до которой простирается тропосфера, над каждым местом Земли меняется изо дня в день. Кроме того, даже в среднем она различна под разными широтами и в разные сезоны года. В среднем годовом тропосфера простирается над полюсами до высоты около 9 км, над умеренными широтами до 10-12 км и над экватором до 15-17 км. Средняя годовая температура воздуха у земной поверхности около +26° на экваторе и около -23° на северном полюсе. На верхней границе тропосферы над экватором средняя температура около -70°, над северным полюсом зимой около -65°, а летом около -45°.

Давление воздуха на верхней границе тропосферы соответственно ее высоте в 5-8 раз меньше, чем у земной поверхности. Следовательно, основная масса атмосферного воздуха находится именно в тропосфере. Процессы, происходящие в тропосфере, имеют непосредственное и решающее значение для погоды и климата у земной поверхности.

В тропосфере сосредоточен весь водяной пар и именно поэтому все облака образуются в пределах тропосферы. Температура уменьшается с высотой.

Солнечные лучи легко проходят через тропосферу, а тепло, которое излучает нагретая солнечными лучами Земля, накапливается в тропосфере: такие газы, как углекислый газ, метан а также пары воды удерживают тепло. Такой механизм прогревания атмосферы от Земли, нагретой солнечной радиацией, называется парниковый эффект. Именно потому, что источником тепла для атмосферы является Земля, температура воздуха с высотой уменьшается

Граница между турбулентной тропосферой и спокойной стратосферой называется тропопауза. Здесь образуются быстро движущиеся ветры, называемые "реактивные потоки".

Когда-то предполагали, что температура атмосферы падает и выше тропософеры, однако измерения в высоких слоях атмосферы показали, что это не так:сразу выше тропопаузы температура почти постоянна, а затем начинает увеличиваться Сильные горизонтальные ветры дуют в стратосфере не образуя турбулентности. Воздух стратосферы очень сухой и поэтому облака редки. Образуются так называемые перламутровые облака.

Стратосфера очень важна для жизни на Земле, так именно в этом слое находится небольшое количество озона, которое поглощает сильное ультрафиолетовое излучение, вредное для жизни. Поглощая ультрафиолетовое излучение, озон нагревает стратосферу.

Стратосфера

Над тропосферой до высоты 50-55 км лежит стратосфера, характеризующаяся тем, что температура в ней в среднем растет с высотой. Переходный слой между тропосферой и стратосферой (толщиной 1-2 км) носит название тропопаузы.

Выше были приведены данные о температуре на верхней границе тропосферы. Эти температуры характерны и для нижней стратосферы. Таким образом, температура воздуха в нижней стратосфере над экватором всегда очень низкая; притом летом много ниже, чем над полюсом.

Нижняя стратосфера более или менее изотермична. Но, начиная с высоты около 25 км, температура в стратосфере быстро растет с высотой, достигая на высоте около 50 км максимальных, притом положительных значений (от +10 до +30°). Вследствие возрастания температуры с высотой турбулентность в стратосфере мала.

Водяного пара в стратосфере ничтожно мало. Однако на высотах 20-25 км наблюдаются иногда в высоких широтах очень тонкие, так называемые перламутровые облака. Днем они не видны, а ночью кажутся светящимися, так как освещаются солнцем, находящимся под горизонтом. Эти облака состоят из переохлажденных водяных капелек. Стратосфера характеризуется еще тем, что преимущественно в ней содержится атмосферный озон, о чем было сказано выше

Мезосфера

Над стратосферой лежит слой мезосферы, примерно до 80 км. Здесь температура с высотой падает до нескольких десятков градусов ниже нуля. Вследствие быстрого падения температуры с высотой в мезосфере сильно развита турбулентность. На высотах, близких к верхней границе мезосферы (75-90 км), наблюдаются еще особого рода облака, также освещаемые солнцем в ночные часы, так называемые серебристые. Наиболее вероятно, что они состоят из ледяных кристаллов.

На верхней границе мезосферы давление воздуха раз в 200 меньше, чем у земной поверхности. Таким образом, в тропосфере, стратосфере и мезосфере вместе, до высоты 80 км, заключается больше чем 99,5% всей массы атмосферы. На вышележащие слои приходится ничтожное количество воздуха

На высоте около 50 км над Землей температура снова начинает падать, обозначая верхнюю границу стратосферы и начало следующего слоя - мезосферы. Мезосфера имеет самую холодную температуру в атмосфере: от -2 до - 138 градусов Цельсия. Здесь же находятся самые высокие облака: в ясную погоду их можно видеть при закате. Они называются noctilucent (светящиеся ночью).

Термосфера

Верхняя часть атмосферы, над мезосферой, характеризуется очень высокими температурами и потому носит название термосферы. В ней различаются, однако, две части: ионосфера, простирающаяся от мезосферы до высот порядка тысячи километров, и лежащая над нею внешняя часть - экзосфера, переходящая в земную корону.

Воздух в ионосфере чрезвычайно разрежен. Мы уже указывали, что на высотах 300-750 км его средняя плотность порядка 10-8-10-10 г/м3. Но и при такой малой плотности каждый кубический сантиметр воздуха на высоте 300 км еще содержит около одного миллиарда (109) молекул или атомов, а на высоте 600 км - свыше 10 миллионов (107). Это на несколько порядков больше, чем содержание газов в межпланетном пространстве.

Ионосфера, как говорит само название, характеризуется очень сильной степенью ионизации воздуха - содержание ионов здесь во много раз больше, чем в нижележащих слоях, несмотря на сильную общую разреженность воздуха. Эти ионы представляют собой в основном заряженные атомы кислорода, заряженные молекулы окиси азота и свободные электроны. Их содержание на высотах 100-400 км - порядка 1015-106 на кубический сантиметр.

В ионосфере выделяется несколько слоев, или областей, с максимальной ионизацией, в особенности на высотах 100- 120 км и 200-400 км. Но и в промежутках между этими слоями степень ионизации атмосферы остается очень высокой. Положение ионосферных слоев и концентрация ионов в них все время меняются. Спорадические скопления электронов с особенно большой концентрацией носят название электронных облаков.

От степени ионизации зависит электропроводность атмосферы. Поэтому в ионосфере электропроводность воздуха в общем в 1012 раз больше, чем у земной поверхности. Радиоволны испытывают в ионосфере поглощение, преломление и отражение. Волны длиной более 20 м вообще не могут пройти сквозь ионосферу: они отражаются уже электронными слоями небольшой концентрации в нижней части ионосферы (на высотах 70- 80 км). Средние и короткие волны отражаются вышележащими ионосферными слоями.

Именно вследствие отражения от ионосферы возможна дальняя связь на коротких волнах. Многократное отражение от ионосферы и земной поверхности позволяет коротким волнам зигзагообразно распространяться на большие расстояния, огибая поверхность Земного шара. Так как положение и концентрация ионосферных слоев непрерывно меняются, меняются и условия поглощения, отражения и распространения радиоволн. Поэтому для надежной радиосвязи необходимо непрерывное изучение состояния ионосферы. Наблюдения над распространением радиоволн как раз являются средством для такого исследования.

В ионосфере наблюдаются полярные сияния и близкое к ним по природе свечение ночного неба - постоянная люминесценция атмосферного воздуха, а также резкие колебания магнитного поля - ионосферные магнитные бури.

Ионизация в ионосфере обязана своим существованием действию ультрафиолетовой радиации Солнца. Ее поглощение молекулами атмосферных газов приводит к возникновению заряженных атомов и свободных электронов, о чем говорилось выше. Колебания магнитного поля в ионосфере и полярные сияния зависят от колебаний солнечной активности. С изменениями солнечной активности связаны изменения в потоке корпускулярной радиации, идущей от Солнца в земную атмосферу. А именно корпускулярная радиация имеет основное значение для указанных ионосферных явлений.

Температура в ионосфере растет с высотой до очень больших значений. На высотах около 800 км она достигает 1000°.

Говоря о высоких температурах ионосферы, имеют в виду то, что частицы атмосферных газов движутся там с очень большими скоростями. Однако плотность воздуха в ионосфере так мала, что тело, находящееся в ионосфере, например летящий спутник, не будет нагреваться путем теплообмена с воздухом. Температурный режим спутника будет зависеть от непосредственного поглощения им солнечной радиации и от отдачи его собственного излучения в окружающее пространство. Термосфера находится выше мезосферы на высоте от 90 до 500 км над поверхностью Земли. Молекулы газа здесь сильно рассеянны, поглощают рентгеновское излучение и коротковолновую часть ультрафиолетового излучения. Из-за этого температура может достигать 1000 градусов Цельсия.

Термосфера в основном соответствует ионосфере, где ионизированный газ отражает радиоволны обратно к Земле - это явление дает возможным устанавливать радиосвязь.

Экзосфера

Выше 800-1000 км атмосфера переходит в экзосферу и постепенно в межпланетное пространство. Скорости движения частиц газов, особенно легких, здесь очень велики, а вследствие чрезвычайной разреженности воздуха на этих высотах частицы могут облетать Землю по эллиптическим орбитам, не сталкиваясь между собою. Отдельные частицы могут при этом иметь скорости, достаточные для того, чтобы преодолеть силу тяжести. Для незаряженных частиц критической скоростью будет 11,2 км/сек. Такие особенно быстрые частицы могут, двигаясь по гиперболическим траекториям, вылетать из атмосферы в мировое пространство, "ускользать", рассеиваться. Поэтому экзосферу называют еще сферой рассеяния.

Ускользанию подвергаются преимущественно атомы водорода, который является господствующим газом в наиболее высоких слоях экзосферы.

Недавно предполагалось, что экзосфера, и с нею вообще земная атмосфера, кончается на высотах порядка 2000-3000 км. Но из наблюдений с помощью ракет и спутников создалось представление, что водород, ускользающий из экзосферы, образует вокруг Земли так называемую земную корону, простирающуюся более чем до 20 000 км. Конечно, плотность газа в земной короне ничтожно мала. На каждый кубический сантиметр здесь приходится в среднем всего около тысячи частиц. Но в межпланетном пространстве концентрация частиц (преимущественно протонов и электронов) по крайней мере, в десять раз меньше.

С помощью спутников и геофизических ракет установлено существование в верхней части атмосферы и в околоземном космическом пространстве радиационного пояса Земли, начинающегося на высоте нескольких сотен километров и простирающегося на десятки тысяч километров от земной поверхности. Этот пояс состоит из электрически заряженных частиц - протонов и электронов, захваченных магнитным полем Земли и движущихся с очень большими скоростями. Их энергия - порядка сотен тысяч электрон-вольт. Радиационный пояс постоянно теряет частицы в земной атмосфере и пополняется потоками солнечной корпускулярной радиации.

атмосфера температура стратосфера тропосфера

Вместе с Землей вращается и газовая оболочка нашей планеты, называемая атмосферой. Процессы, которые в ней происходят, определяют погоду на нашей планете, также именно атмосфера защищает животный и растительный мир от губительного влияния ультрафиолетовых лучей, обеспечивает оптимальную температуру и так далее. , определить не так уж и просто, и вот почему.

Атмосфера земли км

Атмосфера представляет собой газовое пространство. Ее верхняя граница выражена нечетко, поскольку газы, чем выше, тем больше разрежаются и переходят в космическое пространство постепенно. Если же говорить приблизительно о том, какой диаметр атмосферы земли, то ученые называют цифру около 2-3 тысяч километров.

Состоит атмосфера Земли из четырех слоев, которые также плавно переходят один в другой. Это:

  • тропосфера;
  • стратосфера;
  • мезосфера;
  • ионосфера (термосфера).

Кстати, интересный факт: планета земля без атмосферы была бы такой же тихой, как Луна, поскольку звук – это колебания воздушных частиц. А то что небо – голубого света, объясняется спецификой разложения солнечных лучей, проходящих через атмосферу.

Особенности каждого слоя атмосферы

Толщина тропосферы составляет от восьми до десяти километров (в умеренных широтах – до 12, а над экватором – до 18 километров). Воздух в этом слое нагревается от суши и воды, поэтому чем больше радиус атмосферы Земли , тем температура ниже. Здесь сосредоточено 80 процентов всей массы атмосферы и концентрируется водяной пар, формируются грозы, бури, облака, осадки, происходит перемещение воздуха в вертикальном и горизонтальном направлениях.

Стратосфера расположена от тропосферы на высоте от восьми до 50 километров. Воздух тут разрежен, поэтому солнечные лучи не рассеиваются, и цвет неба становится фиолетовым. Этот слой за счет озона поглощает ультрафиолет.

Мезосфера располагается еще выше – на высоте 50-80 километров. Тут уже небо кажется черным, а температура слоя составляет до минус девяноста градусов. Далее идет термосфера, тут температура уже резко повышается а потом останавливается на высоте 600 км на отметке 240 градусов.

Наиболее разряженный слой – ионосфера, для него характерна высокая наэлектризованность, а еще он отражает радиоволны разной длины, как зеркало. Именно здесь формируется северное сияние.

Обновлено: Март 31, 2016 автором: Анна Волосовец

Атмосфера (от. греч. ατμός - «пар» и σφαῖρα - «сфера») - газовая оболочка небесного тела, удерживаемая около него гравитацией. Атмосфера - газообразная оболочка планеты, состоящая из смеси различных газов, водных паров и пыли. Через атмосферу осуществляется обмен вещества Земли с Космосом. Земля получает космическую пыль и метеоритный материал, теряет самые легкие газы: водород и гелий. Атмосфера Земли насквозь пронизывается мощной радиацией Солнца, определяющей тепловой режим поверхности планеты, вызывающей диссоциацию молекул атмосферных газов и ионизацию атомов.

Атмосфера Земли содержит кислород, используемый большинством живых организмов для дыхания, и диоксид углерода, потребляемый растениями, водорослями и цианобактериями в процессе фотосинтеза. Атмосфера также является защитным слоем планеты, защищая её обитателей от солнечного ультрафиолетового излучения.

Атмосфера есть у всех массивных тел - планет земного типа, газовых гигантов.

Состав атмосферы

Атмосфера - это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), 0,038 % двуокиси углерода, и небольшое количество водорода, гелия, других благородных газов и загрязнителей.

Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО 2 примерно на 10-12 %.Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Начальный состав атмосферы планеты обычно зависит от химических и температурных свойств солнца в период формирования планет и последующего выхода внешних газов. Затем состав газовой оболочки эволюционирует под действием различных факторов.

Атмосфера Венеры и Марса в основном состоят из двуокиси углерода с небольшими добавлениями азота, аргона, кислорода и других газов. Земная атмосфера в большой степени является продуктом живущих в ней организмов. Низкотемпературные газовые гиганты - Юпитер, Сатурн, Уран и Нептун - могут удерживать в основном газы с низкой молекулярной массой - водород и гелий. Высокотемпературные газовые гиганты, такие как Осирис или 51 Пегаса b, наоборот, не могут её удержать и молекулы их атмосферы рассеиваются в пространстве. Этот процесс протекает медленно, постоянно.

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород , в отличие от азота, химически очень активный элемент. Специфическая функция кислорода - окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

Структура атмосферы

Структура атмосферы складывается из двух частей: внутренней- тропосферы, стратосферы, мезосферы и термосферы, или ионосферы, и внешней - магнитосферы (экзосферы).

1)Тропосфера – это нижняя часть атмосферы, в которой сосредоточено 3\4 т.е. ~ 80% всей земной атмосферы. Её высота определяется интенсивностью вертикальных (восходящих или нисходящих) потоков воздуха, вызванных нагреванием земной поверхности и океана, поэтому толщина тропосферы на экваторе составляет 16 – 18 км, в умеренных широтах 10-11 км, а на полюсах – до 8 км. Температура воздуха в тропосфере на высоте понижается на 0,6ºС на каждые 100м и колеблется от +40 до - 50ºС.

2)Стратосфера находится выше тропосферы и имеет высоту до 50км от поверхности планеты. Температура на высоте до 30км постоянная -50ºС. Затем она начинает повышаться и на высоте 50 км достигает +10ºС.

Верхней границей биосферы являются озоновый экран.

Озоновый экран – это слой атмосферы в пределах стратосферы, расположенный на разной высоте от поверхности Земли и имеющей максимальную плотность озона на высоте 20-26 км.

Высота озонового слоя у полюсов оценивается в 7 - 8 км, у экватора в 17-18км, а максимальная высота присутствия озона – 45-50 км. Выше озонового экрана жизнь невозможна из-за жёсткого ультрафиолетового излучения Солнца. Если спрессовать все молекулы озона, то получится слой ~ 3мм вокруг планеты.

3)Мезосфера – верхняя граница этого слоя располагается до высоты 80км. Главная её особенность – резкое понижение температуры -90ºС у её верхней границы. Здесь фиксируется серебристые облака, состоящие из ледяных кристаллов.

4)Ионосфера (термосфера)- располагается до высоты 800 км и для неё характерно значительное повышение температуры:

150км температура +240ºС,

200км температура +500ºС,

600км температура +1500ºС.

Под действием ультрафиолетового излучения Солнца газы находятся в ионизированном состоянии. С ионизацией связано свечение газов и возникновение полярных сияний.

Ионосфера обладает способностью многократного отражения радиоволн, что обеспечивает дальнюю радиосвязь на планете.

5)Экзосфера – располагается выше 800км и простирается до 3000км. Здесь температура >2000ºС. Скорость движения газов приближается к критической ~ 11,2 км/сек. Господствуют атомы водорода и гелия, которые образуют вокруг Земли светящуюся корону, простирающуюся до высоты 20000км.

Функций атмосферы

1) Терморегулирующая – погода и климат на Земле зависит от распределения тепла, давления.

2) Жизнеобеспечивающая.

3) В тропосфере происходит глобальные вертикальные и горизонтальные перемещения воздушных масс определяющий круговорот воды, теплообмен.

4) Практически все поверхности геологические процессы обусловлены взаимодействием атмосферы, литосферы и гидросферы.

5) Защитная – атмосфера защищает землю от космоса, солнечной радиации и метеоритной пыли.

Функции атмосферы . Без атмосферы жизнь на Земле была бы невозможна. Человек ежедневно потребляет 12-15 кг. воздуха, вдыхая каждую минуту от 5 до 100л, что значительно превосходит среднесуточную потребность в пище и воде. Кроме того, атмосфера надежно оберегает человека от опасностей, угрожающих ему из космоса: не пропускает метеориты, космические излучения. Без пищи человек может прожить пять недель, без воды - пять дней, без воздуха - пять минут. Нормальная жизнедеятельность людей требует не только воздуха, но и определенной его чистоты. От качества воздуха воздуха зависят здоровье людей, состояние растительного и животного мира, прочность и долговечность конструкций зданий, сооружений. Загрязненный воздух губителен для вод, суши, морей, почв. Атмосфера определяет световой и регулирует тепловой режимы земли, способствует перераспределению тепла на земном шаре. Газовая оболочка предохраняет Землю от чрезмерного остывания и нагревания. Если бы наша планета не была бы окружена воздушной оболочкой, то в течение одних суток амплитуда колебаний температуры достигла бы 200 С. Атмосфера спасает все живущее на Земле от губительных ультрафиолетовых, рентгеновских и космических лучей. Велико значение атмосферы в распределении света. Ее воздух разбивает солнечные лучи на миллион мелких лучей, рассеивает их и создает равномерное освещение. Атмосфера служит проводником звуков.

Точный размер атмосферы неизвестен, так как ее верхняя граница четко не прослеживается. Однако строение атмосферы изучено достаточно для того чтобы каждый мог получить представление о том, как устроена газовая оболочка нашей планеты.

Ученые, изучающие физику атмосферы, определяют ее как область вокруг Земли, которая вращается вместе с планетой. ФАИ дает следующее определение :

  • граница между космосом и атмосферой проходит по линии Кармана. Линия эта, по определению той же организации — это высота над уровнем моря, находящаяся на высоте 100 км.

Все, что выше этой линии – космическое пространство. В межпланетное пространство атмосфера переходит постепенно, именно поэтому существуют разные представления о ее размерах.

С нижней границей атмосферы все гораздо проще – она проходит по поверхности земной коры и водной поверхности Земли – гидросфере. При этом граница, можно сказать, сливается с земной и водной поверхностью, так как частицы там также растворены частички воздуха.

Какие слои атмосферы входят в размер Земли

Интересный факт : зимой она находится ниже, летом – выше.

Именно в этом слое возникает турбулентность, антициклоны и циклоны, образуются облака. Именно эта сфера отвечает за формирование погоды, в ней расположено примерно 80% всех воздушных масс.

Тропопаузой называют слой, в котором с высотой не происходит снижение температуры. Выше тропопаузы, на высоте выше 11 и до 50 км находится . В стратосфере располагается слой озона, который, как известно, защищает планету от ультрафиолетовых лучей. Воздух в этом слое разряжен, эти объясняется характерный фиолетовый оттенок неба. Скорость воздушных потоков здесь может достигать 300 км/час. Между стратосферой и мезосферой находится стратопауза – пограничная сфера, в которой имеет место температурный максимум.

Следующий слой – . Она простирается до высот 85-90 километров. Цвет неба в мезосфере – черный, поэтому звезды можно наблюдать даже утром и днем. Там происходят сложнейшие фотохимические процессы, в ходе которых возникает свечение атмосферы.

Между мезосферой и следующим слоем, находится мезопауза. Его определяют как переходный слой, в котором наблюдается температурный минимум. Выше, на высоте 100 километров над уровнем моря, находится линия Кармана. Выше этой линии находятся термосфера (предел высоты 800км) и экзосфера, которую также называют «зоной рассеивания». Она на высоте примерно 2-3 тысячи километров переходит в ближнекосмический вакуум.

Учитывая то, что верхний слой атмосферы четко не прослеживается, точный ее размер высчитать невозможно. Кроме того, в разных странах существуют организации, придерживающиеся разных мнений на этот счет. Надо отметить, что линию Кармана можно считать границей земной атмосферы лишь условно, так как разные источники используют разные отметки границ. Так, в некоторых источниках можно найти сведения о том, что верхняя граница проходит на высоте 2500-3000 км.

NASA для расчетов использует отметку 122 километра. Не так давно были проведены эксперименты, которые уточнили границу, как расположенную на отметке 118км.

Атмосфера Земли неоднородна: на разных высотах наблюдаются различная плотность воздуха и давление, меняется температура и газовый состав. На основании поведения температуры окружающего воздуха (т.е. растет температура с высотой или понижается) в ней выделяются следующие слои: тропосфера, стратосфера, мезосфера, термосфера и экзосфера. Границы между слоями называются паузами: их насчитывается 4, т.к. верхняя граница экзосферы очень размыта и часто относится к ближнему космосу. С общим строением атмосферы можно ознакомиться на прилагающейся схеме.

Рис.1 Строение атмосферы Земли. Credit: сайт

Самый нижний атмосферный слой - тропосфера, верхняя граница которой, называемая тропопаузой, в зависимости от географической широты различается и составляет от 8 км. в полярных до 20 км. в тропических широтах. В средних или умеренных широтах её верхняя граница лежит на высотах 10-12 км.. В течении года верхняя граница тропосферы испытывает колебания, зависящие от поступления солнечной радиации. Так в результате зондирования у Южного полюса Земли метеорологической службой США было выявлено, что, с марта до августа или сентября происходит неуклонное охлаждение тропосферы, в результате которого на короткий период в августе или сентябре её граница поднимается до 11,5 км. Затем, в период с с сентября по декабрь она быстро понижается и достигает своего самого низкого положения - 7,5 км, после которого её высота практически не изменяется до марта. Т.е. наибольшей своей толщины тропосфера достигает летом, а наименьшей зимой.

Стоит отметить, что кроме сезонных существуют и суточные колебания высоты тропопаузы. Также на её положение оказывают влияние циклоны и антициклоны: в первых она опускается, т.к. давление в них ниже чем в окружающем воздухе, во вторых соответственно поднимается.

Тропосфера содержит до 90% всей массы земного воздуха и 9/10 всего водяного пара. Здесь сильно развита турбулентность, особенно в приповерхностных и наиболее высоких слоях, развиваются облака всех ярусов, формируются циклоны и антициклоны. А благодаря накоплению парниковыми газами (углекислый газ, метан, водяной пар) отражённых от поверхности Земли солнечных лучей развивается парниковый эффект.

С парниковым эффектом связано понижение температуры воздуха в тропосфере с высотой (т.к. нагретая Земля больше тепла отдаёт приземным слоям). Средний вертикальный градиент составляет 0,65°/100 м (т.е. температура воздуха понижается на 0,65° C при подъёме на каждые 100 метров). Так если у поверхности Земли в районе экватора среднегодовая температура воздуха составляет +26° то на верхней границе -70°. Температура в районе тропопаузы над северным полюсом в течении года изменяется от -45° летом до -65° зимой.

С ростом высоты падает и давление воздуха, составляя у верхней границы тропосферы лишь 12-20% от приповерхностного.

На границе тропосферы и вышележащего слоя стратосферы лежит слой тропопаузы, толщиной 1-2 км. В качестве нижних границ тропопаузы обычно принимается слой воздуха в котором вертикальный градиент снижается до 0,2°/100 м против 0,65°/100 м в нижележащих районах тропосферы.

В пределах тропопаузы наблюдаются воздушные потоки строго определённого направления, называемые высотные струйные течения либо "реактивные потоки" (jet streams), образующиеся под влиянием вращения Земли вокруг своей оси и нагрева атмосферы при участии солнечной радиации. Наблюдаются течения на границах зон со значительными перепадами температур. Выделяют несколько очагов локализации этих течений, например, арктический, субтропический, субполярный и прочие. Знание локализации jet streams очень важно для метеорологии и авиации: первая использует потоки для более точного прогнозирования погоды, вторая для построения маршрутов полетов самолетов, т.к. на границах потоков существуют сильные турбулентные вихри, подобные небольшим водоворотам, называемые из-за отсутствия на этих высотах облачности "турбулентностью ясного неба".

Под влиянием высотных струйных течений в тропопаузе часто образуются разрывы, а временами она вообще исчезает, правда затем образуется заново. Особенно часто это наблюдается в субтропических широтах над которыми господствует мощное субтропическое высотное течение. Кроме того к формированию разрывов приводит различие слоёв тропопаузы по температуре окружающего воздуха. Например, обширный разрыв существует между тёплой и низкой полярной тропопаузой и высокой и холодной тропопаузой тропических широт. В последнее время выделяется и слой тропопаузы умеренных широт, который имеет разрывы с предыдущими двумя слоями: полярным и тропическим.

Вторым слоем земной атмосферы является стратосфера. Стратосферу условно можно разделить на 2 области. Первая из них, лежащая до высот 25 км характеризуется почти постоянными температурами, которые равны температурам верхних слоев тропосферы над конкретной местностью. Вторая область или область инверсии, характеризуется повышением температуры воздуха до высот примерно 40 км. Это происходит за счёт поглощения кислородом и озоном солнечного ультрафиолетового излучения. В верхней части стратосферы благодаря этому прогреву температура часто является положительной или даже сопоставима с температурой приземного воздуха.

Выше области инверсии находится слой постоянных температур, который носит название стратопаузы и является границей между стратосферой и мезосферой. Её толщина достигает 15 км.

В отличии от тропосферы в стратосфере редки турбулентные возмущения, но зато отмечены сильные горизонтальные ветры или струйные течения, дующие в узких зонах вдоль границ умеренных широт, обращённых к полюсам. Положение этих зон непостоянно: они могут смещаться, расширяться или даже вовсе исчезать. Часто струйные течения проникают в верхние слои тропосферы, или же наоборот массы воздуха из тропосферы проникают в нижние слои стратосферы. Особенно характерно подобное перемешивание масс воздуха в районах атмосферных фронтов.

Мало в стратосфере и водяного пара. Воздух здесь очень сух, а потому и облаков образуется мало. Лишь на высотах 20-25 км находясь в высоких широтах можно заметить очень тонкие перламутровые облака, состоящие из переохлажденных водяных капелек. Днём эти облака не видны, зато с наступлением темноты они кажутся светящимися из-за освещения их уже севшим за горизонт Солнцем.

На этих же высотах (20-25 км.) в нижней стратосфере существует так называемый озоновый слой - область с наибольшим содержанием озона, который образуется под воздействием ультрафиолетового солнечного излучения (более подробно об этом процессе вы можете узнать на странице ). Озоновый слой или озоносфера имеет чрезвычайную важность для поддержания жизни всех организмов живущих на суше, поглощая смертельно опасные ультрафиолетовые лучи с длиной волны до 290 нм. Именно по этой причине выше озонового слоя живые организмы не живут, он является верхней границей распространения жизни на Земле.

Под воздействием озона также изменяются магнитные поля, атомы распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений.

Слой атмосферы лежащий выше стратосферы называется мезосферой. Для него характерно понижение температуры воздуха с высотой со средним вертикальным градиентом 0,25-0,3°/100 м, что приводит к сильной турбулентности. У верхних границ мезосферы в области называемой мезопаузой были отмечены температуры до -138°С, что является абсолютным минимумом для всей атмосферы Земли в целом.

Здесь же в пределах мезопаузы проходит нижняя граница области активного поглощения рентгеновского и коротковолнового ультрафиолетового излучения Солнца. Подобный энергетический процесс получил название лучистый теплообмен. В результате происходит нагревание и ионизация газа, что обусловливает свечение атмосферы.

На высотах 75-90 км у верхних границ мезосферы были отмечены особые облака, занимающие в полярных регионах планеты обширные площади. Называют эти облака серебристыми из-за их свечения в сумерках, которое обусловлено отражением солнечных лучей от ледяных кристаллов, из которых эти облака состоят.

Давление воздуха в пределах мезопаузы в 200 раз меньше чем у земной поверхности. Это говорит о том, что практически весь воздух атмосферы сосредоточен в её 3 нижних слоях: тропосфере, стратосфере и мезосфере. На вышележащие слои термосферу и экзосферу приходится лишь 0,05% массы всей атмосферы.

Термосфера лежит на высотах от 90 до 800 км над поверхностью Земли.

Для термосферы характерен непрерывный рост температуры воздуха до высот 200-300 км, где она может достигать 2500°C. Рост температуры происходит за счёт поглощения молекулами газа рентгеновского и коротковолновой части ультрафиолетового излучения Солнца. Выше 300 км над уровнем моря рост температуры прекращается.

Одновременно с ростом температуры снижается давление, и, следовательно, плотность окружающего воздуха. Так если у нижних границ термосферы плотность составляет 1,8×10 -8 г/см 3 , то у верхних уже 1,8×10 -15 г/см 3 , что примерно соответствует 10 млн. - 1 млрд. частиц в 1 см 3 .

Все характеристики термосферы, такие как состав воздуха, его температура, плотность, подвержены сильным колебаниям: в зависимости от географического положения, сезона года и времени суток. Меняется даже расположение верхней границы термосферы.

Самый верхний слой атмосферы называется экзосферой или слоем рассеяния. Его нижняя граница постоянно меняется в очень широких пределах; за среднюю же величину принята высота 690-800 км. Устанавливается она там, где вероятностью межмолекулярных или межатомных столкновений можно пренебречь, т.е. среднее расстояние, которое преодолеет хаотически движущаяся молекула до столкновения с другой такой же молекулой (т.н. свободный пробег) будет настолько велико, что фактически молекулы с вероятностью близкой к нулю не столкнуться. Слой где имеет место сказываться описанное явление называется термопаузой.

Верхняя граница экзосферы лежит на высотах 2-3 тыс.км. Она сильно размыта и постепенно переходит в ближнекосмический вакуум. Иногда, по этой причине, экзосферу считают частью космического пространства, а за её верхнюю границу принимают высоту 190 тыс.км, на которой влияние давления солнечного излучения на скорости атомов водорода превышает гравитационное притяжение Земли. Это т.н. земная корона, состоящая из атомов водорода. Плотность земной короны очень мала: всего 1000 частиц в кубическом сантиметре, но и это число более чем в 10 раз превышает концентрацию частиц в межпланетном пространстве.

В связи в чрезвычайной разреженностью воздуха экзосферы частицы движутся вокруг Земли по эллиптическим орбитам, не сталкиваясь между собою. Некоторые же из них, двигаясь по разомкнутым или гиперболическим траекториям с космическими скоростями (атомы водорода и гелия) покидают пределы атмосферы и уходят в космическое пространство, по причине чего экзосферу называют сферой рассеяния.

Последние материалы раздела:

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...