Стеариновая кислота: свойства, назначение, технологии получения. Стеариновая кислота

Стеариновая кислота (октадециловая кислота, октадекановая кислота) – одноосновная карбоновая кислота алифатического ряда.

Физико-химические свойства.

Брутто-формула: C 18 H 36 O 2 .

Структурная формула:

C O O H

Химически чистая стеариновая кислота имеет вид бесцветных моноклинных кристаллов. Не имеет запаха. Распадается при нагревании, образуя оксиды углерода. Растворяется в водных растворах щелочей (с образованием стеаратов). Температура плавления 69,4÷72°C. Температура разложения 370°C. Температура кипения 370°C.

Входит в состав жиров и масел. В виде глицеридов является важнейшей составляющей твердых жиров, преимущественно триглицеридов животного происхождения, которые выполняют функцию энергетического накопителя в организме животного. Стеариновая кислота синтезируется в животном организме из пальмитиновой кислоты под воздействием элонгаз – ферментов, ответственных за длину алифатической цепи. Она также находится в полужидких жирах, в частности в пальмовом масле, однако в значительно меньшем количестве, чем в жирах животного происхождения. В малых количествах эту кислоту можно встретить в некоторых видах нефти. Широкому кругу потребителей техническая стеариновая кислота известна также как стеарин, который представляет собой смесь стеариновой и пальмитиновой кислот.

Применение.

В настоящее время стеариновая кислота используется в различных областях промышленности. Полифункциональный характер стеариновой кислоты позволяет использовать ее в качестве активатора ускорителей вулканизации, диспергатора наполнителей резиновых смесей, мягчителя (пластификатора). При непосредственном введении в каучук она улучшает распределение ингредиентов и обрабатываемость резиновых смесей. Склонность стеарина к миграции способствует снижению клейкости резиновых смесей.

Фармакопейная стеариновая кислота широко применяется в фармацевтической промышленности. В косметической промышленности стеариновая кислота используется в качестве структурообразующего и эмульгирующего компонента в кремах, мыле и моющих средствах.

Стеариновую кислоту используют в аналитической химии при нефелометрическом определении кальция, магния и лития, а также качестве жидкой фазы в распределительной газо-жидкостной хроматографии для разделения смеси жирных кислот. При полировании металлов стеариновая кислота является компонентом полировальных паст.

Это соединение применяется не только в качестве функционального химиката, но и как химическое сырье. Например, для получения октадецилового (стеарилового) спирта, который употребляется как структурообразователь и эмолент в кремах и пеногаситель в моющих средствах. В промышленности стеариновая кислота используется также для синтеза октадециламина.

Производные и соли октадециламина применяются в качестве эмульгаторов и добавок к битумам в дорожном строительстве; флотоагентов прямой и обратной флотации при обогащении калийных и фосфоритных руд, полевого шпата, слюды; антислеживателей неорганических солей и удобрений; ингибиторов коррозии в кислых средах; деэмульгаторов необработанной нефти в нефтяной промышленности; компонентов антистатиков; отвердителей эпоксидных смол.

Из солей стеариновой кислоты применяют стеарат натрия как анионное ПАВ, в качестве моющего средства и компонента косметических изделий, загустителя смазок, стабилизатора при формовании полиамидов и антивспенивающей добавки в пищевой промышленности, а также стеарат кальция – в качестве загустителя смазок, стабилизатора поливинилхлорида и наружной смазки при формовании изделий из него, вспомогательного сиккатива и матирующего вещества в лакокрасочных материалах, гидрофобизатора для цемента и тканей, добавки, препятствующей слеживанию муки, эмульгатора для косметических препаратов. Кроме того, в производстве масляных лаков используется стеарат магния. Стеарат цинка применяют в медицине, производстве каучука, пластмасс и клеенки. Стеарат меди используется для бронзирования гипса и в качестве агента, препятствующего обрастанию. Стеарат свинца применяют в качестве сиккатива. Водорастворимые соли стеариновой кислоты, в частности стеараты натрия, калия и аммиака, являются мылами. Эфиры стеариновой кислоты применяют в качестве компонентов клеящих паст, антиоксидантов, эмульсий для обработки текстиля и кожи, стабилизаторов пищевых продуктов. Сложные эфиры стеариновой кислоты представлены этил- и бутилстеаратами, применяемыми в качестве пластификаторов, и гликольстеаратом, который используется как заменитель натурального воска.

Опасность стеариновой кислоты для здоровья.

Ингаляция: кашель, затрудненное дыхание.

Глаза: покраснение, боли.

Прием внутрь: задержка стула.

Получение.

В настоящее время основным способом производства стеариновой кислоты в мире остается гидролиз животных и растительных жиров, а также растительных масел. Основным сырьем при этом является пальмовое масло, кокосовое масло, рапсовое масло, стеариновую кислоту также можно выделять из соевого и подсолнечного масла.

Также перспективным возобновляемым источником сырья для получения стеариновой кислоты считается талловое масло – побочный продукт переработки крафт-целлюлозы. Сырое талловое масло в равных пропорциях содержит жирные и смоляные кислоты и в меньших количествах, неомыляемые вещества. Очищенное талловое масло имеет повышенное содержание жирных кислот, в том числе ненасыщенных – линолевой (45–50%), олеиновой (30–35%) и насыщенных – стеариновой (10%) и пальмитиновой (5%).

Остановимся на основных методах получения стеариновой кислоты: гидролиз жиров и гидрирование непредельных кислот. Животные жиры – непревзойденные помощники в деле извлечения стеариновой кислоты. Для получения конечного продукта жир должен пройти обработку щелочными растворами, кислотой или просто водой при высокой температуре для расщепления глицеридов на глицерин и свободные кислоты, включая стеариновую.

Наиболее распространенный метод получения чистой стеариновой кислоты предполагает применение раствора щелочи. В результате образуется мыло, расщепляющееся под воздействием соляной или серной кислоты, затем смесь кипятится, пока выделившаяся смесь жирных кислот не сделается совершенно прозрачной. После охлаждения застывшую твердую массу промывают водой.

В настоящее время производство стеариновой кислоты происходит в гидролизном цехе, или так называемомй гидрозаводе. В качестве сырьевой базы используется подсолнечное или растительное неочищенное масло (или другие растительные или животные жиры). При использовании рапсового масла качество стеарина хуже – выше йодное число. На первой стадии производства сырье разделяют на фракции – жиры и воду. На второй стадии идет процесс образования соапстока, который затем насыщают водородом, в результате чего образуется саломас. При температуре 200°С и с помощью катализатора саломас расщепляют до воды и масла. Заключительная стадия предполагает извлечение стеарина из полученной жирной кислоты.

Технология производства стеариновой кислоты из нефтехимического сырья.

В условиях роста спроса на стеариновую кислоту возникает проблема нехватки природного сырья, в связи с чем, растет популярность синтетических жирных кислот (СЖК), получаемых из нефтехимического сырья. Стеариновая кислота, полученная методом синтеза, является химически чистым продуктом и применяется в тех же областях, что и кислота полученная гидролизом растительных и животных жиров.

Одним из способов получения жирных кислот является синтез из олефинов в присутствии карбонила кобальта:

Гидрокарбоксилирование при 145–165°С и 5–30 МПа:
R-CH=CH 2 + CO + H 2 O> RCH 2 CH 2 COOH;

Гидрокарбоалкоксилирование при 165–175°С и 5–15 Мпа с последующим гидролизом образующегося эфира:

R-CH=CH 2 + СО + R"OH> RCH 2 CH 2 COOR"> RCH 2 CH 2 COOH + R"OH.

Преимуществами этой технологии являются малостадийность и высокий выход кислот. Однако довольно жесткие условия и образование большого количества кислот изо-строения осложняют процесс. СЖК можно синтезировать также гидрокарбоксилированием олефинов в присутствии кислот, например, H 2 SO 4 , HF, ВF 3 , при 50–100 °С, давлении 5–15 МПа. При использовании сокатализаторов (карбонилов Сu и Ag) реакцию можно вести при 0–30 °С и 0,1 МПа. Получают в основном смеси кислот изостроения. Они отличаются низкими температурами плавления и кипения, высокой вязкостью, хорошей растворимостью. Недостаток метода – высокоагрессивная среда. СЖК фракции С 12 –С 15 , C 16 –С 18 также получают методом оксосинтеза. На первой стадии с помощью гидроформилирования получают альдегиды, которые впоследствии могут быть превращены в спирты и/или окислены до жирных кислот. Получаемые кислоты содержат меньше побочных продуктов, чем кислоты, синтезируемые из парафинов. Однако данный способ в СНГ утратил свою актуальность в связи с отсутствием сырья и закрытием всех производств жирных спиртов.

В 1959 году в СССР было принято решение о внедрении в производство мыла на основе СЖК в качестве альтернативы природным жирным кислотам. В 1966 году мировой объем выпуска СЖК фракций С5–С30 составил 204,5 тыс. тонн, в том числе фракций С 10 – С 20 – 107,5 тыс. тонн. 14,9 тыс. тонн СЖК перерабатывалось в жирные спирты, которые впоследствии использовались при изготовлении синтетических моющих средств. Согласно некоторым данным, в СССР было запланировано в течение одной пятилетки произвести порядка 373 тыс. тонн СЖК. На то время основным способом получения СЖК в СССР было низкотемтературное жидкофазное окисление парафинов. Недостатки приведенного выше процесса: невысокий выход целевой фракции С 10 – С 20 (около 50% на сырье), низкое качество кислот, обусловленное присутствием до 3% побочных продуктов (дикарбоновых, кето- и гидроксикарбоновых кислот и др.).

А также большой объем сточных вод (до 8 м 3 на 1 т кислот), загрязненных Na 2 SO 4 и низкомолекулярными кислотами. В советские времена в России и Украине объемы выпуска синтетических жирных кислот исчислялись сотнями тысяч тонн. Однако в начале 90-х гг. волна повсеместного закрытия цехов по выпуску этой продукции охватила такие крупные промышленные предприятия, как Шебекинский химический завод (Белгородская область, Россия), Волгоградский НПЗ (Россия), Волгодонский НПЗ (Россия), «Омскнефтеоргсинтез» (Омская область, Россия), Надворненский НПЗ (Ивано-Франковская область, Украина) и Бердянский опытный нефтемаслозавод (Запорожская область, Украина). Последним, в 2001 году, было закрыто производство СЖК на предприятии ОАО «Уфанефтехим» (Республика Башкортостан, Россия). Ликвидация данных производств была обусловлена, прежде всего, нерентабельностью существующих технологий: низкое качество кислот, с присутствием до 3% побочных продуктов (дикарбоновых, кето- и гидроксикарбоновых кислот и др.), большой объем сточных вод (до 8 м 3 на 1 т кислот), загрязненных Na 2 SO 4 и низкомолекулярными кислотами. Кроме того, дефицитной является сырьевая база узких фракций С 16 – С 18 . Сейчас уже можно сказать, что промышленное производство СЖК как в мире в целом, так и в странах Содружества в частности, прекратило существование.

Знаком Е470 маркируются вещества, или даже группа веществ, которые используются как пищевые добавки. Эти синтетические концентраты применяются для предотвращения слеживания или склеивания некоторых сыпучих продуктов. Относятся по большей части к категории эмульгаторов, диспергаторов, разделителей, стабилизаторов пены.

Основные характеристики веществ

Другими названиями данной пищевой добавки являются: кальциевые, алюминиевые, натриевые, магниевые, аммонийные и калиевые соли карбоновых жирных кислот, стеараты кальция, магния, аммония, калия, натрия и алюминия, Е470, Salts of fatty acids (with base Ca, Al, Mg, Na, К and NH4), Salts of myristic, соли алифатических жирных кислот, Palmitic and stearic fatty acids.

Такие вещества обычно на внешний вид напоминают зерна, чешуйки или порошок. Цвет их варьируется от белого, до желто-коричневого и даже бурого. Некоторые соли очень хорошо растворяются в , а вот кальциевая соль нерастворима ни в воде, ни в этиловом , ни в эфирах.

В натуральном виде в природе чаще всего Е470 встречается при омылении в процессе их расщепления в человеческом организме при метаболизме.

Химическим путем такую пищевую добавку получают при помощи молекулярных реакций, причем при этом не играет роли отгонка жирных пищевых кислот. В процессе производства образуются различные примеси: глицерин, моноглицериды, вода, диглицериды, неомыляемые жиры и жирные кислоты.

Данные вещества быстро, легко и в полном количестве усваиваются человеческим организмом.

Применение солей жирных кислот

Основным назначением группы таких веществ является препятствование слеживанию сыпучих продуктов: сухих супов и сухих бульонов, сахарной пудры, и других видов пищевой продукции. Наименование стеарат чаще всего употребляют для названия всех солей , а олеат, в свою очередь, – для .

Хорошо зарекомендовала себя такая добавка в фармакологической отрасли, способствуя лучшему спрессовыванию и скольжению гранулятов, таблеток, экструзионных продуктов.

Применимы соли алифатических карбоновых кислот и в косметологической промышленности, при производстве моющих и чистящих средств, бытовой химии, а также при переработке макулатуры.

По законам Российской Федерации производство таких веществ не запрещено, но жестко ограничено рамками допустимого количества. В европейских странах и на Украине такая пищевая добавка запрещена для изготовления.

Полезные и вредные свойства пищевой добавки Е470

По сути своей соли алифатических карбоновых кислот не несут организму человека никакой опасности, но несмотря на это существуют жестко установленные и контролируемые нормы на ее употребление. Их разрешено добавлять в пищевые продукты лишь в количестве шести процентов от общей массы готовой продукции.

В основном это связано с образованием и наличием в них множества различных вредных примесей. Соответственно вред организму наносят лишь те добавки, примеси в которых остаются при их образовании. Поэтому категорически противопоказано употреблять такие вещества людям, страдающими нарушениями обменных процессов в организме. В некоторых случаях может спровоцировать возникновение и развитие заболеваний органов желудочно-кишечного тракта.

Безопасность же данных продуктов гарантирована полным усвоением веществ в организме, отсутствием побочных реакций при соблюдении правил и норм употребления.

Подводя итоги

Пищевая добавка Е470 является синтетически выведенным веществом, применяющимся в медицинской, пищевой, косметологической и фармацевтической промышленности. Употребляемая в допустимых нормируемых дозировках не причиняет никакого вреда организму и не вызывает негативных побочных реакций после использования. Нежелательно применять такую добавку людям с нарушениями обмена веществ. При приеме повышенных доз возможно развитие заболеваний желудочно-кишечного тракта.

Напишите отзыв о статье "Стеарат калия"

Отрывок, характеризующий Стеарат калия

– Мы хотим дать новую судебную власть Сенату, а у нас нет законов. Поэтому то таким людям, как вы, князь, грех не служить теперь.
Князь Андрей сказал, что для этого нужно юридическое образование, которого он не имеет.
– Да его никто не имеет, так что же вы хотите? Это circulus viciosus, [заколдованный круг,] из которого надо выйти усилием.

Через неделю князь Андрей был членом комиссии составления воинского устава, и, чего он никак не ожидал, начальником отделения комиссии составления вагонов. По просьбе Сперанского он взял первую часть составляемого гражданского уложения и, с помощью Code Napoleon и Justiniani, [Кодекса Наполеона и Юстиниана,] работал над составлением отдела: Права лиц.

Года два тому назад, в 1808 году, вернувшись в Петербург из своей поездки по имениям, Пьер невольно стал во главе петербургского масонства. Он устроивал столовые и надгробные ложи, вербовал новых членов, заботился о соединении различных лож и о приобретении подлинных актов. Он давал свои деньги на устройство храмин и пополнял, на сколько мог, сборы милостыни, на которые большинство членов были скупы и неаккуратны. Он почти один на свои средства поддерживал дом бедных, устроенный орденом в Петербурге. Жизнь его между тем шла по прежнему, с теми же увлечениями и распущенностью. Он любил хорошо пообедать и выпить, и, хотя и считал это безнравственным и унизительным, не мог воздержаться от увеселений холостых обществ, в которых он участвовал.
В чаду своих занятий и увлечений Пьер однако, по прошествии года, начал чувствовать, как та почва масонства, на которой он стоял, тем более уходила из под его ног, чем тверже он старался стать на ней. Вместе с тем он чувствовал, что чем глубже уходила под его ногами почва, на которой он стоял, тем невольнее он был связан с ней. Когда он приступил к масонству, он испытывал чувство человека, доверчиво становящего ногу на ровную поверхность болота. Поставив ногу, он провалился. Чтобы вполне увериться в твердости почвы, на которой он стоял, он поставил другую ногу и провалился еще больше, завяз и уже невольно ходил по колено в болоте.
Иосифа Алексеевича не было в Петербурге. (Он в последнее время отстранился от дел петербургских лож и безвыездно жил в Москве.) Все братья, члены лож, были Пьеру знакомые в жизни люди и ему трудно было видеть в них только братьев по каменьщичеству, а не князя Б., не Ивана Васильевича Д., которых он знал в жизни большею частию как слабых и ничтожных людей. Из под масонских фартуков и знаков он видел на них мундиры и кресты, которых они добивались в жизни. Часто, собирая милостыню и сочтя 20–30 рублей, записанных на приход, и большею частию в долг с десяти членов, из которых половина были так же богаты, как и он, Пьер вспоминал масонскую клятву о том, что каждый брат обещает отдать всё свое имущество для ближнего; и в душе его поднимались сомнения, на которых он старался не останавливаться.
Всех братьев, которых он знал, он подразделял на четыре разряда. К первому разряду он причислял братьев, не принимающих деятельного участия ни в делах лож, ни в делах человеческих, но занятых исключительно таинствами науки ордена, занятых вопросами о тройственном наименовании Бога, или о трех началах вещей, сере, меркурии и соли, или о значении квадрата и всех фигур храма Соломонова. Пьер уважал этот разряд братьев масонов, к которому принадлежали преимущественно старые братья, и сам Иосиф Алексеевич, по мнению Пьера, но не разделял их интересов. Сердце его не лежало к мистической стороне масонства.
Ко второму разряду Пьер причислял себя и себе подобных братьев, ищущих, колеблющихся, не нашедших еще в масонстве прямого и понятного пути, но надеющихся найти его.
К третьему разряду он причислял братьев (их было самое большое число), не видящих в масонстве ничего, кроме внешней формы и обрядности и дорожащих строгим исполнением этой внешней формы, не заботясь о ее содержании и значении. Таковы были Виларский и даже великий мастер главной ложи.
К четвертому разряду, наконец, причислялось тоже большое количество братьев, в особенности в последнее время вступивших в братство. Это были люди, по наблюдениям Пьера, ни во что не верующие, ничего не желающие, и поступавшие в масонство только для сближения с молодыми богатыми и сильными по связям и знатности братьями, которых весьма много было в ложе.
Пьер начинал чувствовать себя неудовлетворенным своей деятельностью. Масонство, по крайней мере то масонство, которое он знал здесь, казалось ему иногда, основано было на одной внешности. Он и не думал сомневаться в самом масонстве, но подозревал, что русское масонство пошло по ложному пути и отклонилось от своего источника. И потому в конце года Пьер поехал за границу для посвящения себя в высшие тайны ордена.

Помимо стеариновой кислоты отечественного производства на рынке также присутствует кислота импортного производства. В нижеследующих таблицах укажем основные требования и технические характеристики стеариновой кислоты из Китая и Малайзии.

МАЛАЙЗИЯ

Стеариновая кислота STEARIC ACID Palmera B1810

Показатель

Норма
Кислотное число, мг КОН/г 195,0 минимально
Число омыления, мг КОН/г 196,0 минимально
Йодное число, J2/100г 8,0 максимально
Температура плавления, °С 52,0 минимально
Цветность 2 максимально

КИТАЙ

Стеариновая кислота SA 1801

Показатель

Норма
Кислотное число, мг КОН/г 192,0-218,0
Число омыления, мг КОН/г 193,0-220,0
Йодное число, J2/100г 8,0 максимально
Температура плавления, °С 52,0 минимально

Области применения стеариновой кислоты

В настоящее время стеариновая кислота используется в различных областях промышленности. Полифункциональный характер стеариновой кислоты позволяет использовать ее в качестве активатора ускорителей вулканизации, диспергатора наполнителей резиновых смесей, мягчителя (пластификатора). При непосредственном введении в каучук она улучшает распределение ингредиентов и обрабатываемость резиновых смесей. Склонность стеарина к миграции способствует снижению клейкости резиновых смесей.

Фармакопейная стеариновая кислота широко применяется в фармацевтической промышленности. В косметической промышленности стеариновая кислота используется в качестве структурообразующего и эмульгирующего компонента в кремах.

Стеариновую кислоту используют в аналитической химии при нефелометрическом определении кальция, магния и лития, а также качестве жидкой фазы в распределительной газо-жидкостной хроматографии для разделения смеси жирных кислот. При полировании металлов стеариновая кислота является компонентом полировальных паст.

Это соединение применяется не только в качестве функционального химиката, но и как химическое сырье. Например, для получения октадецилового (стеарилового) спирта, который употребляется как структурообразователь и эмолент в кремах и пеногаситель в моющих средствах. В промышленности стеариновая кислота используется также для синтеза октадециламина.

Производные и соли октадециламина применяются в качестве эмульгаторов и добавок к битумам в дорожном строительстве; флотоагентов прямой и обратной флотации при обогащении калийных и фосфоритных руд, полевого шпата, слюды; антислеживателей неорганических солей и удобрений; ингибиторов коррозии в кислых средах; деэмульгаторов необработанной нефти в нефтяной промышленности; компонентов антистатиков; отвердителей эпоксидных смол.

Из солей стеариновой кислоты применяют стеарат натрия как анионное ПАВ, в качестве моющего средства и компонента косметических изделий, загустителя смазок, стабилизатора при формовании полиамидов и антивспенивающей добавки в пищевой промышленности, а также стеарат кальция - в качестве загустителя смазок, стабилизатора поливинилхлорида и наружной смазки при формовании изделий из него, вспомогательного сиккатива и матирующего вещества в лакокрасочных материалах, гидрофобизатора для цемента и тканей, добавки, препятствующей слеживанию муки, эмульгатора для косметических препаратов. Кроме того, в производстве масляных лаков используется стеарат магния. Стеарат цинка применяют в медицине, производстве каучука, пластмасс и клеенки. Стеарат меди используется для бронзирования гипса и в качестве агента, препятствующего обрастанию. Стеарат свинца применяют в качестве сиккатива. Водорастворимые соли стеариновой кислоты, в частности стеараты натрия, калия и аммиака, являются мылами. Эфиры стеариновой кислоты применяют в качестве компонентов клеящих паст, антиоксидантов, эмульсий для обработки текстиля и кожи, стабилизаторов пищевых продуктов. Сложные эфиры стеариновой кислоты представлены этил- и бутилстеаратами, применяемыми в качестве пластификаторов, и гликольстеаратом, который используется как заменитель натурального воска.

Технология производства стеариновой кислоты

В настоящее время основным способом производства стеариновой кислоты в мире и в России остается гидролиз животных и растительных жиров, а также растительных масел. Основным сырьем при этом является пальмовое масло, кокосовое масло, рапсовое масло, стеариновую кислоту также можно выделять из соевого и подсолнечного масла.

Также перспективным возобновляемым источником сырья для получения стеариновой кислоты считается талловое масло - побочный продукт переработки крафт-целлюлозы. Сырое талловое масло в равных пропорциях содержит жирные и смоляные кислоты и в
меньших количествах, неомыляемые вещества. Очищенное талловое масло имеет повышенное содержание жирных кислот, в том числе ненасыщенных - линолевой (45-50%), олеиновой (30-35%) и насыщенных - стеариновой (10%) и пальмитиновой (5%).

Остановимся на основных методах получения стеариновой кислоты: гидролиз жиров и гидрирование непредельных кислот. Животные жиры - непревзойденные помощники в деле извлечения стеариновой кислоты. Для получения конечного продукта жир должен пройти обработку щелочными растворами, кислотой или просто водой при высокой температуре для расщепления глицеридов на глицерин и свободные кислоты, включая стеариновую.

Наиболее распространенный метод получения чистой стеариновой кислоты предполагает использование раствора щелочи. В результате образуется мыло, расщепляющееся под воздействием соляной или серной кислоты, затем смесь кипятится, пока выделившаяся смесь жирных кислот не сделается совершенно прозрачной. После охлаждения застывшую твердую массу промывают водой.


Тема 10. КАРБОНОВЫЕ КИСЛОТЫ

Карбоновыми кислотами называют органические вещества, в состав которых входит карбоксильная группа -СООН. Карбоксильная группа состоит из соединенных карбонильной и гидроксильной групп, что определило ее название. В карбоновых кислотах карбоксильная группа может быть соединена с атомом водорода и различными углеводородными радикалами (предельными, непредельными, ароматическими) и содержать различное число карбоксильных групп (одну - одноосновные кислоты, две - двухосновные и т.д.). Гомологический ряд предельных одноосновных карбоновых кислот содержит следующие кислоты (в скобках дано распространенное тривиальное название): метановая (муравьиная) кислота НСООН, этановая (уксусная) кислота СН 3 СООН, пропановая (пропионовая) кислота С 2 Н 5 СООН, бутановая (масляная) кислота С 3 Н 7 СООН, пентадекановая (пальмитиновая) кислота C 15 H 31 COOH, гептадекановая (стеариновая) кислота С 17 Н 35 СООН.

Важнейшими представителями других гомологических рядов карбоновых кислот являются (приводятся тривиальные названия): щавелевая кислота НООС-СООН, акриловая кислота СН 2 =СН-СООН, бензойная кислота


Карбоновые кислоты с разветвленным углеродным скелетом по заместительной номенклатуре называют так же, как углеводороды: нумеруют основную углеродную цепь, начиная с карбоксильного углерода, и добавляют окончание -овая и слово «кислота», например:
СН 3

5 4 3 2 1 6 5 4| 3 2 1

СН 3 –СН–СН 2 –СН–СООН СН 3 –СН– С – СН–СН 2 –СООН

СН 2 СН 3 СН 3 СН 3 СН 3

2,4-диметилпентановая 3,4,4,5-тетраметилгексановая

кислота кислота
Получение. Кислоты получают окислением альдегидов или первичных спиртов, например:


∕ ∕ KMnО 4 ∕ ∕

СН 3 –С +[О] → СН 2 –С


О
СН 2 –СН 2 ОН+2[О]→СН 3 –С +Н 2 О
Кислоты образуются при гидролизе их азотсодержащих производных - нитрилов:

СН 3 –С=N+2Н 2 О→СН 3 –С +NН 3
Кислоты, начиная с пропионовой, могут быть получены по реакции присоединения воды и оксида углерода (II) к алкенам (в присутствии катализаторов):

СН 3 –СН=СН 2 +СО+Н 2 О→СН 3 –СН–С
СН 3 ОН
существуют специальные способы получения некоторых кислот:
NaОН+СО→НСООNa;

2НСООNa+H 2 SO 4 →2HCOOH+NaSO 4 ;

СН 3 ОН+СО → СН 3 СООН.


Свойства. Карбоновые кислоты проявляют свойства обычных кислот, реагируя с основаниями, основными оксидами, некоторыми металлами. Для них также характерны следующие свойства.

1. Карбоновые кислоты склонны к некоторой диссоциации (являются слабыми электролитами):


СН 3 –СООН СН 3 –СОО – +Н + .

2. Кислоты взаимодействуют со спиртами, образуя сложные эфиры (катализатор - минеральные кислоты):


О

С 2 Н 5 –СО|ОН+Н |О–С 2 Н 5 →С 2 Н 5 –С–СОС 2 Н 5 +Н 2 О

этилпропионат


3. С галогенпроизводными соединениями серы (SOC1 2) и фосфора (РС1 3 , РС1 5) карбоновые кислоты образуют хлорангидриды:
∕ ∕ ∕ ∕

СН 3 –С +PCl 5 →СН 3 –С +POCl 3 +HCl


а с водоотнимающими веществами (Р 2 О 6) - ангидриды кислот:
∕ ∕ Р 2 О 5 | | | |

2С 2 Н 5 –С → С 2 Н 5 –С–О–С–С 2 Н 5 +Н 2 О

ОН
Хлорангидриды и ангидриды легко гидролизуются до соответствующих кислот.

4. Как и в карбонильных соединениях, в кислотах атом водорода при втором углеродном атоме замещается на галоген:
СН 3 –СН 2 –СООН+Cl 2 →СН 3 –СНСl–СООН+НСl.
5. Кислоты можно восстановить или подвергнуть каталитическому гидрированию до альдегидов или первичных спиртов:
СН 3 –СООН+Н 2 →СН 3 –СОН+Н 2 О
или
СН 3 –СООН+2Н 2 →СН 3 –СН 2 ОН+Н 2 О.
Предельные карбоновые кислоты достаточно устойчивы к окислению. Лишь муравьиная кислота легко окисляется, например, дает реакцию «серебряного зеркала»:
НСООН+AgО→СО 2 +Ag+Н 2 О.
Непредельные и ароматические кислоты проявляют наряду с общими свойствами карбоновых кислот также и свойства, характерные для непредельных и ароматических соединений.

Пример:

1.Рассчитайте объем оксида углерода (II), приведенный к нормальным условиям, который потребуется для получения раствора муравьиной кислоты массой 16,1 кг. Массовая доля НСООН в растворе, который требуется получить, равна 40%.


Дано: m=16,1 кг; w (НСООН)=40%

______________________________

V(СО)=?
Решение. 1.1. Вычисляем массу НСООН, которая содержится в получаемом растворе:

1.2. Количество вещества НСООН равно:


1.3. Муравьиная кислота образуется при взаимодействии оксида углерода (II) с гидроксидом натрия с последующим подкислением реакционной смеси. Составляем уравнения реакций:
CO+NaOH→HCOONa,

HCOONa+H 2 SO 4 →HCOOH+Na 2 SO 4 .


Из этих уравнений следует, что
n(CO)=n(HCOOH); n(СО)=0,14 кмоль=140 моль.
1.4. Вычисляем объем требуемого оксида углерода (II), приведенный к нормальным условиям:

V(CO)=n(CO) ∙V m ; V(CO)=140 моль ∙22,4 л/моль=3136 л.


Пример:

2. Рассчитайте объем уксусной эссенции (плотность 1,07 г/мл), которую надо разбавить водой для приготовления столового уксуса объемом 500 мл (плотность 1,007 г/мл). Массовая доля уксусной кислоты в уксусной эссенции равна 80%, а в уксусе - 6%.


Дано: w 1 (СН 3 СООН)=80%; ρ 1 =1,07 г/мл;

w 2 (CН 3 СООН)=6%; ρ 2 =1,007 г/мл; V 2 =500 мл;

(индексы «1» относятся к уксусной эссенции,

«2» - к уксусу)

_____________________________________________

V 1 =?
Решение. 2.1. Определяем массу раствора уксуса, который надо приготовить:
m 2 =V 2 ρ 2 ; m 2 =500 мл ∙1,007 г/мл=503,5 г.
2.2. Вычисляем массу уксусной кислоты, которая содержится в уксусе:


2.3. Рассчитываем массу уксусной эссенции, которая содержит уксусную кислоту массой 30,21 г:

2.4. Находим объем уксусной эссенции, которую надо разбавить для приготовления уксуса:


Пример:

3.На нейтрализацию предельной одноосновной кислоты массой 7,4 г затрачен раствор с массовой долей гидроксида калия 40% объемом 10 мл и плотностью 1,4 г/мл. Определите формулу кислоты.


Дано: кислота С х Н 2х+1 СООН (вещество А); m(А)=7,4 г;

w (КОН)=40%; V=10 мл; ρ=1,4 г/мл

_______________________________________________

х=?
Решение. 3.1. Вычисляем массу раствора гидроксида калия, затраченного на нейтрализацию кислоты: m=Vρ; m=10 г ∙1,4 г/мл = 14г.

3.2. Определяем массу гидроксида калия, содержащегося в растворе:



3.3. Количество вещества КОН составляет:

3.4. Молярную массу кислоты А можно представить в следующем виде:
М(А)=(х+1)М(С)+(2х+1+1)М(Н)+2М(О);

М(А)=[(х+1)12+(2х+2)1+2 ∙16] г/моль=(14+46) г/моль.


3.5. Рассчитываем количество вещества кислоты, взятой для реакции:

n(A)=


3.6. Составляем уравнение реакции нейтрализации кислоты:
С х Н 2х+1 СООН+КОН→С х Н 2х+1 СООК+Н 2 О.
Из этого уравнения реакции следует, что
n(КОН)=n(А),

отсюда


0,1=

Решая это уравнение, находим, что х=2. Таким образом, формула кислоты С 2 Н 5 СООН (пропионовая кислота).

Пример:

4.Объемная доля метана в природном газе составляет 94,08%. Рассчитайте массу муравьиной кислоты, которую можно получить путем каталитического окисления природного газа объемом 200 л (нормальные условия), если массовая доля выхода кислоты составляет 60%.


Дано: φ(СН 4)=94,08%; V=200 л; η(НСООН)=60%

___________________________________________

m(НСООН)=?
Решение. 4.1. Рассчитываем объем метана, который содержится в природном газе:
V(CН 4)=
4.2. Количество вещества метана составляет:

4.3. Составляем уравнение реакции получения муравьиной кислоты из метана:
СН 4 +3[О]→НСООН+Н 2 О.
Из этого уравнения следует, что
n(HCOOH)=n(CH 4); n(НСООН)=8,4 моль.
4.4. Масса муравьиной кислоты, которая могла бы быть получена при количественном выходе, равна:
m(HCOOH)=n(HCOOH)∙M(HCOOH);

m(HCOOH)=8,4 моль ∙46 г/моль=386,4 г.


4.5. Учитывая массовую долю выхода продукта, рассчитываем массу кислоты, которая будет получена:

(выполнение в тетради)
191. Назовите следующие кислоты по заместительной номенклатуре:
а) СН 3 –СН–СН–СН 2 –СООН; б) НООС–СН 2 –СН–СН–СН 2 –СООН;
СН 3 СН 3 СН 3 СН 3

в) СН 3 –СН 2 –СН 2 –СН–СН 2 –СООН.

192. Напишите структурные формулы следующих кислот: а) З-метил-2-этилгексановая кислота; б) 4,5-ди-метилоктановая кислота; в) 2,2,3,3-тетраметилпентано-вая кислота.

193. Рассчитайте массу бутановой кислоты, которая образуется при окислении бутанола-1 массой 40,7 г.

194. В результате каталитического окисления пропана получена пропионовая кислота массой 55,5 г. Массовая доля выхода продукта равна 60,%. Рассчитайте объем взятого пропана (условия нормальные).

195. Напишите структурные формулы изомерных карбоновых кислот, соответствующих эмпирической формуле C 5 H 10 О 2 . Сколько может быть таких кислот?

196. В четырех пробирках находятся следующие вещества: муравьиная кислота, пропионовая кислота, метанол, уксусный альдегид. При помощи, каких химических реакций можно различить названные вещества? Составьте уравнения этих реакций.

197. С помощью, каких химических реакций можно осуществить следующие превращения:


а) СН 4 →СН 3 Cl→СН 3 ОН→НСОН→НСООН→→СО 2 ;

б) СН 4 →С 2 Н 2 →СН 3 →СОН→СН 3 –СООН→СН 2 Cl–СООН.


Напишите уравнения реакций, укажите условия их протекания.

198. Сколько изомерных одноосновных карбоновых кислот соответствует формуле C6H 12 O 2 ? Напишите структурные формулы этих кислот и назовите по заместительной номенклатуре.

199. Напишите уравнения реакций между следующими веществами: а) 2-метилпропановой кислотой и хлором; б) уксусной кислотой и пропанолом-2; в) акриловой кислотой и бромной водой; г) 2-метилбутановой кислотой и пентахлоридом фосфора РС1 5 .

200. Имеются растворы, в которых массовая доля уксусной кислоты равна 90 и 10%. Рассчитайте массу каждого раствора, которая потребуется для приготовления 200 г раствора кислоты с массовой долей СН 3 СООН 40%.

201. Калиевая соль стеариновой кислоты C 17 H 35 COOН (стеарат калия) является основным компонентом жидкого мыла. Рассчитайте массу стеариновой кислоты, которую можно получить из мыла, содержащего стеарат калия массой 96,6 г. Выход кислоты составляет 75%.

202. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:


С 2 Н 5 –С →

О О
→С 2 Н 5 –С–О–С–С 2 Н 5

→С 2 Н 5 –СООН-

→СН 3 –СН 2 –СН 2 ОН→СН 3 –СН=СН 2 .
Укажите условия протекания реакций.

203. Рассчитайте объем метана (нормальные условия), который можно получить при нагревании уксусной кислоты массой 24 г с избытком гидроксида натрия. Массовая доля выхода метана равна 35%.

204. При окислении муравьиной кислоты получен газ, который пропустили через избыток раствора гидроксида кальция. При этом образовался осадок массой 20 г. Рассчитайте массу муравьиной кислоты.

205. Рассчитайте массу бензойной кислоты, которая может быть получена при окислении толуола массой 7,36 г. Массовая доля выхода кислоты равна 55%.

206. При пропускании хлора в раствор уксусной кислоты (массовая доля СН 3 СООН равна 75%) получена хлоруксусная кислота. Определите ее массовую долю в растворе, считая, что избыточный хлор и хлороводород удалены из него.

207. В лаборатории имеется раствор уксусной кислоты объемом 240 мл (массовая доля СН 3 СООН 70%, плотность 1,07 г/мл). Рассчитайте объем воды (плотность 1 г/мл), которую надо прилить к нему для получения раствора с массовой долей СН 8 СООН 30%. Изменением объема при смешении раствора и воды пренебречь.

208. Уксусную кислоту получают окислением бутана кислородом воздуха в присутствии катализатора.

Рассчитайте массу раствора кислоты (массовая доля СНзСООН 80%), который можно получить из бутана объемом 67,2 л (нормальные условия). Массовая доля выхода кислоты равна 75%.

209. Окислением пропанола-1 массой 7,2 г получена пропионовая кислота, на нейтрализацию которой затрачен раствор гидроксида натрия объемом 16,4 мл (массовая доля NaOH 20%, плотность 1,22 г/мл). Определите массовую долю выхода кислоты.

210. Назовите вещества А и Б и составьте уравнения реакций, с помощью которых можно осуществить следующие превращения:

а) метан->-А->Б->уксусная кислота;

б) метанол---В---формиат натрия.

Тема 11. СЛОЖНЫЕ ЭФИРЫ. ЖИРЫ

Сложные эфиры образуются по реакции этерификации (взаимодействие карбоновых кислот со спиртами), например:


О О

СН 3 –С–|ОН+Н |О–С 2 Н 5 СН 3 –С–О–С 2 Н 5 +Н 2 О

этилацетат или

уксусноэтиловый эфир
При отщеплении молекулы воды от двух молекул исходных веществ, группа ОН отрывается от молекулы кислоты, а атом водорода - от спирта (показано пункти­ром). Эта реакция обратима. Для смещения равновесия в сторону образования сложного эфира необходимо присутствие сильных кислот.

Можно получить сложные эфиры неорганических кислот. Так, серная кислота образует с метанолом два вида сложных эфиров:

СН 3 О СН 3 О


SO 2 и SO 2
СН 3 О НО
Сложные эфиры вступают в реакцию гидролиза (реакция омыления). Практически необратимое омыление сложных эфиров протекает в присутствии щелочей, например:
О

СН 3 –С–ОС 2 Н 5 +КОН → СН 3 –СООК+С 2 Н 5 ОН.
Жиры или триглицериды - это сложные эфиры глицерина и высших предельных и непредельных карбоновых кислот.

Число углеродных атомов в кислотах, входящих в состав жиров, как правило, больше 8 (иногда - меньше). Примеры жиров:

С 15 Н 31 –СО–О–СН 2 С 17 Н 33 –СО–О–СН 2


С 15 Н 31 –СО–О–СН С 17 Н 33 –СО–О–СН
С 17 Н 35 –СО–О–СН 2 С 17 Н 33 –СО–О–СН 2

триглицерид пальмитиновой триолеат (триглицерид

и стеариновой кислот олеиновой кислоты)

Важное свойство жиров - их способность гидролизоваться (реакция омыления). Омыление жиров протекает необратимо в присутствии щелочей:


С 17 Н 33 СООСН 2

С 17 Н 33 СООСН+3КОН→

С 17 Н 32 СООСН 2

→3С 17 Н 33 СООК+СН 2 ОН–СНОН–СН 2 ОН.

Пример:

1.Рассчитайте массы пропанола-1 и муравьиной кислоты, которые надо взять для получения пропилформиата объемом 200 мл (плотность эфира равна 0,906 г/мл).


Дано: V(эфира)=200 мл; ρ(эфира)=0,906 г/мл

_______________________________________

m=(С 3 Н 7 ОН)=? m(НСООН)=?
Решение. 1.1. Вычисляем массу эфира
О


Н–С–ОС 3 Н 7 ,

который требуется получить:


m(эфира)=V(эфира) ∙ρ(эфира);

m(эфира)=200 мл ∙0,906 г/мл=181,2 г.


1.2. Количество вещества эфира, который требуется получить, равно:

1.3. Составляем уравнение реакции этерификации:
О
НСООН+С 3 Н 7 ОН Н–С–ОС 3 Н 7 +Н 2 О.
Из этого уравнения следует:
n(НСООН)=n(эфира); n(НСООН)=2,06 моль,

n(С 3 Н 7 ОН)=n(эфира); n(С 3 Н 7 ОН)=2,06 моль.


1.4. Вычисляем массу требуемой кислоты:
m(НСООН)=n(НСООН) ∙М(НСООН);

m(НСООН)=2,06 моль ∙46 г/моль=94,76 г.


1.5. Рассчитываем массу спирта, который потребуется для реакции:
m(С 3 Н 7 ОН)=n(С 3 Н 7 ОН) ∙М(С 3 Н 7 ОН);

m(С 3 Н 7 ОН)=2,06 моль ∙60 г/моль=123,6 г.


Пример:

2.При гидролизе жира массой 44,33 г получен глицерин массой 5,06 г и предельная одноосновная карбоновая кислота. Определите формулу жира.


С х Н 2х+1 СООСН 2

Дано: жир С х Н 2х+1 СООСН; m(жира)=44,33 г;

С х Н 2х+1 СООСН 2

m(глицерина)=5,06 г

________________________________________

х =?
Решение. 1.1. Вычисляем количество вещества глицерина, полученного при гидролизе жира:


С х Н 2х+1 СООСН 2

2.Молярную массу жира С х Н 2х+1 СООСН можно представить в следующем |

С х Н 2х+1 СООСН 2
виде:
М(жира)=3 (х+2) ∙М(С)+6М(О)+ ∙М(Н);

М(жира)={3(х+2) 12+6 ∙16+ 1} г/моль=(42х+176) г/моль.


1.3. Вычисляем количество вещества жира, подвергнутого гидролизу:

1.4. Составляем уравнение реакции омыления жира:
С х Н 2х+1 СООСН 2 СН 2 ОН

С х Н 2х+1 СООСН+3Н 2 О 3С х Н 2х+1 СООН+СНОН
С х Н 2х+1 СООСН 2 СН 2 ОН
Из уравнения реакции следует:

Следовательно, жир является сложным эфиром глицерина и пальмитиновой кислоты:

С 15 Н 31 СООСН 2

С 15 Н 31 СООСН

С 15 Н 31 СООСН 2 .


Задания для самостоятельного выполнения (выполнение в тетради)
211. Составьте уравнения реакций омыления и гидрирования триглицерида олеиновой кислоты. Какие продукты образуются в результате этих реакций?

212. Рассчитайте массу метилацетата, который можно получить из метанола массой 16 г и уксусной кислоты массой 27 г.

213. Составьте уравнения реакций, с помощью которых можно осуществить следующие превращения:
этил ацетат---ацетат натрия->уксусная кислота->-метилацетат.
При каких условиях протекают эти реакции?

214. Напишите уравнения реакций, при помощи которых из этилацетата можно получить этан.

215. Рассчитайте массу этилацетата, который можно получить из этанола массой 1,61 г и уксусной кислоты массой 1,80 г (реакция этерификации), если выход продукта равен 75%.

216. При нагревании метанола массой 2,4 г и уксусной кислоты массой 3,6 г получен метилацетат массой 3,7 г. Определите массовую долю выхода эфира.

217. Напишите уравнения реакций, при помощи которых можно получить этилацетат из хлорэтана и неорганических реагентов.

218. Рассчитайте массу глицерина, который образуется при щелочном омылении жира (триолеата) массой 331,5 г.

219. Основным компонентом некоторого жира является тристеарат, массовая доля которого составляет 80%. Рассчитайте массы глицерина и стеариновой кислоты, которые могут быть получены при омылении этого жира массой 445 кг.

220. Стеарат калия - важный компонент жидкого мыла. Рассчитайте массы гидроксида калия и тристе-арата, которые потребуются для получения стеарата калия массой 805 кг. Массовая доля выхода продукта составляет 80% из-за производственных потерь.

221. При гидролизе жира массой 445 г получена предельная одноосновная карбоновая кислота массой 426 г и глицерин. Определите формулу жира и назовите его.

Тема 12. УГЛЕВОДЫ

Углеводы, или сахара,- вещества, состав которых обычно выражается формулой С х (Н 2 О) у, где х и у больше или равны трем. Существуют, однако, углеводы, состав которых не отвечает общей формуле. В состав молекул углеводов входят гидроксильные группы, а также остатки альдегидов или кетонов, т.е. углеводы являются альдегидоспиртами или кетоноспиртами.

В растительных организмах углеводы образуются в результате фотосинтеза, который протекает за счет использования энергии солнца с участием зеленого вещества растений - хлорофилла. Суммарное уравнение реакции фотосинтеза можно представить следующим образом:
хСО 2 +уН 2 О→С х (Н 2 О) у +хО 2 .
Моносахариды, или монозы,- простейшие углеводы, которые не подвергаются разложению водой (гидролизу). Наибольшее значение из моноз имеют глюкоза и фруктоза.


Глюкоза (виноградный сахар) имеет состав C 6 H 12 O 6 . Она имеет три формы: альдегидную и две циклические, которые одновременно сосуществуют и могут переходить друг в друга.

Эти формы не являются изомерами, так как не могут быть выделены в индивидуальном виде.

Химические свойства глюкозы обусловлены ее строением. Как спирт она вступает в реакции этерификации с кислотами, например:

Как альдегид глюкоза легко окисляется. При действии аммиачного раствора оксида серебра глюкоза вступает в реакцию серебряного зеркала, окисляясь до спиртокислоты.

Под действием органических катализаторов - ферментов - глюкоза подвергается брожению:


С 6 Н 12 О 6 →2С 2 Н 5 ОН+2СО 2 (спиртовое брожение)

С 6 Н 12 О 6 →2СН 3 –СНОН–СООН (молочнокислое брожение)

молочная кислота
Фруктоза (фруктовый сахар) - изомер глюкозы C 6 H 12 O 6 , но в отличие от глюкозы фруктоза является кетоноспиртом.

Дисахариды представляют собой продукты конденсации двух молекул моносахаридов. При гидролизе одного моля дисахарида образуется два моля моносахаридов.

Важнейший дисахарид - сахароза C 12 H 22 O 11 . Молекулы сахарозы состоят из двух остатков моносахаридов:

Такое строение сахарозы обусловливает ее свойства: в отличие от глюкозы она не вступает в реакции, характерные для альдегидов.

С 12 Н 22 О 11 +Н 2 О→С 6 Н 12 О 6 +С 6 Н 12 О 6 .

глюкоза фруктоза
В присутствии кислот сахароза гидролизуется, образуя два моносахарида:

Полисахариды - продукты конденсации большого числа молекул моносахаридов, полимерные углеводы.

Целлюлоза (клетчатка) - полимерный углеводород, который состоит из структурных остатков β-глюкозы, соединенных в линейные макромолекулы:

Состав целлюлозы выражается формулой (С 6 Н 10 О 5) х.

Целлюлоза входит в состав многих растений (древесина, хлопок, листья).

Целлюлоза подвергается гидролизу до глюкозы при нагревании с растворами минеральных кислот:
Н +

(С 6 Н 10 О 5) х +х Н 2 О → хС 6 Н 12 О 6.


В состав каждого структурного звена целлюлозы входят три гидроксильные группы. Поэтому целлюлоза образует сложные эфиры с органическими и неорганическими кислотами, например:

Крахмал - полисахарид, состав которого также отражает формула (С 6 Н 10 О 5) х, но он отличается от целлюлозы строением.

В присутствии кислот крахмал гидролизуется. В результате его полного гидролиза образуется глюкоза:
Н +

(С 6 Н 10 О 5) х +х Н 2 О → х С 6 Н 12 О 6 .


С иодом крахмал образует соединение, имеющее темно-синюю окраску. Эта реакция служит для качественного определения крахмала.

Пример:

1.Рассчитайте объем оксида углерода (IV), который выделится при спиртовом брожении глюкозы массой 540 г (нормальные условия).


Дано: m(глюкозы)=540 г

_____________________

V(СО 2)=?
Решение . 1.1. Определяем количество вещества глюкозы, подвергнувшейся брожению:

1.2. Составляем уравнение реакции спиртового брожения глюкозы:


С 6 Н 12 О 6 →2С 2 Н 5 ОН+2СО 2 .
1.3. Из уравнения реакции следует, что
n(СО 2)=2n(глюкозы); n(СО 2)=2 ∙3 моль=6 моль.
1.4. Рассчитываем объем выделившегося газа, приведенный к нормальным условиям:
V(СО 2)=n(СО 2) ∙V m ; V(СО 2)=6 моль ∙22,4 л/моль=134,4 л.
Пример:

2.Массовая доля крахмала в картофеле равна 20%. Рассчитайте массу глюкозы, которую можно получить из картофеля массой 891 кг. Выход продукта равен 50%.


Дано: m(картофеля)=891 кг; ω(крахмала)=20%;

η(глюкозы)=?

_________________________________________

m ρ (глюкозы)=?


Решение. 2.1. Вычисляем массу крахмала, содержащегося в картофеле:


2.2. Молярную массу крахмала (С 6 Н 10 О 5) х можно представить в следующем виде:
М(крахмала)=х;

М(крахмала)=х(6 ∙12+10 ∙1+5 ∙16) кг/моль=162 кг/моль.


2.3. Вычисляем количество вещества крахмала в картофеле:


2.4. Составляем уравнение реакции гидролиза крахмала до глюкозы:
(С 6 Н 10 О 5) х +х Н 2 О→х С 6 Н 12 О 6 .
Из уравнения следует, что
n(глюкозы)=хn(крахмала); n(глюкозы)=
кмоль=1,1 кмоль.
2.5. Рассчитываем массу глюкозы, которую можно было бы получить при количественном выходе:
m(глюкозы)=n(глюкозы) ∙М(глюкозы;

m(глюкозы)=1,1 кмоль ∙180 кг/кмоль=198 кг.


2.6. Зная массовую долю выхода продукта, вычисляем массу реально полученной глюкозы:


Задания для самостоятельного выполнения (выполнение в тетради)
222. Рассчитайте объем оксида углерода (IV), приведенный к нормальным условиям, который выделится при спиртовом брожении глюкозы массой 225 г.

223. Рассчитайте объем воздуха (объемная доля кислорода в воздухе составляет 21%), который потребуется для полного окисления глюкозы массой 45 г. Объем рассчитайте при нормальных условиях.

224. Составьте уравнения реакций с участием глюкозы: а) окисления аммиачным раствором оксида серебра; б) этерификации пропанолом-1.

225. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:


оксид углерода (IV)->-крахмал->-глюкоза->этанол->-->бромэтан
Укажите условия протекания реакций.

226. При брожении глюкозы получен этанол массой 55,2 г, выход которого составил 80%. Вычислите массу глюкозы, которая подверглась брожению.

227. В состав крахмала входит амилоза, которая представляет собой линейный полимер, состоящий из остатков глюкозы в α-форме. Напишите структурную формулу этого полимера. Будет ли крахмал проявлять свойства альдегидов?

228. Рассчитайте массу целлюлозы, которая потребуется для получения тринитроцеллюлозы массой 445,5 г.

229. Определите максимальное число нитрогрупп -NO 2 , которое можно ввести в одно звено полимерной молекулы целлюлозы.

230. Напишите уравнение реакций, с помощью которых можно различить следующие твердые органические вещества: глюкоза, сахароза, ацетат натрия, крахмал, фенол.

231. Напишите уравнения следующих реакций с участием целлюлозы: а) гидролиза; б) этерификации с избытком уксусной кислоты; в) этерификации с избытком азотной кислоты. Почему целлюлоза не вступает в реакцию «серебряного зеркала»?

232. Рассчитайте массу кукурузных зерен, которые надо взять для получения спирта массой 115 кг (массовая доля этанола 96%), если выход спирта составляет 80%. Массовая доля крахмала в кукурузных зернах составляет 70%.

233. Из крахмала массой 8,1 г получена глюкоза, выход которой составил 70%. К глюкозе добавлен избыток аммиачного раствора оксида серебра. Рассчитайте массу серебра, образовавшегося при этом.

234. Вычислите объем раствора азотной кислоты (массовая доля HNO 3 80%, плотность 1,46 г/мл), который надо взять для получения тринитроцеллюлозы массой 148,5 г.


СН 3 –СНСl–СН 3 +AgNО 2 →СН 3 –СН–СН 3 +AgCl

2-хлорпропан |

2-нитропропан

235. Определите массу крахмала, который надо подвергнуть гидролизу, чтобы из полученной глюкозы при молочнокислом брожении образовалась молочная кислота массой 108 г. Массовая доля выхода продукта гидролиза крахмала равна 80%, продукта брожения глюкозы - 60%.

236. При гидролизе крахмала массой 324 г получена глюкоза (массовая доля выхода 80%), которая под­вергнута спиртовому брожению. Выход продукта брожения составил 75%. В результате осуществления процесса получен водный раствор спирта массой 600 г. Определите массовую долю этанола в этом растворе.

237. Рассчитайте массу триацетата целлюлозы, который можно получить из древесных отходов массой 1,62 т (массовая доля выхода равна 75%). Массовая доля целлюлозы в древесине составляет 50%.

238. При действии азотной кислоты на целлюлозу получено производное, в котором массовая доля азота равна 11,1%. Какое производное целлюлозы получено? Составьте уравнение реакции его получения.

239. Массовая доля целлюлозы в древесине равна 50%. Определите массу спирта, который может быть получен при брожении глюкозы, образовавшейся при гидролизе древесных опилок массой 810 кг. Учтите, что спирт выделяется из реакционной системы в виде раствора с массовой долей воды 8%. Массовая доля выхода этанола из-за производственных потерь составляет 70%.

Последние материалы раздела:

Роль Троцкого в Октябрьской революции и становлении советской власти
Роль Троцкого в Октябрьской революции и становлении советской власти

«Лента.ру»: Когда началась Февральская революция, Троцкий находился в США. Чем он там занимался и на какие деньги жил?Гусев: К началу Первой...

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...