Методика и техника пособие для учителей издание пятое, переработанное и дополненное Под общей редакцией Е. И

Стеариновая кислота (октадециловая кислота, октадекановая кислота) – одноосновная карбоновая кислота алифатического ряда.

Физико-химические свойства.

Брутто-формула: C 18 H 36 O 2 .

Структурная формула:

C O O H

Химически чистая стеариновая кислота имеет вид бесцветных моноклинных кристаллов. Не имеет запаха. Распадается при нагревании, образуя оксиды углерода. Растворяется в водных растворах щелочей (с образованием стеаратов). Температура плавления 69,4÷72°C. Температура разложения 370°C. Температура кипения 370°C.

Входит в состав жиров и масел. В виде глицеридов является важнейшей составляющей твердых жиров, преимущественно триглицеридов животного происхождения, которые выполняют функцию энергетического накопителя в организме животного. Стеариновая кислота синтезируется в животном организме из пальмитиновой кислоты под воздействием элонгаз – ферментов, ответственных за длину алифатической цепи. Она также находится в полужидких жирах, в частности в пальмовом масле, однако в значительно меньшем количестве, чем в жирах животного происхождения. В малых количествах эту кислоту можно встретить в некоторых видах нефти. Широкому кругу потребителей техническая стеариновая кислота известна также как стеарин, который представляет собой смесь стеариновой и пальмитиновой кислот.

Применение.

В настоящее время стеариновая кислота используется в различных областях промышленности. Полифункциональный характер стеариновой кислоты позволяет использовать ее в качестве активатора ускорителей вулканизации, диспергатора наполнителей резиновых смесей, мягчителя (пластификатора). При непосредственном введении в каучук она улучшает распределение ингредиентов и обрабатываемость резиновых смесей. Склонность стеарина к миграции способствует снижению клейкости резиновых смесей.

Фармакопейная стеариновая кислота широко применяется в фармацевтической промышленности. В косметической промышленности стеариновая кислота используется в качестве структурообразующего и эмульгирующего компонента в кремах, мыле и моющих средствах.

Стеариновую кислоту используют в аналитической химии при нефелометрическом определении кальция, магния и лития, а также качестве жидкой фазы в распределительной газо-жидкостной хроматографии для разделения смеси жирных кислот. При полировании металлов стеариновая кислота является компонентом полировальных паст.

Это соединение применяется не только в качестве функционального химиката, но и как химическое сырье. Например, для получения октадецилового (стеарилового) спирта, который употребляется как структурообразователь и эмолент в кремах и пеногаситель в моющих средствах. В промышленности стеариновая кислота используется также для синтеза октадециламина.

Производные и соли октадециламина применяются в качестве эмульгаторов и добавок к битумам в дорожном строительстве; флотоагентов прямой и обратной флотации при обогащении калийных и фосфоритных руд, полевого шпата, слюды; антислеживателей неорганических солей и удобрений; ингибиторов коррозии в кислых средах; деэмульгаторов необработанной нефти в нефтяной промышленности; компонентов антистатиков; отвердителей эпоксидных смол.

Из солей стеариновой кислоты применяют стеарат натрия как анионное ПАВ, в качестве моющего средства и компонента косметических изделий, загустителя смазок, стабилизатора при формовании полиамидов и антивспенивающей добавки в пищевой промышленности, а также стеарат кальция – в качестве загустителя смазок, стабилизатора поливинилхлорида и наружной смазки при формовании изделий из него, вспомогательного сиккатива и матирующего вещества в лакокрасочных материалах, гидрофобизатора для цемента и тканей, добавки, препятствующей слеживанию муки, эмульгатора для косметических препаратов. Кроме того, в производстве масляных лаков используется стеарат магния. Стеарат цинка применяют в медицине, производстве каучука, пластмасс и клеенки. Стеарат меди используется для бронзирования гипса и в качестве агента, препятствующего обрастанию. Стеарат свинца применяют в качестве сиккатива. Водорастворимые соли стеариновой кислоты, в частности стеараты натрия, калия и аммиака, являются мылами. Эфиры стеариновой кислоты применяют в качестве компонентов клеящих паст, антиоксидантов, эмульсий для обработки текстиля и кожи, стабилизаторов пищевых продуктов. Сложные эфиры стеариновой кислоты представлены этил- и бутилстеаратами, применяемыми в качестве пластификаторов, и гликольстеаратом, который используется как заменитель натурального воска.

Опасность стеариновой кислоты для здоровья.

Ингаляция: кашель, затрудненное дыхание.

Глаза: покраснение, боли.

Прием внутрь: задержка стула.

Получение.

В настоящее время основным способом производства стеариновой кислоты в мире остается гидролиз животных и растительных жиров, а также растительных масел. Основным сырьем при этом является пальмовое масло, кокосовое масло, рапсовое масло, стеариновую кислоту также можно выделять из соевого и подсолнечного масла.

Также перспективным возобновляемым источником сырья для получения стеариновой кислоты считается талловое масло – побочный продукт переработки крафт-целлюлозы. Сырое талловое масло в равных пропорциях содержит жирные и смоляные кислоты и в меньших количествах, неомыляемые вещества. Очищенное талловое масло имеет повышенное содержание жирных кислот, в том числе ненасыщенных – линолевой (45–50%), олеиновой (30–35%) и насыщенных – стеариновой (10%) и пальмитиновой (5%).

Остановимся на основных методах получения стеариновой кислоты: гидролиз жиров и гидрирование непредельных кислот. Животные жиры – непревзойденные помощники в деле извлечения стеариновой кислоты. Для получения конечного продукта жир должен пройти обработку щелочными растворами, кислотой или просто водой при высокой температуре для расщепления глицеридов на глицерин и свободные кислоты, включая стеариновую.

Наиболее распространенный метод получения чистой стеариновой кислоты предполагает применение раствора щелочи. В результате образуется мыло, расщепляющееся под воздействием соляной или серной кислоты, затем смесь кипятится, пока выделившаяся смесь жирных кислот не сделается совершенно прозрачной. После охлаждения застывшую твердую массу промывают водой.

В настоящее время производство стеариновой кислоты происходит в гидролизном цехе, или так называемомй гидрозаводе. В качестве сырьевой базы используется подсолнечное или растительное неочищенное масло (или другие растительные или животные жиры). При использовании рапсового масла качество стеарина хуже – выше йодное число. На первой стадии производства сырье разделяют на фракции – жиры и воду. На второй стадии идет процесс образования соапстока, который затем насыщают водородом, в результате чего образуется саломас. При температуре 200°С и с помощью катализатора саломас расщепляют до воды и масла. Заключительная стадия предполагает извлечение стеарина из полученной жирной кислоты.

Технология производства стеариновой кислоты из нефтехимического сырья.

В условиях роста спроса на стеариновую кислоту возникает проблема нехватки природного сырья, в связи с чем, растет популярность синтетических жирных кислот (СЖК), получаемых из нефтехимического сырья. Стеариновая кислота, полученная методом синтеза, является химически чистым продуктом и применяется в тех же областях, что и кислота полученная гидролизом растительных и животных жиров.

Одним из способов получения жирных кислот является синтез из олефинов в присутствии карбонила кобальта:

Гидрокарбоксилирование при 145–165°С и 5–30 МПа:
R-CH=CH 2 + CO + H 2 O> RCH 2 CH 2 COOH;

Гидрокарбоалкоксилирование при 165–175°С и 5–15 Мпа с последующим гидролизом образующегося эфира:

R-CH=CH 2 + СО + R"OH> RCH 2 CH 2 COOR"> RCH 2 CH 2 COOH + R"OH.

Преимуществами этой технологии являются малостадийность и высокий выход кислот. Однако довольно жесткие условия и образование большого количества кислот изо-строения осложняют процесс. СЖК можно синтезировать также гидрокарбоксилированием олефинов в присутствии кислот, например, H 2 SO 4 , HF, ВF 3 , при 50–100 °С, давлении 5–15 МПа. При использовании сокатализаторов (карбонилов Сu и Ag) реакцию можно вести при 0–30 °С и 0,1 МПа. Получают в основном смеси кислот изостроения. Они отличаются низкими температурами плавления и кипения, высокой вязкостью, хорошей растворимостью. Недостаток метода – высокоагрессивная среда. СЖК фракции С 12 –С 15 , C 16 –С 18 также получают методом оксосинтеза. На первой стадии с помощью гидроформилирования получают альдегиды, которые впоследствии могут быть превращены в спирты и/или окислены до жирных кислот. Получаемые кислоты содержат меньше побочных продуктов, чем кислоты, синтезируемые из парафинов. Однако данный способ в СНГ утратил свою актуальность в связи с отсутствием сырья и закрытием всех производств жирных спиртов.

В 1959 году в СССР было принято решение о внедрении в производство мыла на основе СЖК в качестве альтернативы природным жирным кислотам. В 1966 году мировой объем выпуска СЖК фракций С5–С30 составил 204,5 тыс. тонн, в том числе фракций С 10 – С 20 – 107,5 тыс. тонн. 14,9 тыс. тонн СЖК перерабатывалось в жирные спирты, которые впоследствии использовались при изготовлении синтетических моющих средств. Согласно некоторым данным, в СССР было запланировано в течение одной пятилетки произвести порядка 373 тыс. тонн СЖК. На то время основным способом получения СЖК в СССР было низкотемтературное жидкофазное окисление парафинов. Недостатки приведенного выше процесса: невысокий выход целевой фракции С 10 – С 20 (около 50% на сырье), низкое качество кислот, обусловленное присутствием до 3% побочных продуктов (дикарбоновых, кето- и гидроксикарбоновых кислот и др.).

А также большой объем сточных вод (до 8 м 3 на 1 т кислот), загрязненных Na 2 SO 4 и низкомолекулярными кислотами. В советские времена в России и Украине объемы выпуска синтетических жирных кислот исчислялись сотнями тысяч тонн. Однако в начале 90-х гг. волна повсеместного закрытия цехов по выпуску этой продукции охватила такие крупные промышленные предприятия, как Шебекинский химический завод (Белгородская область, Россия), Волгоградский НПЗ (Россия), Волгодонский НПЗ (Россия), «Омскнефтеоргсинтез» (Омская область, Россия), Надворненский НПЗ (Ивано-Франковская область, Украина) и Бердянский опытный нефтемаслозавод (Запорожская область, Украина). Последним, в 2001 году, было закрыто производство СЖК на предприятии ОАО «Уфанефтехим» (Республика Башкортостан, Россия). Ликвидация данных производств была обусловлена, прежде всего, нерентабельностью существующих технологий: низкое качество кислот, с присутствием до 3% побочных продуктов (дикарбоновых, кето- и гидроксикарбоновых кислот и др.), большой объем сточных вод (до 8 м 3 на 1 т кислот), загрязненных Na 2 SO 4 и низкомолекулярными кислотами. Кроме того, дефицитной является сырьевая база узких фракций С 16 – С 18 . Сейчас уже можно сказать, что промышленное производство СЖК как в мире в целом, так и в странах Содружества в частности, прекратило существование.

УДК 66.095.262.3:66.063.612

Г. И. Султанова, Г. А. Сайфетдинова, А. П. Рахматуллина,

Р. А. Ахмедьянова, А. Г. Лиакумович

ВЛИЯНИЕ КАЛИЕВЫХ СОЛЕЙ СТЕАРИНОВОЙ И ОЛЕИНОВОЙ КИСЛОТ НА ЭМУЛЬСИОННУЮ СОПОЛИМЕРИЗАЦИЮ СТИРОЛА И АЛЬФА-МЕТИЛСТИРОЛА

Исследован процесс эмульсионной сополимеризации стирола с б-метилстиролом в присутствии калиевых солей стеариновой, олеиновой кислот и их смесей различного состава. Определены кинетические параметры процесса, средневязкостная молекулярная масса сополимера и его выход.

Известно, что при получении латексов чаще всего применяют анионоактивные эмульгаторы - натриевые или аммониевые соли природных или синтетических высших жирных кислот, калиевые соли кислот канифоли, алкилсульфонат натрия и др.; в некоторых случаях их вводят в смеси с неионогенными ПАВ . Использование смесей поверхностно-активных веществ (ПАВ) различной природы приводит к получению эффективных эмульгирующих систем для синтеза диен-стирольных и стирол-акрилатных дисперсий . В качестве ПАВ возможно сочетание, например, калиевых солей синтетических жирных кислот и диспропорционированной канифоли или калиевых солей жирных кислот и алкилсульфатов. А наличие примесей в составе олеата калия калиевых солей миристино-вой, пальмитиновой, стеариновой и линолевой кислот снижает скорость полимеризации и механическую устойчивость бутадиен-стирольного латекса СКС-30 .

Нами впервые было установлено, что смеси стеариновой (Ст) и олеиновой (Ол) кислот состава 40:60 % мас. характеризуются максимальной поверхностной активностью по сравнению с индивидуальными кислотами , а их калиевые соли являются эффективными эмульгаторами в эмульсионной полимеризации стирола, оказывая синергическое влияние на кинетические параметры процесса .

В связи с этим, можно предположить, что эмульгаторы на основе этой смеси кислот проявят себя и в процессах эмульсионной сополимеризации непредельных мономеров, в качестве которых были выбраны стирол и б-метилстирол. Выбор этой пары мономеров обусловлен и тем обстоятельством, что сополимеры стирола и а-метилстирола, описанные в литературе, содержат от 10 до 40 % мас. структурных звеньев а-метилстирола и обладают высокой теплостойкостью наряду с хорошими диэлектрическими показателями.

Результаты и их обсуждение

В процессе эмульсионной сополимеризации стирола и б-метилстирола наблюдается экзотермический эффект, причем в присутствии смесевого эмульгатора (калиевая соль смеси стеариновой (40 %) и олеиновой (60 %) кислот - К (Ст:Ол)) наблюдается максимальное увеличение температуры реакционной смеси (табл. 1), что свидетельствует о более высокой скорости реакции и, следовательно, о синергическом влиянии этого эмульгатора на процесс сополимеризации.

Таблица 1 - Изменение температуры (АТ) реакционной массы в процессе сополиме-ризации стирола и б-метилстирола

Ст: Ол, % мас. АТ, °С

Поэтому для дальнейших исследований использован именно этот смесевой эмульгатор, а также для сравнения индивидуальные мыла - стеарат калия (КСт) и олеат калия (КОл).

Начальная скорость реакции (Wo) одинакова в присутствии КСт и смесевого эмульгатора, а в присутствии КОл ниже на 13 % (табл. 2). Более низкая Wo в присутствии КОл, возможно, обусловлена участием этого эмульгатора в сополимеризации. В пользу такого предположения служат данные ИК-спектров полистиролов (ПС), полученных эмульсионной полимеризацией в присутствии КОл и КСт. На ИК-спектрах ПС, полученного в присутствии КОл в отличие от ПС, полученного в присутствии КСт, имеется полоса поглощения в области 1560 см-1, характерная для валентных колебаний карбонильной группы карбоксилатного аниона, что свидетельствует об участии олеата калия в сополимеризации со стиролом. Полученные результаты коррелируют с данными работы , в которой установлено, что при блочной полимеризации стирола в присутствии добавок олеиновой кислоты скорость образования полистирола на начальной стадии ниже по сравнению со скоростью полимеризации чистого полистирола. Авторы предположили, что возможно константа сополимеризации стирола выше, чем олеиновой кислоты, поэтому скорость полимеризации чистого стирола до автоускорения выше, чем с добавкой олеиновой кислоты.

Из рис. 1, видно, что кинетика процесса сополимеризации зависит от типа использованного эмульгатора: конверсия мономеров выше в случае смесевого эмульгатора (рис.

1, кривая 3).

Таблица 2 - Влияние соотношения стеариновой и олеиновой кислот в составе калиевых солей на начальную скорость реакции (Wo), выход и средневязкостную мо-

лекулярную массутополимера (М п) стирола и б-метилстирола

Ст: Ол, % мас. Wo 102, моль/л*с-1 Выход сополимера в %, через М п"10"3

30 мин. 180 мин. 360 мин.

0:100 1,25 63,1 76,8 77,0 63

40:60 1,43 65,9 85,0 91,5 110

100:0 1,43 59,9 74,2 75,6 94

Рис. 1 - Зависимость конверсии мономеров п от типа использованного эмульгатора: 1 - КСт; 2 - Кол; 3 - К(Ст:Ол)

Изменение средней скорости реакции (WCр) от конверсии (рис. 2) зависит от типа использованного эмульгатора: максимальное значение достигается в случае использования смесевого эмульгатора. Кроме того, сохраняется высокая Wср на глубоких степенях превращения мономера по сравнению с индивидуальными ПАВ.

Рис. 2 - Зависимость средней скорости реакции Wср от конверсии мономеров п:

1 - КСт; 2 - Кол; 3 - К(Ст:Ол)

Значение средневязкостной молекулярной массы (М п) образующегося сополимера максимально также при использовании смесевого эмульгатора (табл. 2).

Теплофизические свойства полученного на смесевом эмульгаторе сополимера исследовали методами дифференциального термического анализа (ДТА) и термогравимет-

рии. Для сравнения использовали полистирол, полученный в присутствии смесевого эмульгатора .

ДТА полимеров, не содержащих стабилизаторы, показал, что температура 5% потери веса (Тдт=5%) полистирола и сополимера стирола с б-метилстиролом одинаковы и равны 287 0С.

Таким образом, в результате проведенных исследований было показано неаддитивное влияние смесевого эмульгатора на эмульсионную сополимеризацию стирола с а-метилстиролом.

Экспериментальная часть

Массовое соотношение мономеров составило стирол:а-метилстирол = 70:30 (% мас.). Контроль за ходом процесса осуществляли по количеству образующегося полимера, определяемого гравиметрическим методом по сухому остатку. Эмульсионную сополимеризацию стирола с б-метилстиролом проводили в трехгорлой круглодонной колбе, снабженной термометром, капельной воронкой и мешалкой, при температуре 90°С в течение 360 мин по рецептуре (в мас.ч) : стирол (70), а-метилстирол (30), вода дистиллированная (160), персульфат калия (0,5), жирная кислота (2,4), гидроксид калия (0,48). Через определенные промежутки времени отбирали пробы и определяли выход (N) сополимера в % по формуле :

N = Pn 100/Рм,

где Pn - масса полимера в пробе, (г); Рм - масса мономера в пробе, рассчитанная по исходной концентрации мономера, (г).

Молекулярную массу выделенного сополимера определяли по визкозиметрическому методу .

ИК-спектры получали на Фурье-спектрометре «Perkin Elmer» 16 РС FT-IR с точностью фиксации частоты ИК-излучения ±10 см-1. Препарирование образцов полистирола осуществляли следующим образом. Эмульгатор из полимера удаляли путем многократной промывки толуольно-го раствора ПС дистиллированной водой. После чего полимер высушивали, затем растворяли в хлороформе и получали пленки для анализа методом ИК-спектроскопии.

Термо- и дериватограммы образцов были сняты на дериватографе системы Paulik-Paulik-Erdey при скорости нагревания 3 оС/мин. в интервале от 20 до 500 оС. Масса образцов равнялась

Заключение

1. Установлено, что калиевая соль смеси стеариновой (40%) и олеиновой (60%) кислот позволяет сохранить высокую скорость эмульсионной сополимеризации при глубоких степенях превращения мономеров, максимальные значения средневязкостной молекулярной массы сополимера стирола с а-метилстиролом и его выход по сравнению с калиевыми солями индивидуальных кислот.

2. Показано, что в процессе эмульсионной сополимеризации стирола с а-метилстиролом олеат калия является сомономером.

3. Методом ДТА выявлено, что нестабилизированные сополимер стирола с а-метилстиролом и полистирол, полученные на смесевом эмульгаторе, обладают одинаковой термостойкостью (Тдт=5% = 287 0С).

Литература

1. Энциклопедия полимеров / Под ред. В.А. Кабанова. М.: Советская энциклопедия, 1974. Т.2. С.52-53.

2. Петухова А.В. Синтез диен-стирольных летексов в присутствии смесей ПАВ: Автореферат дис...канд. хим. наук/ М.: МГАТХТ, 2003. 22с.

3. И.Ю. Аверко-Антонович. Синтетические латексы. Химико-технологические аспекты синтеза, модификации, применения. М.: Альфа-М, 2005. 680 с.

4. Лебедева Т.А., Миронова Н.М. // Тез. докл. 2-й межресп. научн. конф. студ. вузов СССР «Синтез, исследование свойств, модификация и переработка высокомолекулярных соединений». Казань, 1981. С.17.

5. Рахматуллина А.П., Заварихина Л.А., Мохнаткина О.Г. и др. Влияние композиций высших жирных кислот на межфазные характеристики и физико-механические свойства резин // Журнал прикладной химии. 2003. Т. 76. № 4. С. 680-684.

6. Султанова Г.И., Рахматуллина А.П., Ахмедьянова Р.А. и др. Эмульсионная полимеризация стирола в присутствии калиевых солей смесей стеариновой и олеиновой кислот // Журнал прикладной химии. 2005. Т. 78. № 8. С. 1353-1356.

7. Алексеева Т.Т., Липатов С.И, Грищук Ю.С. Кинетика образования взаимопроникающих полимерных сеток (полиуретан-полистирол) в присутствии совмещающих добавок // Высокомолекулярные соед. Серия А. 2005. Т. 47. № 3. С. 461-472.

8. Торопцева А.М., Белогородская К.В., Бондаренко В.М. Лабораторный практикум по химии и технологии высокомолекулярных соединений. Л.: Химия, 1972. 416 с.

9. Аверко-Антонович Ю.О. Методические указания к лабораторному практикуму по химии и физике высокомолекулярных соединений. Казань: Казан. гос. технол. ун-т, 2001. 60 с.

© Г. И. Султанова - асп. каф. технологии синтетического каучука КГТУ; Г. А. Сайфет-

динова - студ. КГТУ; А. П. Рахматуллина - канд. хим. наук, доц. каф. технологии синтетического каучука КГТУ; Р. А. Ахмедьянова - д-р техн. наук, проф. той же кафедры;

А. Г. Лиакумович - д-р техн. наук, проф. той же кафедры.

Знаком Е470 маркируются вещества, или даже группа веществ, которые используются как пищевые добавки. Эти синтетические концентраты применяются для предотвращения слеживания или склеивания некоторых сыпучих продуктов. Относятся по большей части к категории эмульгаторов, диспергаторов, разделителей, стабилизаторов пены.

Основные характеристики веществ

Другими названиями данной пищевой добавки являются: кальциевые, алюминиевые, натриевые, магниевые, аммонийные и калиевые соли карбоновых жирных кислот, стеараты кальция, магния, аммония, калия, натрия и алюминия, Е470, Salts of fatty acids (with base Ca, Al, Mg, Na, К and NH4), Salts of myristic, соли алифатических жирных кислот, Palmitic and stearic fatty acids.

Такие вещества обычно на внешний вид напоминают зерна, чешуйки или порошок. Цвет их варьируется от белого, до желто-коричневого и даже бурого. Некоторые соли очень хорошо растворяются в , а вот кальциевая соль нерастворима ни в воде, ни в этиловом , ни в эфирах.

В натуральном виде в природе чаще всего Е470 встречается при омылении в процессе их расщепления в человеческом организме при метаболизме.

Химическим путем такую пищевую добавку получают при помощи молекулярных реакций, причем при этом не играет роли отгонка жирных пищевых кислот. В процессе производства образуются различные примеси: глицерин, моноглицериды, вода, диглицериды, неомыляемые жиры и жирные кислоты.

Данные вещества быстро, легко и в полном количестве усваиваются человеческим организмом.

Применение солей жирных кислот

Основным назначением группы таких веществ является препятствование слеживанию сыпучих продуктов: сухих супов и сухих бульонов, сахарной пудры, и других видов пищевой продукции. Наименование стеарат чаще всего употребляют для названия всех солей , а олеат, в свою очередь, – для .

Хорошо зарекомендовала себя такая добавка в фармакологической отрасли, способствуя лучшему спрессовыванию и скольжению гранулятов, таблеток, экструзионных продуктов.

Применимы соли алифатических карбоновых кислот и в косметологической промышленности, при производстве моющих и чистящих средств, бытовой химии, а также при переработке макулатуры.

По законам Российской Федерации производство таких веществ не запрещено, но жестко ограничено рамками допустимого количества. В европейских странах и на Украине такая пищевая добавка запрещена для изготовления.

Полезные и вредные свойства пищевой добавки Е470

По сути своей соли алифатических карбоновых кислот не несут организму человека никакой опасности, но несмотря на это существуют жестко установленные и контролируемые нормы на ее употребление. Их разрешено добавлять в пищевые продукты лишь в количестве шести процентов от общей массы готовой продукции.

В основном это связано с образованием и наличием в них множества различных вредных примесей. Соответственно вред организму наносят лишь те добавки, примеси в которых остаются при их образовании. Поэтому категорически противопоказано употреблять такие вещества людям, страдающими нарушениями обменных процессов в организме. В некоторых случаях может спровоцировать возникновение и развитие заболеваний органов желудочно-кишечного тракта.

Безопасность же данных продуктов гарантирована полным усвоением веществ в организме, отсутствием побочных реакций при соблюдении правил и норм употребления.

Подводя итоги

Пищевая добавка Е470 является синтетически выведенным веществом, применяющимся в медицинской, пищевой, косметологической и фармацевтической промышленности. Употребляемая в допустимых нормируемых дозировках не причиняет никакого вреда организму и не вызывает негативных побочных реакций после использования. Нежелательно применять такую добавку людям с нарушениями обмена веществ. При приеме повышенных доз возможно развитие заболеваний желудочно-кишечного тракта.

Омыление жиров - термин, хорошо знакомый любителям домашнего мыловарения. Обозначает он разложение животных или растительных жиров щелочью: обычно едким натром или едким калием.

Но не все умельцы знают, что в результате реакции они получают не только натуральный, экологически безопасный кусочек моющего средства, но и .

Соли жирных кислот натрия, калия и кальция - основное название продукта, закрепленное в ГОСТ 32770–2014 .

Синонимы:

  • Е 470а (Е–470а), индекс в европейской кодификации пищевых добавок;
  • Sodium, Potassium and Calcium Salts of Fatty Acids, международный;
  • натриевые, калиевые и кальциевые соли жирных кислот (более точное обозначение продукта, встречается в
  • СанПиН, документах Министерства здравоохранения);
  • стеараты кальция, натрия, калия;
  • мыла;
  • Calcium-, Natrium-, Kalium der Fettsauren, Seifen, Alkalisalze der Fettsauren, немецкий;
  • calcium, potassium et sodium sels d’acides gras, французский.

Тип вещества

Пищевая добавка E 470а включена в группу .

Общим европейским индексом объединена группа веществ, схожих по свойствам, получению и использованию в различных отраслях деятельности: натриевая, калиевая и кальциевая соли насыщенных жирных кислот (примечание: соли ненасыщенных кислот обозначены кодом Е 470).

Получение добавки идентично начальному этапу производства мыла. К исходным животным (реже растительным) жирам добавляют натриевую, калиевую или кальциевую щелочи и нагревают. В ходе реакции происходит гидролиз (распад) триглицеридов с образованием соответствующих солей (мыл) и . Последующая отгонка жирных кислот дает в итоге сухое порошкообразное вещество, применяемое как пищевая добавка E 470а.

Если щелочной раствор осадить хлоридом натрия, получится так называемое «мыльное ядро», из которого делают мыло.

Свойства

Показатель Стандартные значения
Цвет белый
Состав соли жирных кислот; эмпирические формулы: C 18 H 3 О 2 Na (натриевая соль), С 36 Н 70 О 4 Са (кальциевая) С 18 Н 33 О 2 К (калиевая)
Внешний вид порошок, чешуйки, зерна
Запах слабый характерный
Растворимость соли натрия и калия растворимы в воде, спирте; соли кальция в воде, этаноле, эфирах не растворяются
Содержание основного вещества 95%
Вкус отсутствует
Плотность 0,87 до 1,05 г/см³
Другие гигроскопичны (калиевая и натриевая); вязкость водного раствора снижается с повышением температуры

Упаковка

Стандартной упаковочной тарой для эмульгатора Е 470а служат:

  • многослойные крафт-мешки;
  • картонные барабаны;
  • мешки для пищевых продуктов из синтетических нитей.

Обязательно наличие внутреннего мешка, обеспечивающего защиту от влаги.

Добавка объемом до 5 кг может быть расфасована в многослойные прозрачные пакеты из нестабилизированного полиэтилена.

Применение

Добавка Е 470а обладает высокой поверхностной активностью и может быть использована для стабилизации дисперсных систем.

Вещество не только облегчает получение эмульсий, но и предотвращает повторное слипание частиц.

В пищевой промышленности мыло применяется очень ограниченно : обычно в комплексе с другими эмульгаторами для усиления их свойств или в составе синтетических красителей для обеспечения их равномерного распределения в продуктовой массе.

СанПиН 2.3.2.1293-03 разрешает использовать добавку Е 470 а в качестве носителя-наполнителя в глазирователях для фруктов. Нанесение пленок на поверхность предотвращает высыхание плодов, значительно снижает потерю витаминов, защищает от заражения болезнетворными микроорганизмами.

В Кодексе Алиментариус продукт упомянут как соэмульгатор добавки в стандартах на бульонные кубики и сахарную пудру для предотвращения их слеживания и комкования. Допустимая норма ограничена 6% от массы.

Широкое распространение эмульгатор Е 470а получил в производстве косметических препаратов и средств бытовой химии.

Натриевая соль входит в состав натурального твердого мыла. Калиевую соль благодаря антибактериальным свойствам применяют для изготовления жидкого «зеленого» мыла для нужд медицины.

В составе пен для бритья, красок для волос способствует образованию легко наносимой однородной текстуры.

В кремах для рук выполняет защитную функцию благодаря способности образовывать на поверхности пленку, предохраняющую кожу от потери влаги.

Фармацевтическая отрасль применяет добавку E 470а в ректальных препаратах как вспомогательное вещество, улучшающее скольжение.

Эмульгатор разрешен в России, большинстве европейских государств, США.

Польза и вред

Соли алифатических кислот являются продуктом естественного расщепления жиров в пищеварительной системе. С этой точки зрения добавка Е 470а совершенно безопасна. Вещество полностью усваивается в организме.

Возможная степень вреда не установлена. Считается, что может быть небезопасен для людей, страдающих нарушением обмена веществ.

  • Foodchem International Corporation;
  • Huzhou City Linghu Xinwang Chemical Co., Ltd.;
  • Guangzhou X-Kev Food Additive Co., Ltd.

Безопасность пищевой добавки Е 470а остается под вопросом. Потребителю, не желающему видеть в своей тарелке сомнительный эмульгатор, можно посоветовать отказаться от покупки бульонных кубиков иностранного производства. Сахарную пудру несложно сделать самостоятельно.

Фрукты перед употреблением надо обязательно мыть (включая бананы и цитрусовые). Защитная пленка на поверхности состоит не только из мыла, в ней есть более опасные соединения, например .

Помимо стеариновой кислоты отечественного производства на рынке также присутствует кислота импортного производства. В нижеследующих таблицах укажем основные требования и технические характеристики стеариновой кислоты из Китая и Малайзии.

МАЛАЙЗИЯ

Стеариновая кислота STEARIC ACID Palmera B1810

Показатель

Норма
Кислотное число, мг КОН/г 195,0 минимально
Число омыления, мг КОН/г 196,0 минимально
Йодное число, J2/100г 8,0 максимально
Температура плавления, °С 52,0 минимально
Цветность 2 максимально

КИТАЙ

Стеариновая кислота SA 1801

Показатель

Норма
Кислотное число, мг КОН/г 192,0-218,0
Число омыления, мг КОН/г 193,0-220,0
Йодное число, J2/100г 8,0 максимально
Температура плавления, °С 52,0 минимально

Области применения стеариновой кислоты

В настоящее время стеариновая кислота используется в различных областях промышленности. Полифункциональный характер стеариновой кислоты позволяет использовать ее в качестве активатора ускорителей вулканизации, диспергатора наполнителей резиновых смесей, мягчителя (пластификатора). При непосредственном введении в каучук она улучшает распределение ингредиентов и обрабатываемость резиновых смесей. Склонность стеарина к миграции способствует снижению клейкости резиновых смесей.

Фармакопейная стеариновая кислота широко применяется в фармацевтической промышленности. В косметической промышленности стеариновая кислота используется в качестве структурообразующего и эмульгирующего компонента в кремах.

Стеариновую кислоту используют в аналитической химии при нефелометрическом определении кальция, магния и лития, а также качестве жидкой фазы в распределительной газо-жидкостной хроматографии для разделения смеси жирных кислот. При полировании металлов стеариновая кислота является компонентом полировальных паст.

Это соединение применяется не только в качестве функционального химиката, но и как химическое сырье. Например, для получения октадецилового (стеарилового) спирта, который употребляется как структурообразователь и эмолент в кремах и пеногаситель в моющих средствах. В промышленности стеариновая кислота используется также для синтеза октадециламина.

Производные и соли октадециламина применяются в качестве эмульгаторов и добавок к битумам в дорожном строительстве; флотоагентов прямой и обратной флотации при обогащении калийных и фосфоритных руд, полевого шпата, слюды; антислеживателей неорганических солей и удобрений; ингибиторов коррозии в кислых средах; деэмульгаторов необработанной нефти в нефтяной промышленности; компонентов антистатиков; отвердителей эпоксидных смол.

Из солей стеариновой кислоты применяют стеарат натрия как анионное ПАВ, в качестве моющего средства и компонента косметических изделий, загустителя смазок, стабилизатора при формовании полиамидов и антивспенивающей добавки в пищевой промышленности, а также стеарат кальция - в качестве загустителя смазок, стабилизатора поливинилхлорида и наружной смазки при формовании изделий из него, вспомогательного сиккатива и матирующего вещества в лакокрасочных материалах, гидрофобизатора для цемента и тканей, добавки, препятствующей слеживанию муки, эмульгатора для косметических препаратов. Кроме того, в производстве масляных лаков используется стеарат магния. Стеарат цинка применяют в медицине, производстве каучука, пластмасс и клеенки. Стеарат меди используется для бронзирования гипса и в качестве агента, препятствующего обрастанию. Стеарат свинца применяют в качестве сиккатива. Водорастворимые соли стеариновой кислоты, в частности стеараты натрия, калия и аммиака, являются мылами. Эфиры стеариновой кислоты применяют в качестве компонентов клеящих паст, антиоксидантов, эмульсий для обработки текстиля и кожи, стабилизаторов пищевых продуктов. Сложные эфиры стеариновой кислоты представлены этил- и бутилстеаратами, применяемыми в качестве пластификаторов, и гликольстеаратом, который используется как заменитель натурального воска.

Технология производства стеариновой кислоты

В настоящее время основным способом производства стеариновой кислоты в мире и в России остается гидролиз животных и растительных жиров, а также растительных масел. Основным сырьем при этом является пальмовое масло, кокосовое масло, рапсовое масло, стеариновую кислоту также можно выделять из соевого и подсолнечного масла.

Также перспективным возобновляемым источником сырья для получения стеариновой кислоты считается талловое масло - побочный продукт переработки крафт-целлюлозы. Сырое талловое масло в равных пропорциях содержит жирные и смоляные кислоты и в
меньших количествах, неомыляемые вещества. Очищенное талловое масло имеет повышенное содержание жирных кислот, в том числе ненасыщенных - линолевой (45-50%), олеиновой (30-35%) и насыщенных - стеариновой (10%) и пальмитиновой (5%).

Остановимся на основных методах получения стеариновой кислоты: гидролиз жиров и гидрирование непредельных кислот. Животные жиры - непревзойденные помощники в деле извлечения стеариновой кислоты. Для получения конечного продукта жир должен пройти обработку щелочными растворами, кислотой или просто водой при высокой температуре для расщепления глицеридов на глицерин и свободные кислоты, включая стеариновую.

Наиболее распространенный метод получения чистой стеариновой кислоты предполагает использование раствора щелочи. В результате образуется мыло, расщепляющееся под воздействием соляной или серной кислоты, затем смесь кипятится, пока выделившаяся смесь жирных кислот не сделается совершенно прозрачной. После охлаждения застывшую твердую массу промывают водой.

Последние материалы раздела:

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...