Массовыми силами действующими на атмосферу являются. Сил ы, действующие в атмосфере

СИЛ А ГОРИЗОНТАЛ ЬНОГО БАРИЧЕСК ОГО ГРАДИЕНТА

Непосредст венной причиной возникновения горизонтального движения возд уха (вет ра) является неравномерное распределение давления вдоль земной поверхност и, которое, в свою очередь, является следствием неоднородного пространст венного распределения температуры. Следовательно, ветер можно рассматривать как результ ат превращ ения тепловой энергии Солнца в энергию движения воздуха. Из област и высокого давления воздух движет ся в область низкого давления подобно тому, как возникает движение жидкости в ст орону более низкого ее уровня.

Изменение давления по горизонтали характеризует горизонт альный барический градиент Гр . Он показывает изменение давления DP на единицу длины DS по крат чайш ему расст оянию из области высокого давления в област ь низкого давления:


р
Г =Δ Р

За единицу расст ояния принят 1° дуги меридиана (111 км). Величина Гр обычно не превышает 1…3 гПа на 111 км, но при ураганах она может достигать 30 гПа на 111 км.

Горизонт альный барический градиент, отнесенный к единице массы, представляет собой силу горизонт ального б арического градиента G , под действием которой и происходит перемещ ение воздух а вдоль земной поверхности:

G =1 Δ Р , (4.4)

где: r - плот ност ь воздуха.


На картах погоды, где горизонтальное распределение давления характ еризует ся с помощью изобар, сила G направлена по перпендикуляру от изобары с большим д авлением к изоб аре с меньшим давлением. Так как на картах погоды изобары проводят ся через 5 гПа, т.е. DP = 5 гПа = const , то сила G зависит т олько от расстояния между изобарами (DS ). Чем меньше DS (чем гуще изоб ары), тем больше сила G , а, следовательно, и больш е скорост ь ветра (рис. 4.4).

Р ис. 4.4. Сила горизонтального барического градиента

Как только в ат мосфере создается разность давлений в горизонтальном направлении и масса воздуха под возд ействием силы горизонт ального барического градиент а начинает перемещаться в направлении вектора этой силы, т.е. от большего давления к меньшему, на эт от возд ух сразу же начинают оказывать влияние другие силы:



а) от клоняющ ая сила вращения Земли - сила К ориолиса ;

б) сила трения F т;

в) центробежная сила .

4.2.2. ОТК ЛОНЯЮЩАЯ СИЛА ВРАЩЕНИЯ ЗЕМЛИ - СИЛ А КОРИОЛИСА

Эт о инерционная сила, которая возникает вследствие суточного вращения Земли вокр уг своей оси. От клонение д вижущегося воздушного потока происходит потому, что он по инерции сохраняет свое первоначальное направление движения относит ельно мирового пространства, в т о время как Земля под воздуш ным потоком поворачивает ся вокруг своей оси. Сила Кориолиса всегда действует под углом 90° к направлению движения воздуха: вправо - в Северном полушарии и влево - в Южном (рис. 4.5). Поэт ому э та сила не меняет скорости движения воздушного потока, а только изменяет его направление.

а) в Северном полушарии;

б) в Южном полушарии


Сила Кориолиса, дейст вующая на единицу массы, равна:

F к = 2w u sin j

где: ω - угловая скорость вращ ения Земли (7,29×10-5 с-1);

и - скорость воздушного пот ока;

j-географическая широт а места.



Значение силы Кориолиса зависит от скорости ветра и широт ы места. Она уменьш ается с убыванием широт ы места и на экваторе равна нулю (j = 0°, si n0° = 0).

СИЛ А ТРЕНИЯ

Эта сила возникает в результ ате трения движущегося воздуха о неровности подст илающ ей поверхности. Она всегда направлена в ст орону, противоположную движению (рис. 4.6). Сила трения изменяет и направление, и скорост ь ветра.

Рис. 4.6. Действие силы трения

Величина силы трения, дейст вующая на единицу массы, равна

F т =-к u , (4.6)

где: к - коэффициент трения, зависящ ий от степени ш ероховатости подстилающей поверхности и высоты.

Сила трения уменьшается с высотой и выше 500…1000 м ее влияние на движение воздуха практически не сказывается.

Сила Кориолиса и сила трения по порядку величины соизмеримы с силой

горизонтального б арического градиента.

ЦЕНТРОБЕЖНАЯ СИЛА

Цент робежная сила возникает при криволинейном движении воздушного потока. Она направлена от цент ра вращения по радиусу кривизны (рис. 4.7). Величина эт ой силы, д ействующ ей на ед иницу массы, равна


где: r – радиус кривизны т раектории.


F ц =u , (4.7)

При прямолинейном движении центробежная сила равна нулю. При движении воздуха в циклонах и ант ициклонах умеренных широт (радиус кривизны 1000 км и более) эт а сила очень мала и при расчет ах ее не учитывают. Центробежную силу необходимо учитыват ь при расчет ах ветра в тропических циклонах, где она может превышать силу Кориолиса.


Рис. 4.7. Действ ие центробежной силы

Силы, действующие в атмосфере делятся на массовые и поверхностные:

Массовые или объемные силы.

К массовым силам относятся те силы, которые действуют на каждый элементарный объем воздуха, и обычно, рассчитываются на единицу массы. К ним относятся:

Сила тяжести

Представляет собой векторную сумму двух сил: силы земного притяжения, направленной к центру Земли, и центробежной силы, возникающая из-за вращения Земли вокруг своей оси и направленная по радиусу круга широты, проходящей через рассматриваемую точку.

Сила Кориолиса

(отклоняющая сила вращения земли) связана с вращением Земли вокруг своей оси и действует на движущиеся относительно Земли частицы воздуха (на воздушные течения атмосферы). Сила Кориолиса возникает в результате переносного вращательного движения Земли и одновременного движения частиц воздуха относительно земной поверхности.

Или .

где ω – угловая скорость вращения Земли.

Применяя формулы векторного анализа получим составляющие силы Кориолиса по осям координат.

Поверхностные силы.

К поверхностным силам относятся те силы, которые действуют на соприкасающиеся поверхности слоя воздуха.

Сила давления

(сила барического градиента) возникает за счет неравномерного распределения давления. Вектор силы барического градиента определяется соотношением

а его составляющие, отнесенные к единице массы, по осям координат, имеют следующий вид:

Сила трения

Возникает при движении воздуха, когда различные его объемы имеют разную скорость движения. Если рассматривать движение воздуха, как движение вязкой жидкости, то при движении двух соседних слоев жидкости с различными скоростями, между ними развиваются касательные силы внутреннего трения (касательное напряжение), или силы вязкости. Составляющие этой силы по осям координат.

Силы, действующие в атмосфере, можно рассматривать с двух позиций. Во-первых, можно рассматривать силы, под воздействием которых возникает в атмосфере движение (движущие), и силы, сопутствующие движению.[ ...]

К движущим силам относится сила тяжести и сила барического градиента. Сопутствуют движению отклоняющая сила вращения Земли (сила Кориолиса), сила трения, а при криволинейных траекториях - центробежная.[ ...]

Во-вторых, силы, действующие в атмосфере, можно подразделить на массовые и поверхностные. Массовые силы действуют на каждый элемент массы рассматриваемого объема воздуха. К массовым относятся сила тяжести, отклоняющая сила вращения Земли и центробежная. К поверхностным силам - сила барического градиента и сила трения.[ ...]

Сила трения в любой жидкости или газе характеризуется вязкостью, или внутренним трением, отличаясь по своей сущности от сил трения, возникающих между двумя твердыми телами, где они являются в прямом смысле поверхностными.[ ...]

В атмосфере, как в любой газовой среде, обладающей вязкостью, сила молекулярного и турбулентного трения охватывает некоторый конечный слой воздушной массы, перемещающегося по вертикали термика, а при горизонтальных движениях - отдельные элементы газовой среды, движущиеся с различными скоростями.[ ...]

Земная поверхность с позиций гидроаэродинамики может рассматриваться как неподвижная стенка, у которой в соответствии с классическими представлениями скорость должна обращаться в нуль (условие прилипания). Структура приземного и планетарного пограничного слоя в атмосфере формируется под доминирующим влиянием вязких сил трения. Поскольку планетарный пограничный слой в атмосфере простирается от земной поверхности до высоты порядка километра, понятна определенная условность отнесения силы трения в атмосфере к поверхностным. Хотя по сравнению со всей атмосферой толщина планетарного пограничного слоя на три порядка меньше.[ ...]

Рассмотрим силы, действующие в атмосфере.[ ...]

Сила тяжести - это разность нормальных составляющих силы гравитационного притяжения к центру Земли Ё и центробежной силы С, направленной по радиусу-вектору вращения Земли. Сила тяжести совпадает с направлением отвеса в любой точке земной поверхности.[ ...]

Земля представляет собой сложное геометрическое тело. Кроме того, в ее структуре встречаются неоднородности плотности вещества, образующего Земной шар.[ ...]

Ускорение силы тяжести изменяется под влиянием сплющенности Земли и неодинаковой линейной скорости вращения точек поверхности на разных географических широтах. Ускорение силы тяжести является функцией географической широты и возрастает от экватора к полюсу. Разность значений ускорения на полюсе и на экваторе составляет около 0,52% от его среднего значения на широте 45°. Кроме того, сила тяжести зависит от расстояния рассматриваемой точки до центра Земли, которое можно характеризовать высотой над уровнем моря. Применительно к решению многих задач метеорологии этими изменениями можно пренебречь. Так, при удалении от уровня моря до высоты 30 км ускорение силы тяжести уменьшается в пределах 1%.

Закон сохранения массы, из которого следует уравнение неразрывности, является первым из основных законов механики. Вторым основным законом является закон изменения импульса или второй закон Ньютона, согласно которому изменение количества движения (импульса) за единицу времени равно сумме сил, приложенных к рассматриваемому телу. В гидромеханике второй закон Ньютона используется в форме принципа Даламбера, согласно которому при движении контрольного объема все силы, приложенные к нему уравновешивают друг друга. Для того, чтобы выяснить, как описываются математически силы, действующие на частицу атмосферного воздуха, следует рассмотреть важный частный случай – состояние покоя.

Силы, действующие на воздушные частицы

Объемные и поверхностные силы

Объемные (массовые) силы: величина этих сил пропорциональна объему (массе) жидкости, на который они действуют. Объемная сила, действующая в контрольном объеме, выражается формулой , в которой характеристикой объемной (массовой) силы в каждой точке является плотность распределения этой силы в пространстве, векторная величина, равная силе, действующей на единицу объема (массы)
. Примером объемной силы является сила тяжести . В этом случае плотность распределения представляет собой силу, приходящуюся на единицу массы сплошной среды.

Поверхностные силы, действуют между частями данного объема жидкости. Они не могут изменить количество движения этого объема, так как внутри него каждая внутренняя сила уравновешивается равной ей по модулю внутренней силой, имеющей противоположное направление. Вместе с тем работа внутренних сил может изменить кинетическую и (или) потенциальную энергию рассматриваемого объема жидкости. Величина этих сил пропорциональна площади поверхности, на которую они действуют. Характеристикой поверхностной силы на заданной поверхности является плотность ее распределения, которую называют напряжением . Это векторная величина. Её направление, в общем случае, не совпадает с направлением нормали к заданной поверхности. Проекцию напряжения на эту нормаль называют нормальным напряжением, а проекцию напряжения на касательную плоскость к заданной поверхности называют касательным напряжением.

Ниже приведены основные сведения об объемных и поверхностных силах, действующий в атмосфере.

Сила тяжести – объемная сила

Вектор силы тяготения согласно закону Ньютона может быть записан в виде

F = f m 1 m 2 / r 2 i F

, где f = 6.673 10 -11 [н м 2 /кг 2 или м 3 2 ] – гравитационная постоянная, i F орт направления силы от меньшей массы (m 2 ) к большей (m 1 ). В дальнейшем принимается, что m 1 = m (для Земли M ) , m 2 = 1 кг (единичная масса). Выбирая единичную массу притягиваемого тела, силовое поле массы M начинают описывать с помощью ускорения силы тяжести . (В дальнейшем будет использована и геоцентрическая гравитационная постоянная fM =3,086 10 14 [м 3 /с 2 ]).

Если, как показано на рисунке, если масса M расположена в точке {ξ, η, ζ }, а единичная масса расположена в точке{x , y , z }, то вектор направления силы противоположен вектору расстояния r 2 = (x 2 - x 1 ) 2 + (y 2 - y 1 ) 2 +(z 2 - z 1 ) 2 до притягиваемой точки.

Если dF = dFx i + dFy j + dFz k вектор силы притяжения элементом dm массы M , единичной массы в проекциях на оси декартовой системы координат с центром в центре тяжести тела M , то вычисление силы притяжения телом конечного объема может быть выполнено с использованием объемного интеграла.

dFx = dF cos(F x)= - dF cos(r x ) = - (f dm/r 2 ) (x 2 -x 1 )/r Fx = - f  cos(r x ) /r 2 dm

dFy = dF cos(F y)= - dF cos(r y ) = - (f dm/r 2 ) (y 2 -y 1 )/r Fy = - f  cos(r y ) /r 2 dm

dFz = dF cos(F z)= - dF cos(r z ) = - (f dm/r 2 ) (z 2 -z 1 )/r Fz = - f  cos(r z ) /r 2 dm

Если ось Z совместить с направлением действующей силы, то Fx = Fy = 0. Тогда

Сила притяжения единичной массы со со стороны массы M , выражается формулой

(6.1)

Притяжение однородного шара

Пусть центр притягиваемой массы находится на расстоянии ρ от центра сферы. Произвольная точка A на притягивающей сфере находится на расстоянии r от притягиваемой точки, причем r 2 = R 2 + ρ 2 –2 R ρ cos  откуда следует, что R / ρ dr = R 2 sin d / r





Элемент притягивающей массы, расположенной на участке поверхности R 2 sin () d d  можно найти по формуле

dm =   R 2 sin () d d  (6.2)

где  З (R ) dR поверхностная плотность (объемная плотность обозначена З (R )). Сила притяжения элемента массы участка поверхности dm , вычисляется по формуле

dF = - f μ cos (r , z ) =- f μ (ρ - Rcosθ )/ r = f μ (ρ 2 - R 2 + r 2 )/2 ρr , (6.3)

в которой Rcosθ выражен через расстояния.

Сила притяжения всей сферической поверхности может быть вычислена путем интегрирования dF по все поверхности сферы

F = f
(6.4)

Cилу притяжения шара можно вычислить, выразив поверхностную плотность через постоянную объемную плотность З = dR , суммируя воздействие всех внутренних бесконечно тонких слоев dR и учитывая, что в пределах атмосферы высоты z (0- 50 км) почти в тысячу раз меньше радиуса Земного шара R ш (6400 км), по формуле

F = =9,8 м/с 2 = g (6.5)

Таким образом, показано, что при оценке силы тяжести можно считать, что сила притяжения Земного шара сосредоточена в его центре и вычисляется по закону Всемирного тяготения для материальных точек. Это значит, что на каждую частицу воздуха действует сила P , направленная к центру Земли, называемая весом этой частицы и вычисляемая по формуле

(6.6)

Потенциал силы тяготения и геопотенциал

Если V / x = Fx , V / y = Fy , V / z = Fz , то скалярное поле V (x , y , z ) – потенциал векторного поля F (x , y , z ). Для поля силы тяжести Земного шара в метеорологии можно ограничиться только приближенной оценкой его вертикальной составляющей по формуле

dV = V / x dx + V / y dy + V / z dz = Fx dx + Fy dy + Fz dz = g dz

Учитывая, что потенциал является полным дифференциалом, он определяется путем интегрирования по произвольному контуру между двумя точками поля

V(B) – V(A) = A B dV = A B Fx dx + Fy dy + Fz dz =

По физическому смыслу потенциал - это работа силы земного тяготения по перемещению единичной массы между точками A B. С большой точностью можно считать, что она зависит только от перепада высот между точками. В метеорологии принято его называть геопотенциалом. Полезно помнить, что для центральных векторных полей, к которым относится поле силы тяжести, для вектора силы F (x , y , z ) потенциал обратно пропорционален расстоянию до точки (V = f M / r ). Между этими определениями нет несоответствия, так как последнее переходит в первое при использовании предположения 1/ r =1/(R ш + z )≈ - z / R ш 2 .

Тензор напряжений – форма записи поверхностных сил

Для того, чтобы показать, почему существуют поверхностные силы, разделим, как принято в механике сплошных сред, произвольную часть контрольного объема сплошной среды поверхностью АВ на две части (см. рисунок). При этом часть 1 будет действовать на часть 2 с силой ΔF AB . Обозначив часть площади поверхности АВ, расположенную в точке M через ΔА AB , можно записать формулу для вектора напряжения P AB , действующего на эту площадку, в виде

Следует обратить внимание, что на часть площади ΔА DE поверхности DE, расположенную в той же точке M, действует другой вектор напряжения

Это значит, что векторное представление поверхностных сил в одной и той же точке атмосферы неоднозначно , оно зависит от ориентации элементарной площадки. Для того, чтобы отделить однозначное описание напряженного состояния в точке от влияния ориентации площадки, нужно учесть, что для любой площадки, ориентация которой задается вектором нормали вектор напряжения P разлагается по трем не компланарным векторам, в соответствие с выбранной координатной системой. (см. рисунке). Каждый из векторов P X , P Y , P Z представляет напряжение, действующее в точке на координатные плоскости. В общем случае эти вектора могут не быть перпендикулярными координатным плоскостям. Поэтому каждый из них имеет трехкомпонентное представление.


Компоненты P XX , P YY , P ZZ являются нормальными напряжениями, а остальные компоненты – касательными напряжениями.

Если рассмотреть равновесие контрольного объема в форме пирамиды с вершиной в точке M (см. рисунок), т
о проекции грани ABC, имеющей площадь A n , на координатные плоскости выражаются формулами
. Вектор напряжений, действующий на эту грань, представляется в виде
, причем вектора напряжений, действующих параллельно координатным осям, имеют компоненты
,
,

Для того, чтобы пирамида находилась в равновесии проекции всех сил на координатные оси должны быть уравновешены. Отсюда следуют равенства

Если сократить A n и представить эти равенства в матричной форме, то эти равенства можно переписать в виде

(6.7)

Становиться видно, что эффект ориентации грани ABC, выражаемый вектором нормали к этой грани n и эффект действующих в точке M напряжений, выражаемый таблицей П (3х3), разделяются.

Таблица
называется тензором напряжений.

Свойства тензоров напряжений в любой сплошной среде

1. П - это матрица. Справедливы все свойства матриц.

2. Если от системы (x,y,z) перейти к (x",y",z"), то П" = А П , П" - тензор в новой системе, А - матрица перехода (известна). Это значит, что П" предсказуем и не зависит от ориентации площадки, тензор напряжений однозначно определяет поверхностные силы, действующие в точке сплошной среды.

3. При смене координат сохраняются ИНВАРИАНТЫ тензора П:

а) След (p xx + p yy + p zz ), б) Миноры; в) Определитель.

4. Так как вектор n безразмерен, то размерность [p ij ] = Н/ м 2

Свойства тензоров напряжений жидкости .

Текучестью называется способность частиц жидкости приходить в движение при любом, даже бесконечно малом касательном напряжении. Отсюда следует, что в состоянии покоя, когда нет движения, нет и касательных напряжений, то есть тензор напряжений в жидкости (и газе) является диагональной матрицей, то есть

Так как для произвольно ориентированной площадки вектор напряжения в жидкости перпендикулярен к ней, то P N = n | P N | . В тензорном представлении P N = n П. Сравнивая эти два определения, получим, что

n | P N | = { n x | P N |; n y | P N |; n z | P N |} = n П = { n x p xx +0+0; 0+ n y p yy +0; 0+0+ n z p zz }.

Откуда следует, что

| P N |= p xx = p yy = p zz = - p и

В покоящейся жидкости (и газе) тензор напряжений полностью определяется одной скалярной величиной p , которая называется гидростатическим давлением

Закон Паскаля: В покоящейся жидкости напряжения по любому направлению одинаковы и направлены по нормали к площадке

Определение силы давления площадку ∆A совпадает с термодинамическим F = - p n A Определение силы барического градиента, порождаемой разностью давлений и действующей н
а элемент объема V = dx dy dz иллюстрирует рисунок. На нем p - сила давления на площадку dydz , расположенную в точке ( x , y , z .), -( p + p /∂ xdx ) - сила давления на площадку dydz , расположенную в точке ( x + dx , y , z .). На элемент объема в направлении x действует составляющая силы давления p dydz -( p + p /∂ xdx ) dydz = - ∂ p /∂ x dx dydz

На элемент V действует вектор силы давления, который в метеорологии принято называть силой барического градиента. Он равен - grad p dx dydz , где grad p = { - ∂ p /∂ x , - ∂ p /∂ y , - ∂ p /∂ z } .

Закон гидростатики. Статика атмосферы

В покоящейся жидкости вектор силы тяжести, действующей на элемент, уравновешен градиентом давления:

( ρ f - grad p) dx dy dz = 0

В проекциях на оси:

{ ρ f x - ∂ p /∂ x =0, ρ f y - ∂ p /∂ y =0, ρ f z - ∂ p /∂ z =0}

Принято направлять ось z в зенит, тогда f = { 0, 0, - g } и баланс сил тяжести и барического градиента сводится к равенствам

p /∂ x =0, ∂ p /∂ y =0, ∂ p /∂ z = - ρ g

В покоящейся атмосфере изобары параллельны геосфере. Последнее из равенств называется законом гидростатики.

Статика атмосферы.

В атмосфере закон гидростатики действует совместно с уравнением состояния

О
тсюда следует, что распределение давления по вертикали в атмосфере определено полностью, если известен вертикальный профиль температуры и давление на каком-либо одном уровне. Физически правильно было бы использовать значениние давления на самых верхних уровнях, но в силу малой точности наблюдений, применяют давление на уровне подстилающей поверхности.

Для различных оценок полезно знать, как приблизительно изменяется давление с высотой в стандартной атмосфере, то есть при линейном падении температуры (политропная атмосфера) до 11 км, свойственном тропосфере, и при постоянной температуре (изотермическая атмосфера), что является упрощенным описанием стратосферы (см. рисунок).

В политропной атмосфере (тропосфере)

На верхней границе тропосферы z = z 11 = 11000 м, T = T 11 =217 o K , p = p 11 =225 гПа

В изотермической атмосфере (стратосфере)

В
ертикальное распределение давления, полученное по этим зависимостям, приведено на рисунке

Следствия уравнений статики и состояния

Масса единичного столба атмосферы

Внутренняя энергия единичного столба атмосферы

Потенциальная энергия и ТЕОРЕМА ДАЙНСА

Запись теоремы Дайнса через высоту центра тяжести и среднюю температуру

Выполнимость теоремы Дайнса на уровне максимума ψ

Доказательство изопикничности среднего энергетического уровня

Приближенные значения переменных для среднего энергетического уровня

Последние материалы раздела:

Кислотные свойства аминокислот
Кислотные свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.Химические свойства аминокислотВ зависимости от соединений,...

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...