Как изменяется испарение с широтой. Географическое распределение испаряемости и испарения

Термометр представляет собой специальный прибор, предназначенный для измерений текущей температуры конкретной среды при контакте с ней.

В зависимости от вида и конструкции, он позволяет определить температурный режим воздуха, человеческого тела, почвы, воды и так далее.

Современные термометры подразделяются на несколько видов. Градация приборов в зависимости от сферы применения выглядит так:

  • бытовые;
  • технические;
  • исследовательские;
  • метеорологические и другие.

Также термометры бывают:

  • механические;
  • жидкостные;
  • электронные;
  • термоэлектрические;
  • инфракрасные;
  • газовые.

Каждый из названных приборов имеет собственную конструкцию, отличается принципом действия и областью применения.

Принцип работы

Жидкостный термометр

В основе жидкостного термометра лежит эффект, известный как расширение жидкостных сред при нагревании. Чаще всего в подобных приборах используется спирт либо ртуть. Хотя от последней планомерно отказываются в виду повышенной токсичности этого вещества. И все же, данный процесс так до конца не завершен, так как ртуть обеспечивает лучшую точность измерений, расширяясь по линейному принципу.

В метеорологии чаще применяют приборы, наполненные спиртом. Объясняется это свойствами ртути: при температуре в +38 градусов и выше она начинает густеть. В свою очередь, спиртовые термометры позволяют оценивать температурный режим конкретный среды, нагретой 600 градусов. Ошибка измерений не превышает доли одного градуса.

Механический термометр

Механические термометры бывают биметаллическими или делатометрическими (стержневые, жезловые). Принцип действия таких приборов основан на способности металлических тел расширяться при нагреве. Они отличаются высокой надежностью и точностью. Себестоимость производства механических термометров относительно низка.

Данные приборы применяются в основном в специфическом оборудовании: сигнализациях, системах автоматического контроля температуры.

Газовый термометр

Принцип действия термометра основан на тех же свойствах, что и описанных выше приборов. За исключением того, что в данном случае применяется инертный газ. По сути, такой термометр представляет собой аналог манометра, который служит для измерения давления. Газовые приборы применяются для измерения высоко- и низкотемпературных сред (диапазон составляет -271 - +1000 градусов). Они обеспечивают относительно низкую точность, из-за чего от них отказываются при лабораторных измерениях.

Электронный термометр

Его еще называют термометр сопротивления. Принцип действия этого прибора основан на изменение свойств полупроводника, встроенного в конструкцию устройства, при повышении или понижении температуры. Зависимость у обоих показателей линейная. То есть, при повышении температуры растет сопротивление полупроводника, и наоборот. Уровень последнего напрямую зависит от типа металла, использованного при изготовлении прибора: платина «работает» при -200 - +750 градусов, медь при -50 - +180 градусов. Электрические термометры используются редко, так как при производстве очень сложно градуировать шкалу.

Инфракрасный термометр

Также известен как пирометр. Он представляет собой бесконтактный прибор. Пирометр работает с температурами от -100 до +1000 градусов. Его принцип действия основан на измерении абсолютного значения энергии, которую излучает конкретный объект. Максимальная дальность, на которой термометр способен оценивать показатели температуры, зависит от его оптической разрешения, типа прицельного устройства и других параметров. Пирометры отличаются повышенной безопасностью и точностью измерения.

Термоэлектрический термометр

Действие термоэлектрического термометра основано на эффекте Зеебека, посредством которого оценивается разница потенциалов при контакте двух полупроводников, в результате чего образуется электрический ток. Температурный диапазон измерений составляет -100 - +2000 грудусов.

В нынешнее время нанотехнологий и электроники, по-прежнему существует много привычных предметов, которые раньше всегда служили верой и правдой, и еще долго будут оставаться такими же полезными. К таковым относится и такая, присутствующая в каждом доме, необходимая вещь как максимальный медицинский термометр.

Как ни странно, у медицинского термометра очень богатая многовековая история, начавшаяся с Галилео Галилея, за которую он претерпел десятки изменений, в результате которых, мы имеем сейчас такое простое и надежное средство измерения максимальной температуры человеческого тела.

Ртутные градусники, конечно, приносят в своем использовании некоторые неудобства, поскольку имеют большое время измерения, однако их точность и дешевизна с успехом это компенсируют. Благодаря развитию прогресса, появились и другие, более быстрые, способы измерения температуры, однако, благодаря своей достоверности, ртутные градусники будут служить еще не один десяток лет.

Чтобы понять, как работает ртутный градусник, необходимо изучить его устройство. Непосредственно ртутный градусник состоит из резервуара с ртутью, трубки для движения ртути, шкалы с градуировкой в градусах и стеклянного корпуса. В каждом медицинском термометре используется около двух грамм ртути, которая, к сожалению, в случае разрушения градусника, может представлять собой ощутимую опасность для здоровья человека.

Самым главным компонентом градусника является измерительная трубка. При простом внешнем виде, на самом деле она имеет в своем устройстве одну характерную особенность. Если внимательно, при помощи лупы рассмотреть место соединения трубки с ртутным резервуаром, то можно заметить, что в этом месте имеется значительное сужение канала прохождения ртути.

Нагревая резервуар с ртутью температурой тела, мы приводим в действие один из законов физики, когда нагрев вещества производит его расширение. Соответственно, расширившаяся, таким образом, ртуть выходит через сужение канала в измерительную трубку под давлением. Излишки ртути, выдавленные из резервуара, образуют именно тот столбик, по которому, благодаря шкале, мы видим значение температуры в градусах.

Далее отмечая, как устроен ртутный градусник, можно рассказать, что поскольку в измерительной трубке никакого давления ртути уже нет, а напротив, там при изготовлении создан вакуум, на активное вещество, относительно стенок трубки, уже действуют силы поверхностного натяжения, которые еще и благодаря плотности ртути, не дают более холодной чем в резервуаре ртути, вернуться через сужение обратно. Благодаря именно этому свойству, медицинский градусник и называется максимальным.

Он, по окончании измерения, всегда фиксирует ртуть в её максимальном положении, благодаря чему мы и знаем значение температуры своего тела. Конечно, кроме ртути можно было бы использовать и другие вещества, как, к примеру, в комнатных и уличных термометрах. Но дело в том, что именно ртуть обладает самыми линейными характеристиками расширения при нагревании, что и делает её самой точной для отображения даже десятых долей градусов.


Испарением называют переход вещества из жидкого или твер­дого состояния в газообразное. Испарение является одним из основных звеньев в круговороте воды на земном шаре, а также важнейшим фактором теплообмена в растительных и животных организмах.

На испарение затрачивается значительное количество теп­ла, составляющее для всей земной поверхности порядка 12,6 1023 Дж/год, или около 30 % поглощаемого Землей солнеч­ного тепла. За год с поверхности Мирового океана испаряется около 450 103 км3 воды, а с поверхности суши - 70 ■ 103 км3.

Количественно испарение характеризуется скоростью испаре­ния - массой воды, испарившейся с единицы поверхности за единицу времени. Для практических целей скорость испарения выражается высотой (в миллиметрах) слоя воды, испарившейся за единицу времени. Слой воды высотой 1 мм, испарившейся с площади 1 м2, соответствует массе воды в 1 кг или 1 л воды (1 мм слоя воды = 10 м3/га = 10 т/га).

На интенсивность испарения влияют многие факторы, в том числе и метеорологические. Главные из них - температура испа­ряющей поверхности, влажность воздуха и ветер. Согласно зако­ну Дальтона скорость испарения со прямо пропорциональна раз­ности между давлением насыщенного пара Eh вычисленным по температуре испаряющей поверхности, и парциальным давлени­ем водяного пара е, находящегося в воздухе, и обратно пропор­циональна атмосферному давлению R

со = [А (Ех - е)]/Р,

где Л -коэффициент пропорциональности, зависящий, в частности, от скорости ветра.

Из закона Дальтона следует, что скорость испарения будет возрастать по мере увеличения разности Е\ - е, т. е. дефицита влажности воздуха, вычисленного по температуре испаряющей поверхности.

Влияние атмосферного давления обусловлено тем, что его увеличение затрудняет отрыв молекул воды от испаряющей по­верхности. В связи с тем что у поверхности Земли атмосферное давление колеблется в сравнительно небольших пределах, оно несущественно влияет на скорость испарения и учитывается главным образом при сравнении скорости испарения на разных высотах в горной местности. При прочих равных условиях ско­рость испарения с высотой возрастает.

Зависимость скорости испарения от скорости ветра связана с турбулентной диффузией пара, которая становится интенсивнее по мере усиления ветра.

Под испаряемостью понимают максимальное количество вла­ги в миллиметрах, которое может в данных метеорологических условиях испариться с водной поверхности или с поверхности переувлажненной почвы за какой-либо промежуток времени.

На европейской части территории России испаряемость возра­стает с северо-запада на юго-восток, так как в этом направлении увеличиваются тепловые ресурсы и сухость воздуха. Средняя го­довая испаряемость в Санкт-Петербурге 320 мм, в Москве - 420, в Астрахани - 850 мм. В этом же направлении увеличивается раз­ность между возможным и фактическим испарением с почвы.

. ИСПАРЕНИЕ С ПОВЕРХНОСТИ ВОДЫ, ПОЧВЫ И РАСТЕНИЙ

Скорость испарения зависит не только от метеорологических факторов, но и от свойств испаряющей поверхности.

Испарение с водной поверхности зависит, во-первых, от раз­мера водоема. Испарение с небольших водоемов активнее, так как ветер приносит с окружающей суши более сухой воздух. Во-вторых, оно зависит от солености воды. С пресных водоемов ис­парение больше, так как упругость насыщения над пресной во­дой больше, чем над раствором.

На скорость испарения с поверхности почвы влияет много факторов. Очевидно, что с увеличением влажности почвы при прочих равных условиях испарение больше. Темные почвы сильнее прогреваются, чем светлые, и поэтому испаряют больше влаги. С неровной поверхности почвы (вспаханное поле) испа­рение идет интенсивнее, чем с ровной, так как над шероховатой поверхностью сильнее развито турбулентное перемешивание.

Интенсивность испарения зависит также от разновидности почвы. Песчаные почвы испаряют меньше, чем глинистые, и эта разница тем больше, чем крупнее частицы песка. А при диамет­ре песчинок более 2 мм испарения практически не происходит.

На скорость испарения оказывает влияние состояние почвы. Рыхлая почва с разрушенными капиллярами испаряет меньше, чем плотная с узкими капиллярами, по которым влага поднима­ется к поверхности почвы.

П. А. Костычев отмечал, что испарение с поверхности почвы резко уменьшается, если пахотный слой почвы имеет комкова­тое строение. В этом случае поднятие воды и, следовательно, ис­парение ее затруднены тем, что между отдельными комками имеются ходы большого размера, препятствующие капиллярным перемещениям воды. Наоборот, порошкообразная или пылева-тая структура почвы вызывает усиленное испарение с поверхно­сти почвы.

На испарение воды почвой оказывает влияние глубина зале­гания грунтовых вод. Чем ближе к испаряющей поверхности за­легают грунтовые воды, тем больше испарение.

Рельеф обусловливает изменение скорости ветра и различие в температуре почвы. На возвышенностях скорость ветра больше, чем в низинах, вследствие чего скорость испарения на возвы­шенностях больше. Склоны южной экспозиции прогреваются сильнее, чем северные, поэтому испарение на южных склонах интенсивнее.

Испарение воды растениями называют транспирацией. Транспирация - это сложный физико-биологический процесс. Поглощая воду из почвы, растение снабжает себя не только во­дой, обеспечивая процесс фотосинтеза, но и элементами мине­рального питания (в растворенном виде). Испаряя воду, расте­ние понижает свою температуру.

Интенсивность транспирации зависит от тех же метеорологи­ческих факторов, что и физическое испарение с поверхности воды или почвы: температуры и влажности воздуха, скорости ветра. Транспирация воды происходит через устьица, которые на свету раскрываются больше. Следовательно, транспирация зависит еще от освещенности.

Интенсивность транспирации зависит от вида и сорта, состо­яния и фазы развития растений.

Расход воды на транспирацию может быть выражен через различные показатели, однако в сельскохозяйственной практике чаще применяют коэффициент транспирации - отношение мас-сь! воды, расходуемой растением на транспирацию, к массе су­хого вещества (биологическому урожаю) за вегетационный или межфазный период.

Значение коэффициента транспирации изменяется в зависи­мости от условий произрастания: в более влажном климате и при значительных дозах удобрений транспирационный коэффи­циент уменьшается. Чем лучше условия внешней среды для рас­тений, выше агротехника и больше урожай, тем меньше коэф­фициент транспирации.

Значения коэффициентов транспирации, полученные раз­личными авторами, приведены в таблице 6.1.

Под суммарным испарением понимается сумма транспирации, испарения с почвы и испарения влаги, задержанной раститель­ным покровом при выпадении осадков. Суммарное испарение

сельскохозяйственных полей помимо погодных условий обус­ловлено мощностью растительного покрова, биологическими особенностями сельскохозяйственных культур, глубиной корне-обитаемого слоя, агротехникой возделывания и т. д.

Соотношение между составляющими суммарного испарения в течение вегетационного периода значительно изменяется. В начале вегетации, когда испаряющая листовая поверхность еще невелика, испарение с поверхности почвы больше, чем с повер­хности растений. В дальнейшем расход воды на транспирацию превышает физическое испарение с поверхности почвы, так как по мере нарастания фитомассы увеличивается затенение почвы и ослабляется воздухообмен среди растений.

. СУТОЧНЫЙ И ГОДОВОЙ ХОД ИСПАРЕНИЯ

Испарение с деятельной поверхности имеет выраженный су­точный ход, особенно в теплое время года.

В суточном ходе испарение следует за дефицитом влажности воздуха, который, в свою очередь, следует за температурой. Ис­парение начинается утром, приблизительно через 1 ч после вос­хода Солнца, и прекращается вечером, примерно за 1 ч до захода Солнца. В ночное время суток испарение практически равно нулю.

Максимум испарения наблюдается в 13... 14 ч, когда достига­ют наибольших значений температура испаряющей поверхнос­ти, дефицит насыщения водяного пара и скорость ветра.

На годовой ход испарения, как и на суточный, главное влия­ние оказывает температура. Поэтому наибольшее испарение бы­вает в летние месяцы (июнь - июль), иногда и в мае, а наимень­шее - в январе или декабре. Весной вследствие малой абсолют­ной влажности воздуха испарение бывает больше, чем осенью.

КОНДЕНСАЦИЯ И СУБЛИМАЦИЯ ВОДЯНОГО ПАРА

Переход водяного пара в жидкое состояние называется кон­денсацией. Превращение водяного пара в твердое состояние, ми­нуя жидкую фазу, называется сублимацией. Конденсация и суб­лимация водяного пара происходят как в атмосфере, так и на деятельной поверхности.

Водяной пар, содержащийся в воздухе, переходит в жидкое или твердое состояние лишь в том случае, когда е > Е. Таким об­разом, для начала конденсации или сублимации либо фактичес­кая упругость водяного пара в воздухе должна увеличиваться до значения, превышающего упругость насыщения, либо темпера­тура воздуха должна опуститься ниже точки росы. Поступление водяного пара в воздух над сушей ограничено, поэтому состоя­ние насыщения в атмосфере достигается при изменении темпе­ратуры. При понижении температуры воздуха ниже температу­ры точки росы излишек пара, превышающий упругость насыще­ния, конденсируется или сублимируется.

Понижение температуры воздуха ниже точки росы возможно вследствие охлаждения деятельной поверхности излучением и последующего охлаждения прилегающих слоев воздуха; сопри­косновения теплого воздуха с холодной деятельной поверхнос­тью; смешивания двух масс воздуха, имеющих разную темпера­туру; поднятия воздуха вверх (см. гл. 4).

В чистом воздухе капельки воды (конденсат) начинают об­разовываться только при 6...8-кратном превышении упругости насыщения (зародышевые капли в этом случае возникают в ре­зультате объединения молекул водяного пара в комплексы). Та­кого перенасыщения в атмосфере не бывает, но зато в ней все­гда имеется большое число различных гигроскопических час­тиц, являющихся активными ядрами конденсации (сублимации). Поэтому сгущение водяного пара в атмосфере начинает­ся уже при влажности воздуха, близкой к 100 %.

Продукты конденсации и сублимации на земной поверхности и на наземных предметах. В зависимости от температуры поверхности, а также температуры и влажности воздуха могут образовываться роса, иней, изморозь, а при определенных условиях - гололед.

Роса - мелкие капли воды, образующиеся на поверхности почвы, на растениях и на других предметах при температуре точ­ки росы выше 0 "С. Роса образуется вследствие радиационного охлаждения деятельной поверхности в ясные тихие ночи, когда температура поверхности и прилегающего к ней воздуха опуска­ется до точки росы и сконденсировавшийся пар выделяется на поверхности в виде капелек воды.

Роса является некоторым ресурсом влаги для растений, осо­бенно важным в засушливых районах. В умеренных широтах за одну ночь может образоваться 0,1...0,5 мм (0,1...0,5 л/м2) осадков; годовое количество влаги, выделяемое росой, составляет 10...30 мм (100...300 м3/га). Образование росы сопровождается вы­делением скрытой теплоты парообразования, в результате чего процесс выхолаживания замедляется и почва предохраняется от заморозков. Однако в период уборки урожая роса затрудняет ра­боту комбайнов, так как солома и зерно вследствие большой гиг­роскопичности становятся влажными, зерно плохо вымолачива­ется, солома забивает барабаны молотилки комбайна. Сильные, долго не спадающие росы во время созревания зерна, а особенно в фазу полной спелости, вызывают «стекание» зерна. Обильные росы могут спровоцировать и появление болезней у растений.

В условиях, аналогичных выпадению росы, но при снижении температуры на поверхности предметов ниже 0 °С путем субли­мации образуется иней, состоящий из ледяных кристаллов. Этот процесс происходит преимущественно при инверсии температу­ры воздуха.

Твердый налет представляет собой полупрозрачный, белова­того цвета ледяной налет толщиной до 2...3 мм, отлагающийся вследствие сублимации на наветренных сторонах различных хо­лодных предметов при адвективном потеплении (приток более теплого воздуха, часто при тумане), причем температура воздуха остается отрицательной.

При зимних оттепелях в пасмурную погоду или при тумане на вертикальных поверхностях, которые холоднее воздуха, часто появляется жидкий налет, поверхности «запотевают».

Изморозь - отложение льда на ветвях деревьев, проводах и т. п. при тумане в результате сублимации водяного пара (кристалли­ческая изморозь) или намерзания капель переохлажденного ту­мана (зернистая изморозь).

Кристаллическая изморозь состоит из кристаллов льда, нара­стающих на наветренной стороне при слабом ветре и температуре.-15 °С. Длина крис­талликов обычно не превыша­ет 1 см, но может достигать и нескольких сантиметров. Кри­сталлическая изморозь имеет вид пушистых гирлянд, легко осыпающихся при ветре.

Зернистая изморозь - снего-видный, рыхлый лед, нарастаю­щий с наветренной стороны предметов в туманную, умерен­но-морозную (до -10 °С), пре­имущественно ветреную пого­ду, особенно в горах. Толщина слоя отложения ее может дос­тигать нескольких десятков сантиметров (рис. 6.3). В таких случаях это опасное метеоро­логическое явление, так как ломаются ветки деревьев, рвут­ся провода и т. д.

Туманы. Скопление про­дуктов конденсации или суб­лимации (или тех и других вместе), взвешенных в возду­хе непосредственно над по­верхностью Земли, образует туманы.

В зависимости от причин образования туманы делят на тума­ны охлаждения и туманы испарения, первые из которых абсолют­но преобладают.

Охлаждение может происходить при разных условиях. Во-первых, воздух может перемещаться с более теплой подстилаю­щей поверхности на более холодную и охлаждаться вследствие этого. Это адвективные туманы. Во-вторых, воздух может охлаж­даться потому, что сама подстилающая поверхность под ним ох­лаждается радиационным путем. Это радиационные туманы.

Туманы испарения возникают чаще всего осенью и зимой (или летом ночью) в холодном воздухе над более теплой откры­той водой.

Туманы имеют как положительное, так и отрицательное зна­чение в жизни растений. Они могут быть полезны в период поздневесенних и раннеосенних заморозков, так как сдержива­ют выхолаживание деятельной поверхности. В другие периоды жизни растений туманы, особенно частые, малоблагоприятны. В период цветения растений они задерживают вызревание пыль­цы, препятствуют лёту насекомых, что снижает продуктивность опыления и образования завязи. В период формирования ниж­него междоузлия озимых и яровых хлебов они обусловливают крупноклеточное строение ткани, вследствие чего может сни­зиться устойчивость растений к полеганию.

Туманы, образующиеся в период формирования и дозревания плодов сельскохозяйственных культур, ухудшают их лежкость при хранении и снижают качество, а образующиеся в период уборки зерновых задерживают дозревание хлебов и, как и роса, затрудняют проведение уборочных работ. Туманы, так же как и роса, могут вызывать «стекание» зерна и стимулировать разви­тие болезней у растений. Далее приведена продолжительность увлажнения листьев пшеницы и интенсивность поражения ее линейной ржавчиной (по Пельтье).

Облака. Скопление продуктов конденсации и сублимации в свободной атмосфере образует облака. Размеры облачных эле­ментов - капелек и кристалликов - настолько малы, что дли­тельное время остаются взвешенными в воздухе или даже увле­каются восходящими потоками вверх.

Облака переносятся воздушными течениями. Если относи­тельная влажность в окружающем воздухе убывает, то облака ис­паряются.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...