Известно что коэффициент автокорреляции остатков первого. Обнаружение автокорреляции остатков

9.1 Сущность и причины автокорреляции в остатках

Автокорреляция в остатках обычно встречается при регрессионном анализе временных рядов, и почти не встречается при анализе пространственных выборок. Чаще встречается положительная автокорреляция. Она в большинстве случаев вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов. При положительной автокорреляции остатки изменяются монотонно с течением времени наблюдения, а при отрицательной – следует частое изменение знака остатка.

Среди базовых причин автокорреляции можно выделить следующие:

а) ошибки спецификации – неучет в модели какой-то важной объясняющей переменной или неверный выбор вида функции, что ведет к систематическим отклонениям точек наблюдения от линии регрессии,

б) инœерция – запаздывание реакции экономической системы на изменение факторов,

в) сглаживание данных.

Последствия автокорреляции в остатках такие же, как и в случае гетероскедастичности (потеря эффективности, смещение дисперсий оценок параметров, занижение стандартных ошибок и завышение t –статистик параметров), а это может повлечь признание незначимых факторов значимыми. Вследствие перечисленных обстоятельств, прогнозные качества модели ухудшаются.

При анализе временных рядов вместо индекса i часто будем использовать время t , а вместо числа наблюдений n будем писать – продолжительность интервала наблюдения временного ряда.

Мы будем рассматривать автокорреляцию первого порядка, так как в большинстве практических случаев автокорреляционная функция быстро убывает.

Коэффициент автокорреляции 1-го порядка в остатках:

В случае если данный коэффициент корреляции существенно отличен от 0, то можно говорить о наличии автокорреляции.

9.2. Обнаружение автокорреляции в остатках

1. Графический метод – при использовании этого метода строится график: ε t есть функция от ε t – 1 . В случае если в графике прослеживается отчетливая положительная или отрицательная тенденция, то, скорее всœего, имеет место соответствующая автокорреляция в остатках.

2. Метод рядов

В моменты времени определяются знаки отклонений, к примеру:

– для 20-ти наблюдений.

Рядом называют непрерывную последовательность одинаковых знаков (ряд ограничен скобками, в примере приведено 5 рядов). Количество знаков называют длиной ряда. В случае если рядов мало по сравнению с числом наблюдений, то вполне вероятна положительная автокорреляция, в случае если рядов много, – то отрицательная.

Для более детального анализа используется следующая процедура:

Пусть - число знаков ʼʼ+ʼʼ,

Число знаков ʼʼ–ʼʼ,

Количество рядов.

При достаточном количестве наблюдений и при отсутствии автокорреляции в остатках случайная величина имеет асимптотически нормальное распределœение со следующими параметрами:

Тогда, в случае если k лежит внутри интервала

то гипотеза об отсутствии автокорреляции не отклоняется; если лежит левее данного интервала, то есть положительная автокорреляция, а если правее – то отрицательная автокорреляция. Здесь γ – уровень значимости гипотезы об отсутствии автокорреляции. Стоит сказать, что для небольших и существует таблица Сведа–Эйзенхарта͵ в которой по значениям и находятся и .

В случае если k 1 < k < k 2 , то автокорреляция отсутствует, в случае если k < k 1 – есть положительная автокорреляция, в случае если k > k 2 – есть отрицательная автокорреляция.

3. Тест Дарбина-Уотсона (DW ). Это – самый популярный тест: ─ критерий Дарбина – Уотсона.

Установим связь между этим критерием и коэффициентом корреляции:

учитывая, что и , получим:

Процедура обнаружения автокорреляции по критерию DW такова:

1. Вычисляется критерий DW , для чего должна быть выполнена регрессия y на x и определœены остатки. Далее выдвигается гипотезаоб отсутствии автокорреляции в остатках.

2. По таблице критических значений теста Дарбина–Уотсона для назначенного уровня значимости γ , числа наблюдений n и числа факторов p определяются верхняя du и нижняя dl критические точки

3. Строятся области: I–от 0 до dl ; II–от dl до du; III–от du до 4–du ; IV– от 4–ul до 4–dl и V–от 4–dl до 4.

Это поясняется табл. 9.1.

таблица 9.1

При использовании критерия следует учитывать следующие ограничения:

а) он применим лишь для модели с ненулевым свободным членом,

в) временной ряд должен иметь одинаковую периодичность, то есть не должно быть пропусков наблюдений,

где - коэффициент авторегрессии, - количество наблюдений, – дисперсия коэффициента c 1 в уравнении авторегрессии y t = a + bx t + c 1 y t - 1 +…+ ε t , c 1 – коэффициент при в упомянутом уравнении.

Как использовать h – статистику?

Стоит сказать, что для назначенного уровня значимости γ выдвигают гипотезу об отсутствии автокорреляции в остатках, ᴛ.ᴇ. полагают, что в модели AR(1) остатков и статистика h имеет стандартное нормальное распределœение: .

По таблице функции Лапласа определяют критическую точку такую, что . В случае если , то отклоняется. В противном случае не отклоняется и автокорреляция не признается.

9.3. Методы устранения автокорреляции

1.Обобщенный МНК (ОМНК)

Рассмотрим исходную модель в моменты времени t и t –1:

– есть случайная величина, так как и – случайные величины,

Так как и .

Остаток не коррелирует ни с одним регрессором, следовательно, можно применить классический МНК. Оценка параметра b вычисляется непосредственно, а оценка параметра a вычисляется так: .

ОМНК может применяться для данных, начиная с момента , ᴛ.ᴇ. первое наблюдение теряется; его можно восстановить для и , используя поправку Прайса–Уинстена.

В эконометрических исследованиях часто возникают ситуации, когда дисперсия остатков постоянна, но наблюдается статистическая зависимость остатков эконометрической модели между собой. Это явление называют автокорреляцией остатков .

В общем случае автокорреляция (последовательная корреляция) – это взаимосвязь упорядоченных во времени или в пространстве последовательных элементов соответственно временного или пространственного ряда данных.

На рис.5.5 показана зависимость Y от X , а также линия оцененного по этим данным уравнения парной линейной регрессии. Уже по рисунку видно, что оцененная регрессия не очень хороша: зависимость Y от X явно нелинейна. Если использовать проведенную регрессионную прямую, скажем, для прогнозирования дальнейшей динамики Y , результат будет неудовлетворительным.

Рис.5.5. К вопросу об автокорреляции остатков

Как же можно выразить формально неудовлетворительность полученного уравнения регрессии?

Мы видим, например, на рис.5.5, что в этом случае отклонения от линии регрессии не случайно распределены вокруг нее, а обладают определенной закономерностью. Эта закономерность, в частности, выражается в одинаковом, как правило, знаке каждых двух соседних отклонений . Это может являться следствием:

Неверной спецификации модели (ввиду нелинейного характера связи переменных);

Воздействием какого-то фактора, не включенного в модель в качестве объясняющей переменной. Величина такого неучтенного фактора может менять свою динамику в рассматриваемый период, отклоняясь в достаточно длительные промежутки времени в ту или иную сторону от своего среднего значения. Это, очевидно, может служить причиной длительных устойчивых отклонений зависимой переменной от линии регрессии.

Обе указанные причины свидетельствуют о том, что существует возможность улучшить уравнение регрессии путем оценивания какой-то новой нелинейной формулы или включения некоторой новой объясняющей переменной.

Зависимость, показанная на рис.5.5, очевидно, нелинейна. Но это – крайний случай. Далеко не всегда бывает столь же очевидно, что отклонения от регрессионной прямой имеют неслучайный, закономерный характер. Для оценки степени такой неслучайности необходимо ввести количественную меру .

Итак, одним из основных предполагаемых свойств отклонений наблюдаемых значений от регрессионной формулы является их статистическая независимость между собой .

Мы рассмотрим наиболее простую модель, в которой ошибки образуют так называемый авторегрессионный процесс первого порядка , т.е. когда ошибки зависят только от ошибок предыдущего периода. Применение обычного метода наименьших квадратов в этом случае дает несмещенные и состоятельные оценки параметров, однако можно показать, что оценка дисперсии оказывается смещенной вниз , что может отрицательно сказаться при проверке гипотез о значимости оценок параметров. Образно говоря, МНК рисует более оптимистичную картину, чем есть на самом деле.



Следовательно, последствия автокорреляции состоят в том, что:

- оценка дисперсии при использовании МНК является заниженной .

Большинство тестов на наличие автокорреляции в ошибках модели (наиболее широко используется тест Дарбина-Уотсона ) используют следующую идею: если корреляция есть у ошибок , то она присутствует и в остатках , получаемых после применения к модели обычного метода наименьших квадратов.

То есть, поскольку значения ошибок остаются неизвестными ввиду неизвестности истинных значений параметров модели, то проверяется статистическая независимость их аналогов – отклонений . При этом проверяется обычно их некоррелированность (являющаяся необходимым, но недостаточным атрибутом независимости ), причем некоррелированность не любых, а соседних величин .

- соседние во времени значения (в случае временных рядов);

- соседние по возрастанию переменной Х значения (в случае перекрестных выборок).

Первого порядка ” означает, что остатки зависят только от остатков предыдущего периода.



Практически, однако, используют тесно связанную с статистику Дарбина-Уотсона, обозначаемую как DW-статистика или как d‑статистика , и рассчитываемую по формуле:

. (5.13)

.

С автокорреляцией остатков

Вернемся еще раз к предположению (3.3). Из него, в частности, следует, что ковариации случайной ошибки для разных наблюдений равны нулю. Если к тому же случайные ошибки распределены нормально, то это означает их попарную независимость.

Однако регрессионные модели в экономике часто содержат стохастические зависимости между значениями случайных ошибок – автокорреляцию ошибок . Ее причинами являются: во-первых, влияние некоторых случайных факторов или опущенных в уравнении регрессии важных объясняющих переменных, которое не является однократным, а действует в разные периоды времени; во-вторых, случайный член может содержать составляющую, учитывающую ошибку измерения объясняющей переменной.

Применение к модели с автокорреляцией остатков обыкновенного МНК приведет к следующим последствиям :

1. Выборочные дисперсии полученных оценок коэффициентов будут больше по сравнению с дисперсиями по альтернативным методам оценивания, т.е. оценки коэффициентов будут неэффективны.

2. Стандартные ошибки коэффициентов будут оценены неправильно, чаще всего занижены, иногда настолько, что нет возможности воспользоваться для проверки гипотез соответствующими точными критериями – мы будем чаще отвергать гипотезу о незначимости регрессии, чем это следовало бы делать в действительности.

3. Прогнозы по модели получаются неэффективными.

На практике исследователь в этом случае поставлен перед проблемой тестирования наличия в модели автокорреляции, а также выявления причины автокорреляции при ее обнаружении: или в модели опущена существенная переменная, или структура ошибок зависит от времени. То есть, исследование остатков позволяет судить о правильности модели и ее пригодности для прогнозирования.

Простейшим способом проверки наличия автокорреляции является графическое изображение остатков e i . Возможно построение:

· графика временной последовательности, если остатки получены в разные моменты времени;

· графика зависимости остатков от значений , полученных по регрессии;

· графиков зависимости остатков от объясняющих переменных.

Если изображение остатков представляет собой горизонтальную полосу, это указывает на отсутствие каких-либо проблем, связанных с моделью. В противном случае в зависимости от вида и типа графика можно получить информацию о: неадекватности модели, ошибочности расчетов, необходимости включения в модель линейного или квадратичного члена от времени; наконец о непостоянстве дисперсии.

Ясно, что ошибки могут коррелировать по-разному, однако без нарушения общности можно рассматривать так называемую сериальную корреляцию (автокорреляцию), когда зависимость между ошибками, отстоящими на некоторое количество шагов s , называемое порядком корреляции (в частности, на один шаг, s =1), остается одинаковой, что хорошо проявляется визуально на графике в системе координат (e i ; e i - s ). Например, для s =1 на рис. 4.2 показаны отрицательная (слева) и положительная (справа) автокорреляция остатков. В экономических исследованиях чаще всего встречается положительная автокорреляция.


Рис. 4.2. Автокорреляция остатков

Более достоверным способом проверки существования автокорреляции является применение статистических критериев. Хорошо известны два – критерий знаков (относится к непараметрическим критериям) и критерий Дарбина-Уотсона .

Для проведения проверки по критерию знаков необходимо расположить остатки e i во временной последовательности, выписать их знаки, подсчитать число образующихся при этом серий n u из одинаковых знаков, а также n 1 – число остатков со знаком плюс и n 2 – число остатков со знаком минус. Далее определяется вероятность Pr (n u ) появления n u групп при нулевой гипотезе – последовательность остатков полностью случайна (автокорреляция отсутствует). Если Pr (n u ) < 1–a , где a – уровень доверия, то нулевая гипотеза отвергается.

Для ускорения расчетов для выборок с n 1 , n 2 не больше 20 составлены таблицы с критическими значениями n u при уровне доверия a =0,05.

Для больших выборок истинное распределение ошибок достаточно точно аппроксимируется нормальным со средним m =2n 1 n 2 /(n 1 +n 2)+1 и дисперсией s 2 =2n 1 n 2 (2n 1 n 2 – n 1 – n 2)/(n 1 + n 2) 2 /(n 1 + n 2 – 1), а величина z =(u m + 0,5)/s подчиняется нормированному нормальному распределению, следовательно, критические значения n u могут быть вычислены по формулам (m + z a s ) и (m z a s ), где z a определяется из условия F 0 (z a )=(1–a )/2 (значения даны в справочниках).

Пример . Получены остатки 0,6; 1,9; –1,8; –2,7; –2,9; 1,4; 3,3; 0,3; 0,8; 2,3; –1,4; –1,1, которые обнаруживают следующую последовательность знаков + + – – – + + + + + – –. Имеем n u =4, n 1 =7, n 2 =5. По таблице находим критические значения для n u : 3 и 11. Так как 3 < n u < 11, то нулевая гипотеза принимается, то есть остатки независимы и автокорреляция отсутствует.Ñ

Критерий знаков достаточно прост и не использует информацию о величине e i , и поэтому недостаточно эффективен.

Для проверки гипотезы о существовании линейной автокорреляции первого порядка, которая чаще всего имеет место на практике, предпочтителен критерий Дарбина-Уотсона , основанный на статистике:

(4.9)

Значения первых разностей ошибки в (4.9) будут обнаруживать тенденцию к уменьшению по абсолютной величине по сравнению с абсолютными значениями e i при положительной автокорреляции и к увеличению при отрицательной автокорреляции.

Для статистики d имеются верхний d U и нижний d L пределы уровня значимости. Различные статистические решения для нулевой гипотезы H 0: автокорреляция равна нулю, даны в табл. 4.3. При этом появляются области неопределенности, так как величина e i зависит не только от значений u , но и от значений последовательных X .

Следует отметить, что критерий Дарбина-Уотсона предназначен для моделей с детерминированными (нестохастическими) регрессорами X и не применим, например, в случаях, когда среди объясняющих переменных есть лаговые значения переменной Y .

Таблица 4.3

Области статистических решений для критерия Дарбина-Уотсона



Пример . Для примера 1 из п. 3.2 n =20, k =2 имеем табл. 4.4.

Значения d L и d U при уровне значимости 5% получим из справочника при n =20 и k =2: d L =1,10, d U =1,54.

Так как d >2, то вычисляем 4–d U =2,46 и 4–d L =2,90 и 2<d <4–d U .

Согласно табл. 4.3 гипотеза о равенстве нулю автокорреляции принимается. Ñ

Какой бы тест на автокорреляцию не использовался, необходимо помнить, что рекомендуется в случаях неопределенности (см. табл. 4.3) принимать гипотезу о наличии автокорреляции, поскольку это гарантирует от отрицательных последствий автокорреляции. В случаях же некорректного принятия гипотезы о равенстве нулю автокорреляции получаем модель, которая не может иметь удовлетворительного применения, хотя формально проходит все проверки.

Таблица 4.4

Вычисление значения статистики d

Ошибка e i e i 2 e i-1 (e i -e i-1 ) 2 Ошибка e i e i 2 e i -1 (e i -e i -1) 2
-2,49 6,20 -0,68 0,46 -8,72 64,64
-1,86 3,46 -2,49 0,40 5,27 27,72 -0,68 35,40
31,93 1019,21 -1,86 1141,76 -5,29 27,93 5,27 111,51
-3,18 10,11 31,93 1232,71 -16,74 280,23 -5,29 131,10
-2,17 4,71 -3,18 1,02 8,94 79,87 -16,74 659,46
-18,38 337,64 -2,17 262,76 -3,57 12,74 8,94 156,50
-3,45 11,90 -18,38 222,90 5,18 26,79 -3,57 76,56
5,58 31,14 -3,45 81,54 7,72 59,60 5,18 6,45
-3,11 9,67 5,58 75,52 -0,85 0,72 7,72 73,44
-8,72 76,04 -3,11 31,47 4,85 23,47 -0,85 32,49
Сумма 2050,37 4397,66

Рассмотрим методы оценивания уравнения регрессии при наличии автокорреляции остатков.

Пусть имеем обобщенную линейную модель множественной регрессии в виде (4.3)-(4.7) с гомоскедастичными остатками .

Предположим, что остатки u i удовлетворяют следующему уравнению:

u i =ru i -1 +e i , i =2,...,n , (4.10)

E (e i )=0; (4.11)

Тогда несложно показать, что будет выполняться:

. (4.12)

Условие (4.12) является аналогом (4.5) и фактически означает гомоскедастичность дисперсии случайного члена (первая строчка) и автокорреляцию первого порядка (вторая строчка). Ясно, что если бы было известно значение r в (4.10) и затем в (4.12), то можно было бы применить ОМНК (элементы матрицы W в этом случае вычисляются согласно (4.12)) и получить эффективные оценки коэффициентов регрессии. Однако на практике значение r в большинстве случаев не известно, поэтому используются следующие методы оценивания регрессионной модели.

Метод 1 . Отказавшись от определения величины r , являющейся узким местом модели, статистически, можно положить r =0,5; 1 или -1. Однако даже грубая статистическая оценка будет, видимо, более эффективной, поэтому другой способ определения r с помощью статистики Дарбина-Уотсона r»1–0,5d . Применяя затем непосредственно ОМНК, получим оценки коэффициентов.

Метод 2 . Если значение r в (4.12) задано, то альтернативная схема отыскания оценок коэффициентов модели множественной регрессии суть (в целях упрощения, не нарушая общности, иллюстрация метода дана для случая парной регрессии):

а) Запишем уравнение модели для случая i и i –1:

Вычтем из обеих частей первого уравнения умноженное на r второе уравнение:

или переобозначив:

с учетом (4.10) , получим модель

, (4.13)

для случайного члена которой выполняется условие (4.11), т.е. автокорреляция отсутствует. При указанном преобразовании первое наблюдение умножается на , т.е. , .

б) Применяем обыкновенный МНК к модели (4.13).

В общем случае мы не располагаем информацией о порядке автокорреляции и значениях параметров в авторегрессионном уравнении, а значит, и методы 1 и 2 не дадут искомого результата.

Тем не менее, оценки коэффициентов можно найти приближенно с помощью следующих методов (опять в целях упрощения, не нарушая общности, иллюстрация методов дана для случая парной регрессии).

Метод 3 . Итеративная процедура Кохрейна-Оркатта.

а) Оценивается регрессия с исходными не преобразованными данными с помощью обыкновенного МНК.

б) Вычисляются остатки e i .

в) Оценивается регрессия e i =re i -1 +e i , и коэффициент при e i -1 дает оценку r .

г) С учетом полученной оценки r уравнение преобразовывается к виду (4.13), оценивание которого позволяет получить пересмотренные оценки коэффициентов b 0 и b 1 .

д) Вычисляются остатки регрессии (4.13) и процесс выполняется снова, начиная с этапа в).

Итерации заканчиваются, когда абсолютные разности последовательных значений оценок коэффициентов b 0 , b 1 и r будут меньше заданного числа (точности).

Подобная процедура оценивания порождает проблемы, касающиеся сходимости итерационного процесса и характера найденного минимума: локальный или глобальный.

Метод 4. Метод Хилдрета-Лу основан на тех же принципах, что и рассмотренный метод 3, но использует другой алгоритм вычислений. Здесь регрессия (4.13) оценивается МНК для каждого значения r из диапазона [-1, 1] с некоторым шагом внутри него. Значение, которое дает минимальную стандартную ошибку для преобразованного уравнения (4.13), принимается в качестве оценки r , а коэффициенты регрессии определяются при оценивании уравнения (4.13) с использованием этого значения.

Метод 5. Дарбиным была предложена простая схема, дающая эффективные оценки коэффициентов:

а). Подставляя (4.10) в модель Y i =b 0 +b 1 X i +u i , получим с учетом u i - 1 = Y i -1 - b 0 - b 1 X i -1:

Y i =b 0 (1-r )+rY i -1 +b 1 (X i - rX i -1) + e i ,

где ошибка e i удовлетворяет (4.11). Применяя обыкновенный МНК к последней модели, получаем оценку r как коэффициента при Y i -1 .

б). Вычисляем значения преобразованных переменных и применяем к ним обыкновенный МНК. Получаем искомые оценки коэффициентов регрессии.

Достоинством метода является простота его распространения на случай автокорреляции более высокого порядка.

Как показывают эксперименты, проведенные для малых выборок, лучшим является двухшаговый метод 2, использующий оценку r , полученную по методу, предложенному Дарбиным (метод 5 шаг а)).

Автокорреляция – это корреляционная зависимость между текущими значениями некоторой переменной и значениями этой же переменной, сдвинутыми на несколько периодов времени назад. Автокорреляция случайной составляющей e модели – это корреляционная зависимость текущих и предыдущих значений случайной составляющей модели. Величина l называется запаздыванием , сдвигом во времени или лагом .

Автокорреляция случайных возмущений модели нарушает одну из предпосылок регрессионного анализа: условие

не выполняется.

Автокорреляция может быть вызвана несколькими причинами, имеющими различную природу. Во-первых, иногда она связана с исходными данными и вызвана наличием ошибок измерения в значениях результирующей переменной. Во-вторых, в ряде случаев причину автокорреляции следует искать в формулировке модели. Модель может не включать фактор, оказывающий существенное воздействие на результат, влияние которого отражается на возмущениях, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени t : автокорреляция обычно встречается при анализе временных рядов.

Постоянная направленность воздействия не включенных в модель переменных является наиболее частой причиной так называемой положительной автокорреляции .

Иллюстрацией положительной автокорреляции может служить следующий пример.

Пример 5.2. Пусть исследуется спрос Y на прохладительные напитки в зависимости от дохода X по ежемесячным и сезонным наблюдениям. Зависимость, отражающая увеличение спроса с ростом дохода, может быть представлена линейной функцией регрессии y = ax + b , изображенной вместе с результатами наблюдений на рис. 5.2.

Рис. 5.2. Положительная автокорреляция

На величину спроса Y оказывают влияние не только доход X (учтенный фактор), но и другие факторы, которые не учтены в модели. Одним из таких факторов является время года.

Положительная автокорреляция означает постоянное в одном направлении действие неучтенных факторов на результирующую переменную. Так спрос на прохладительные напитки всегда выше линии регрессии летом (т.е. для летних наблюдений e > 0) и ниже зимой (т.е. для зимних наблюдений e < 0) (рис. 5.2). g

Аналогичная картина может иметь место в макроэкономическом анализе с учетом циклов деловой активности.

Отрицательная автокорреляция означает разнонаправленное действие неучтенных в модели факторов на результат: за положительными значениями случайной составляющей e в одних наблюдениях следуют, как правило, отрицательные в следующих, и наоборот. Графически это выражается в том, что результаты наблюдений y i «слишком часто» «перескакивают» через график уравнения регрессии. Возможная схема рассеяния наблюдений в этом случае представлена на рис. 5.3.


Рис. 5.3. Отрицательная автокорреляция

Последствия автокорреляции в определенной степени сходны с последствиями гетероскедастичности. Среди них при применении МНК обычно выделяют следующие.

1. МНК-оценки параметров, оставаясь несмещенными и линейными, перестают быть эффективными. Следовательно, они перестают обладать свойствами наилучших линейных несмещенных оценок.

2. Стандартные ошибки коэффициентов регрессии будут рассчитываться со смещением. Часто они являются заниженными, что влечет за собой увеличение t -статистик. Это может привести к признанию статистически значимыми объясняющих переменных, которые в действительности таковыми не являются. Смещенность возникает вследствие того, что выборочная остаточная дисперсия (m – число объясняющих переменных модели), которая используется при вычислении указанных величин (см. формулы (2.18) и (2.19)), является смещенной. Во многих случаях она занижает истинное значение дисперсии возмущений s 2 .

Вследствие вышесказанного все выводы, получаемые на основе соответствующих t - и F - статистик, а также интервальные оценки будут ненадежными. Следовательно, статистические выводы, получаемые при проверке качества оценок (параметров модели и самой модели в целом), могут быть ошибочными и приводить к неверным заключениям по построенной модели.

Регрессионная модель МНК позволяет получить несмещенную оценку с минимальной дисперсией только тогда, когда остатки независимы друг от друга. Нарушение условия независимости остатков () называется автокорреляцией. Если имеет место автокорреляция остатков, то коэффициенты регрессии не смещены, но стандартные ошибки недооценены, а проверка статистической значимости коэффициентов ненадежна. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих наблюдений. Автокорреляция остатков обычно встречается в регрессионном анализе при использовании данных временных рядов. В силу этого в дальнейших выкладках вместо символа i порядкового номера наблюдения будем использовать символ t, отражающий момент наблюдения. Объем выборки при этом будем обозначать T.

Причины автокорреляции:

Ошибки спецификации – неучет в модели важной объясняющей переменной или неправильный выбор формы зависимости;

Эффект паутины – многие экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).

Методы обнаружения автокорреляции

В силу неизвестности значений параметров уравнения регрессии неизвестными будут также и истинные значения отклонений ,t= 1, 2, ..., Т. Поэтому выводы об их независимости осуществляются на основе оценок ε t ,t= 1, 2, ..., Т, полученных из эмпирического уравнения регрессии. Рассмотрим возможные методы определения автокорреляции.

Метод рядов.

Последовательно определяются знаки отклонений ,t= 1, 2, ..., Т.

Например, (- - - - -)(+++++++)(- - -)(++++)(-),

т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-».

Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называетсядлиной ряда .

Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений п , то вполне вероятна положительная автокорреляция. (В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов). Если же рядов слишком много, то вероятна отрицательная автокорреляция. Для более детального анализа предлагается следующая процедура. Пусть

п - объем выборки;

п 1 - общее количество знаков «+» прип наблюдениях;

п 2 - общее количество знаков «-» прип наблюдениях; .

k- количество рядов.

Если при достаточно большом количестве наблюдений (n 1 >10,п 2 >10) количество рядовkлежит в пределах

то гипотеза об отсутствии автокорреляции не отклоняется.

Для небольшого числа наблюдений (n 1 <20,n 2 <20) Свед и Эйзенхарт разработали таблицы критических значенийk 1 ,k 2 отn 1 ,n 2 .

Если , то говорят об отсутствии автокорреляции;

если , говорят о положительной автокорреляции остатков;

если , говорят об отрицательной автокорреляции остатков.

В нашем примере: n=20,n 1 =11,n 2 =9,k=5. По таблицамk 1 =6,k 2 =16. Пронимается предположение о наличии положительной автокорреляции на уровне значимости 0,05.

Для проверки автокорреляции первого порядка (для регрессии временных рядов) необходимо рассчитать критерий Дарбина-Уотсона . Он определяется так:

.

Эмпирическое правило гласит, что если критерий Дарбина- Уотсона равен двум, то не существует положительной автокорреляции, если он равен нулю, то имеет место совершенная положительная автокорреляция, а если он равен четырем, то имеет место совершенная отрицательная автокорреляция. Критерий Дарбина-Уотсона имеет выборочное распределение, которое обладает двумя критическими значениями: d L – нижняя границаиd U – верхняя граница.

Последние материалы раздела:

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...