Графическое решение уравнений и неравенств заключение. Графическое решение неравенств, системы совокупностей неравенств с двумя переменными

Графическое решение уравнений

Расцвет, 2009

Введение

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид , Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx , у = kx + m , у = x 2,у = – x 2, в 8 классе – у = √ x , у = |x |, у = ax 2 + bx + c , у = k / x . В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x 3, у = x 4,у = x 2n, у = x - 2n, у = 3√x , (x a ) 2 + (у – b ) 2 = r 2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задаётся уравнением у = kx + b , гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k / x , где k ¹ 0. График этой функции называется гиперболой.

Функция (x a ) 2 + (у – b ) 2 = r 2 , где а , b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а , b ).

Квадратичная функция y = ax 2 + bx + c где а, b , с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение у 2 (a x ) = x 2 (a + x ) . Графиком этого уравнения будет кривая, называемая строфоидой.

/>Уравнение(x 2 + y 2 ) 2 = a (x 2 y 2 ) . График этого уравнения называется лемнискатой Бернулли.

Уравнение. График этого уравнения называется астроидой.

Кривая(x 2 y 2 – 2 a x) 2 =4 a 2 (x 2 + y 2 ) . Эта кривая называется кардиоидой.

Функции: у = x 3 – кубическая парабола, у = x 4, у = 1/ x 2.

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способом позволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f (x ) , можно построить графики функций у = f (x + m ) ,у = f (x )+ l и у = f (x + m )+ l . Все эти графики получаются из графика функции у = f (x ) с помощью преобразования параллельного переноса: на m единиц масштаба вправо или влево вдоль оси x и на l единиц масштаба вверх или вниз вдоль оси y .

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский , живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

Находим координаты вершины параболы А (х0; у0): х =- b /2 a ;

y0=ахо2+вх0+с;

Находим ось симметрии параболы (прямая х=х0);

PAGE_BREAK--

Составляем таблицу значений для построения контрольных точек;

Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y = x 2 – 2 x – 3 . Абсциссы точек пересечения с осью x и есть корни квадратного уравнения x 2 – 2 x – 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьём уравнение на две функции: y = x 2 и y = 2 x + 3

3. Разобьём уравнение на две функции: y = x 2 –3 и y =2 x . Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx 2 – 2 x – 3 = 0 при помощи выделения полного квадрата на функции: y = (x –1) 2 иy =4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx 2 – 2 x – 3 = 0 на x , получим x – 2 – 3/ x = 0 , разобьём данное уравнение на две функции: y = x – 2, y = 3/ x . Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Пример 1. Решить уравнение x 5 = 3 – 2 x .

y = x 5 , y = 3 – 2 x .

Ответ: x = 1.

Пример 2. Решить уравнение 3 x = 10 – x .

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y = 3 x , y = 10 – x .

Ответ: x = 8.

Заключение

Рассмотрев графики функций: у = ax 2 + bx + c , у = k / x , у = √ x , у = |x |, у = x 3, у = x 4,у = 3√x , я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y .

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

Литература

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г.И. История математики в школе. VII–VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

6. Графическое решение уравнений сайты в Интернете: Тол ВИКИ; stimul.biz/ru; wiki.iot.ru/images; berdsk.edu; pege 3–6.htm.

учащийся 10 класса Котовчихин Юрий

Уравнения с модулями ученики начинают изучать уже с 6-го класса, они изучают стандартный метод решения с помощью раскрытия модулей на промежутках знакопостоянства подмодульных выражений. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования, задачи с модулем вызывают большие трудности у учащихся. В школьной программе встречаются задания, содержащие модуль как задания повышенной сложности и на экзаменах, следовательно, мы должны быть готовы к встречи с таким заданием.

Скачать:

Предварительный просмотр:

Муниципальное образовательное учреждение

Средняя общеобразовательная школа №5

Исследовательская работа на тему:

« Алгебраическое и графическое решение уравнений и неравенств, содержащих модуль »

Работу выполнил:

учащийся 10 класса

Котовчихин Юрий

Руководитель:

Преподаватель математики

Шанта Н.П.

Урюпинск

1.Введение………………………………………………………….3

2.Понятия и определения………………………………………….5

3.Доказательство теорем…………………………………………..6

4.Способы решение уравнений, содержащих модуль…………...7

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами…………………………………………………………12

4.2.Использование геометрической интерпретации модуля для решения уравнений…………………………………………………………..14

4.3.Графики простейших функций, содержащих знак абсолютной величины.

………………………………………………………………………15

4.4.Решение нестандартных уравнения, содержащие модуль….16

5.Заключение……………………………………………………….17

6.Список использованной литературы……………………………18

Цель работы: уравнения с модулями ученики начинают изучать уже с 6-го класса, они изучают стандартный метод решения с помощью раскрытия модулей на промежутках знакопостоянства подмодульных выражений. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования, задачи с модулем вызывают большие трудности у учащихся. В школьной программе встречаются задания, содержащие модуль как задания повышенной сложности и на экзаменах, следовательно, мы должны быть готовы к встречи с таким заданием.

1. Введение:

Слово "модуль" произошло от латинского слова "modulus", что в переводе означает "мера". Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках.

В архитектуре -это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике -это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и.т.п.

Модуль объемного сжатия (в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Модуль – абсолютное значение – действительного числа А обозначается |A|.

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, содержащее переменные.

Уравнение с модулем -это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

3.Доказательство теорем

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или -a.

Доказательство

1. Если число a положительно, то -a отрицательно, т. е. -a

Например, число 5 положительно, тогда -5 - отрицательно и -5

В этом случае |a| = a, т. е. |a| совпадает с большим из двух чисел a и - a.

2. Если a отрицательно, тогда -a положительно и a

Следствие. Из теоремы следует, что |-a| = |a|.

В самом деле, как, так и равны большему из чисел -a и a, а значит равны между собой.

Теорема 2. Абсолютная величина любого действительного числа a равна арифметическому квадратному корню из А 2 .

В самом деле, если то, по определению модуля числа, будем иметь lАl>0 С другой стороны, при А>0 значит |a| = √A 2

Если a 2

Эта теорема дает возможность при решении некоторых задач заменять |a| на

Геометрически |a| означает расстояние на координатной прямой от точки, изображающей число a, до начала отсчета.

Если то на координатной прямой существует две точки a и -a, равноудаленной от нуля, модули которых равны.

Если a = 0, то на координатной прямой |a| изображается точкой 0

4.Способы решения уравнений, содержащих модуль.

Для решения уравнений, содержащих знак абсолютной величины, мы будем основывается на определении модуля числа и свойствах абсолютной величины числа. Мы решим несколько примеров разными способами и посмотрим, какой из способов окажется проще для решения уравнений, содержащих модуль.

Пример 1. Решим аналитически и графически уравнение |x + 2| = 1.

Решение

Аналитическое решение

1-й способ

Рассуждать будем, исходя из определения модуля. Если выражение, находящееся под модулем неотрицательно, т. е. x + 2 ≥0 , тогда оно "выйдет" из под знака модуля со знаком "плюс" и уравнение примет вид: x + 2 = 1. Если значения выражения под знаком модуля отрицательно, тогда, по определению, оно будет равно: или x + 2=-1

Таким образом, получаем, либо x + 2 = 1, либо x + 2 = -1. Решая полученные уравнения, находим: Х+2=1 или Х+2+-1

Х=-1 Х=3

Ответ: -3;-1.

Теперь можно сделать вывод: если модуль некоторого выражения равен действительному положительному числу a, тогда выражение под модулем равно либо a, либо -а.

Графическое решение

Одним из способов решения уравнений, содержащих модуль является графический способ. Суть этого способа заключается в том, чтобы построить графики данных функций. В случае, если графики пересекутся, точки пересечений данных графиков будут является корнями нашего уравнения. В случае, если графики не пересекутся, мы сможем сделать вывод, что уравнение корней не имеет. Этот способ, вероятно, реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Другой способ решения уравнений, содержащих модуль- это способ разбиения числовой прямой на промежутки. В этом случае нам нужно разбить числовую прямую так, что по определению модуля, знак абсолютной величины на данных промежутках можно будет снять. Затем, для каждого из промежутков мы должны будем решить данное уравнение и сделать вывод, относительно получившихся корней(удовлетворяют они нашему промежутку или нет). Корни, удовлетворяющие промежутки и дадут окончательный ответ.

2-й способ

Установим, при каких значениях x, модуль равен нулю: |Х+2|=0 , Х=2

Получим два промежутка, на каждом из которых решим уравнение:

Получим две смешанных системы:

(1) Х+2 0

Х-2=1 Х+2=1

Решим каждую систему:

X=-3 X=-1

Ответ: -3;-1.

Графическое решение

y= |X+2|, y= 1.

Графическое решение

Для решения уравнения графическим способом, надо построить графики функций и

Для построения графика функции, построим график функции - это функция, пересекающая ось OX и ось OY в точках.

Абсциссы точек пересечения графиков функций дадут решения уравнения.

Прямая графика функции y=1 пересеклась с графиком функции y=|x + 2| в точках с координатами (-3; 1) и (-1; 1), следовательно решениями уравнения будут абсциссы точек:

x=-3, x=-1

Ответ: -3;-1

Пример 2. Решить аналитически и графически уравнение 1 + |x| = 0.5.

Решение:

Аналитическое решение

Преобразуем уравнение: 1 + |x| = 0.5

|x| =0.5-1

|x|=-0.5

Понятно, что в этом случае уравнение не имеет решений, так как, по определению, модуль всегда неотрицателен.

Ответ: решений нет.

Графическое решение

Преобразуем уравнение: : 1 + |x| = 0.5

|x| =0.5-1

|x|=-0.5

Графиком функции являются лучи - биссектрисы 1-го и 2-го координатных углов. Графиком функции является прямая, параллельная оси OX и проходящая через точку -0,5 на оси OY.

Графики не пересекаются, значит уравнение не имеет решений.

Ответ: нет решений.

Пример 3. Решите аналитически и графически уравнение |-x + 2| = 2x + 1.

Решение:

Аналитическое решение

1-й способ

Прежде следует установить область допустимых значений переменной. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости делать этого, а сейчас она возникла.

Дело в том, что в этом примере в левой части уравнения модуль некоторого выражения, а в правой части не число, а выражение с переменной, - именно это важное обстоятельство отличает данный пример от предыдущих.

Поскольку в левой части - модуль, а в правой части, выражение, содержащее переменную, необходимо потребовать, чтобы это выражение было неотрицательным, т. е. Таким образом, область допустимых

значений модуля

Теперь можно рассуждать также, как и в примере 1, когда в правой части равенства находилось положительной число. Получим две смешанных системы:

(1) -X+2≥0 и (2) -X+2

X+2=2X+1; X-2=2X+1

Решим каждую систему:

(1) входит в промежуток и является корнем уравнения.

X≤2

X=⅓

(2) X>2

X=-3

X = -3 не входит в промежуток и не является корнем уравнения.

Ответ: ⅓.

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами этих чисел.

Помимо приведенных мною выше способов существует определенная равносильность, между числами и модулями данных чисел, а также между квадратами и модулями данных чисел:

|a|=|b| a=b или a=-b

A2=b2 a=b или a=-b

Отсюда в свою очередь получим, что

|a|=|b| a 2 =b 2

Пример 4. Решим уравнение |x + 1|=|2x - 5| двумя различными способами.

1.Учитывая соотношение (1), получим:

X + 1=2x - 5 или x + 1=-2x + 5

x - 2x=-5 - 1 x + 2x=5 - 1

X=-6|(:1) 3x=4

X=6 x=11/3

Корень первого уравнения x=6, корень второго уравнения x=11/3

Таким образом корни исходного уравнения x 1 =6, x 2 =11/3

2. В силу соотношения (2), получим

(x + 1)2=(2x - 5)2, или x2 + 2x + 1=4x2 - 20x + 25

X2 - 4x2 +2x+1 + 20x - 25=0

3x2 + 22x - 24=0|(:-1)

3x2 - 22x + 24=0

D/4=121-3 24=121 - 72=49>0 ==>уравнение имеет 2 различных корня.

x 1 =(11 - 7)/3=11/3

x 2 =(11 + 7)/3=6

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x 1 =6, x 2 =11/3

Пример 5. Решим уравнение (2x + 3) 2 =(x - 1) 2 .

Учитывая соотношение (2), получим, что |2x + 3|=|x - 1|, откуда по образцу предыдущего примера(и по соотношению (1)):

2х + 3=х - 1 или 2х + 3=-х + 1

2х - х=-1 - 3 2х+ х=1 - 3

Х=-4 х=-0,(6)

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Ответ: х1=-4, х 2 =0,(6)

Пример 6. Решим уравнение |x - 6|=|x2 - 5x + 9|

Пользуясь соотношением, получим:

х - 6=х2 - 5х + 9 или х - 6 = -(х2 - 5х + 9)

Х2 + 5х + х - 6 - 9=0 |(-1) x - 6=-x2 + 5x - 9

x2 - 6x + 15=0 x2 - 4x + 3=0

D=36 - 4 15=36 - 60= -24 D=16 - 4 3=4 >0==>2 р.к.

==> корней нет.

X 1 =(4- 2) /2=1

X 2 =(4 + 2) /2=3

Проверка: |1 - 6|=|12 - 5 1 + 9| |3 - 6|=|32 - 5 3 + 9|

5 = 5(И) 3 = |9 - 15 + 9|

3 = 3(И)

Ответ: x 1 =1; x 2 =3

4.2.Использование геометрической интерпретации модуля для решения уравнений.

Геометрический смысл модуля разности величин -это расстояние между ними. Например, геометрический смысл выражения |x - a | -длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример7. Решим уравнение |x - 1| + |x - 2|=1 с использованием геометрической интерпретации модуля.

Будем рассуждать следующим образом: исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка обладают требуемым свойством, а точки, расположенные вне этого отрезка- нет. Отсюда ответ: множеством решений уравнения является отрезок .

Ответ:

Пример8. Решим уравнение |x - 1| - |x - 2|=1 1 с использованием геометрической интерпретации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно решением данного уравнения будет является не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Ответ: ∪ или в другой записи x 1 ≤x≤x 2 ,

где x 1 и x 2 – корни квадратного трехчлена a·x 2 +b·x+c , причем x 1


Здесь мы видим параболу, ветви которой направлены вверх, и которая касается оси абсцисс, то есть, имеет с ней одну общую точку, обозначим абсциссу этой точки как x 0 . Представленному случаю отвечает a>0 (ветви направлены вверх) и D=0 (квадратный трехчлен имеет один корень x 0 ). Для примера можно взять квадратичную функцию y=x 2 −4·x+4 , здесь a=1>0 , D=(−4) 2 −4·1·4=0 и x 0 =2 .

По чертежу отчетливо видно, что парабола расположена выше оси Ox всюду, кроме точки касания, то есть, на промежутках (−∞, x 0) , (x 0 , ∞) . Для наглядности выделим на чертеже области по аналогии с предыдущим пунктом.

Делаем выводы: при a>0 и D=0

  • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x 0)∪(x 0 , +∞) или в другой записи x≠x 0 ;
  • решением квадратного неравенства a·x 2 +b·x+c≥0 является (−∞, +∞) или в другой записи x∈R ;
  • квадратное неравенство a·x 2 +b·x+c<0 не имеет решений (нет интервалов, на которых парабола расположена ниже оси Ox );
  • квадратное неравенство a·x 2 +b·x+c≤0 имеет единственное решение x=x 0 (его дает точка касания),

где x 0 - корень квадратного трехчлена a·x 2 +b·x+c .


В этом случае ветви параболы направлены вверх, и она не имеет общих точек с осью абсцисс. Здесь мы имеем условия a>0 (ветви направлены вверх) и D<0 (квадратный трехчлен не имеет действительных корней). Для примера можно построить график функции y=2·x 2 +1 , здесь a=2>0 , D=0 2 −4·2·1=−8<0 .

Очевидно, парабола расположена выше оси Ox на всем ее протяжении (нет интервалов, на которых она ниже оси Ox , нет точки касания).

Таким образом, при a>0 и D<0 решением квадратных неравенств a·x 2 +b·x+c>0 и a·x 2 +b·x+c≥0 является множество всех действительных чисел, а неравенства a·x 2 +b·x+c<0 и a·x 2 +b·x+c≤0 не имеют решений.

И остаются три варианта расположения параболы с направленными вниз, а не вверх, ветвями относительно оси Ox . В принципе их можно и не рассматривать, так как умножение обеих частей неравенства на −1 позволяет перейти к равносильному неравенству с положительным коэффициентом при x 2 . Но все же не помешает получить представление и об этих случаях. Рассуждения здесь аналогичные, поэтому запишем лишь главные результаты.

Алгоритм решения

Итогом всех предыдущих выкладок выступает алгоритм решения квадратных неравенств графическим способом :

    На координатной плоскости выполняется схематический чертеж, на котором изображается ось Ox (ось Oy изображать не обязательно) и эскиз параболы, отвечающей квадратичной функции y=a·x 2 +b·x+c . Для построения эскиза параболы достаточно выяснить два момента:

    • Во-первых, по значению коэффициента a выясняется, куда направлены ее ветви (при a>0 – вверх, при a<0 – вниз).
    • А во-вторых, по значению дискриминанта квадратного трехчлена a·x 2 +b·x+c выясняется, пересекает ли парабола ось абсцисс в двух точках (при D>0 ), касается ее в одной точке (при D=0 ), или не имеет общих точек с осью Ox (при D<0 ). Для удобства на чертеже указываются координаты точек пересечения или координата точки касания (при наличии этих точек), а сами точки изображаются выколотыми при решении строгих неравенств, или обычными при решении нестрогих неравенств.
  • Когда чертеж готов, по нему на втором шаге алгоритма

    • при решении квадратного неравенства a·x 2 +b·x+c>0 определяются промежутки, на которых парабола располагается выше оси абсцисс;
    • при решении неравенства a·x 2 +b·x+c≥0 определяются промежутки, на которых парабола располагается выше оси абсцисс и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);
    • при решении неравенства a·x 2 +b·x+c<0 находятся промежутки, на которых парабола ниже оси Ox ;
    • наконец, при решении квадратного неравенства вида a·x 2 +b·x+c≤0 находятся промежутки, на которых парабола ниже оси Ox и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);

    они и составляют искомое решение квадратного неравенства, а если таких промежутков нет и нет точек касания, то исходное квадратное неравенство не имеет решений.

Остается лишь решить несколько квадратных неравенств с использованием этого алгоритма.

Примеры с решениями

Пример.

Решите неравенство .

Решение.

Нам требуется решить квадратное неравенство, воспользуемся алгоритмом из предыдущего пункта. На первом шаге нам нужно изобразить эскиз графика квадратичной функции . Коэффициент при x 2 равен 2 , он положителен, следовательно, ветви параболы направлены вверх. Выясним еще, имеет ли парабола с осью абсцисс общие точки, для этого вычислим дискриминант квадратного трехчлена . Имеем . Дискриминант оказался больше нуля, следовательно, трехчлен имеет два действительных корня: и , то есть, x 1 =−3 и x 2 =1/3 .

Отсюда понятно, что парабола пересекает ось Ox в двух точках с абсциссами −3 и 1/3 . Эти точки изобразим на чертеже обычными точками, так как решаем нестрогое неравенство. По выясненным данным получаем следующий чертеж (он подходит под первый шаблон из первого пункта статьи):

Переходим ко второму шагу алгоритма. Так как мы решаем нестрогое квадратное неравенство со знаком ≤, то нам нужно определить промежутки, на которых парабола расположена ниже оси абсцисс и добавить к ним абсциссы точек пересечения.

Из чертежа видно, что парабола ниже оси абсцисс на интервале (−3, 1/3) и к нему добавляем абсциссы точек пересечения, то есть, числа −3 и 1/3 . В результате приходим к числовому отрезку [−3, 1/3] . Это и есть искомое решение. Его можно записать в виде двойного неравенства −3≤x≤1/3 .

Ответ:

[−3, 1/3] или −3≤x≤1/3 .

Пример.

Найдите решение квадратного неравенства −x 2 +16·x−63<0 .

Решение.

По обыкновению начинаем с чертежа. Числовой коэффициент при квадрате переменной отрицательный, −1 , поэтому, ветви параболы направлены вниз. Вычислим дискриминант, а лучше – его четвертую часть: D"=8 2 −(−1)·(−63)=64−63=1 . Его значение положительно, вычислим корни квадратного трехчлена: и , x 1 =7 и x 2 =9 . Так парабола пересекает ось Ox в двух точках с абсциссами 7 и 9 (исходное неравенство строгое, поэтому эти точки будем изображать с пустым центром).Теперь можно сделать схематический рисунок:

Так как мы решаем строгое квадратное неравенство со знаком <, то нас интересуют промежутки, на которых парабола расположена ниже оси абсцисс:

По чертежу видно, что решениями исходного квадратного неравенства являются два промежутка (−∞, 7) , (9, +∞) .

Ответ:

(−∞, 7)∪(9, +∞) или в другой записи x<7 , x>9 .

При решении квадратных неравенств, когда дискриминант квадратного трехчлена в его левой части равен нулю, нужно быть внимательным с включением или исключением из ответа абсциссы точки касания. Это зависит от знака неравенства: если неравенство строгое, то она не является решением неравенства, а если нестрогое – то является.

Пример.

Имеет ли квадратное неравенство 10·x 2 −14·x+4,9≤0 хотя бы одно решение?

Решение.

Построим график функции y=10·x 2 −14·x+4,9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0,7 , так как D"=(−7) 2 −10·4,9=0 , откуда или 0,7 в виде десятичной дроби. Схематически это выглядит так:

Так как мы решаем квадратное неравенство со знаком ≤, то его решением будут промежутки, на которых парабола ниже оси Ox , а также абсцисса точки касания. Из чертежа видно, что нет ни одного промежутка, где бы парабола была ниже оси Ox , поэтому его решением будет лишь абсцисса точки касания, то есть, 0,7 .

Ответ:

данное неравенство имеет единственное решение 0,7 .

Пример.

Решите квадратное неравенство –x 2 +8·x−16<0 .

Решение.

Действуем по алгоритму решения квадратных неравенств и начинаем с построения графика. Ветви параболы направлены вниз, так как коэффициент при x 2 отрицательный, −1 . Найдем дискриминант квадратного трехчлена –x 2 +8·x−16 , имеем D’=4 2 −(−1)·(−16)=16−16=0 и дальше x 0 =−4/(−1) , x 0 =4 . Итак, парабола касается оси Ox в точке с абсциссой 4 . Выполним чертеж:

Смотрим на знак исходного неравенства, он есть <. Согласно алгоритму, решение неравенства в этом случае составляют все промежутки, на которых парабола расположена строго ниже оси абсцисс.

В нашем случае это открытые лучи (−∞, 4) , (4, +∞) . Отдельно заметим, что 4 - абсцисса точки касания - не является решением, так как в точке касания парабола не ниже оси Ox.

Ответ:

(−∞, 4)∪(4, +∞) или в другой записи x≠4 .

Обратите особое внимание на случаи, когда дискриминант квадратного трехчлена, находящегося в левой части квадратного неравенства, меньше нуля. Здесь не нужно спешить и говорить, что неравенство решений не имеет (мы же привыкли делать такой вывод для квадратных уравнений с отрицательным дискриминантом). Дело в том, что квадратное неравенство при D<0 может иметь решение, которым является множество всех действительных чисел.

Пример.

Найдите решение квадратного неравенства 3·x 2 +1>0 .

Решение.

Как обычно начинаем с чертежа. Коэффициент a равен 3 , он положителен, следовательно, ветви параболы направлены вверх. Вычисляем дискриминант: D=0 2 −4·3·1=−12 . Так как дискриминант отрицателен, то парабола не имеет с осью Ox общих точек. Полученных сведений достаточно для схематичного графика:

Мы решаем строгое квадратное неравенство со знаком >. Его решением будут все промежутки, на которых парабола находится выше оси Ox . В нашем случае парабола выше оси абсцисс на всем ее протяжении, поэтому искомым решением будет множество всех действительных чисел.

Ox , а также к ним нужно добавить абсциссы точек пересечения или абсциссу точки касания. Но по чертежу хорошо видно, что таких промежутков нет (так как парабола всюду ниже оси абсцисс), как нет и точек пересечения, как нет и точки касания. Следовательно, исходное квадратное неравенство не имеет решений.

Ответ:

нет решений или в другой записи ∅.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения). Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости. С помощью математических операций и знака неравенства можно определить множество решений неравенства.

Шаги

Графическое изображение линейного неравенства на числовой прямой

  1. Решите неравенство. Для этого изолируйте переменную при помощи тех же алгебраических приемов, которыми пользуетесь при решении любого уравнения. Помните, что при умножении или делении неравенства на отрицательное число (или член), поменяйте знак неравенства на противоположный.

    • Например, дано неравенство 3 y + 9 > 12 {\displaystyle 3y+9>12} . Чтобы изолировать переменную, из обеих сторон неравенства вычтите 9, а затем обе стороны разделите на 3:
      3 y + 9 > 12 {\displaystyle 3y+9>12}
      3 y + 9 − 9 > 12 − 9 {\displaystyle 3y+9-9>12-9}
      3 y > 3 {\displaystyle 3y>3}
      3 y 3 > 3 3 {\displaystyle {\frac {3y}{3}}>{\frac {3}{3}}}
      y > 1 {\displaystyle y>1}
    • Неравенство должно иметь только одну переменную. Если неравенство имеет две переменные, график лучше строить на координатной плоскости.
  2. Нарисуйте числовую прямую. На числовой прямой отметьте найденное значение (переменная может быть меньше, больше или равна этому значению). Числовую прямую рисуйте соответствующей длины (длинную или короткую).

    • Например, если вы вычислили, что y > 1 {\displaystyle y>1} , на числовой прямой отметьте значение 1.
  3. Нарисуйте кружок, обозначающий найденное значение. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) этого значения, кружок не закрашивается, потому что множество решений не включает это значение. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) этому значению, кружок закрашивается, потому что множество решений включает это значение.

    • y > 1 {\displaystyle y>1} , на числовой прямой нарисуйте незакрашенный кружок в точке 1, потому что 1 не входит в множество решений.
  4. На числовой прямой заштрихуйте область, определяющую множество решений. Если переменная больше найденного значения, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если переменная меньше найденного значения, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного.

    • Например, если дано неравенство y > 1 {\displaystyle y>1} , на числовой прямой заштрихуйте область справа от 1, потому что множество решений включает все значения больше 1.

    Графическое изображение линейного неравенства на координатной плоскости

    1. Решите неравенство (найдите значение y {\displaystyle y} ). Чтобы получить линейное уравнение, изолируйте переменную на левой стороне при помощи известных алгебраических методов. В правой части должна остаться переменная x {\displaystyle x} и, возможно, некоторая постоянная.

      • Например, дано неравенство 3 y + 9 > 9 x {\displaystyle 3y+9>9x} . Чтобы изолировать переменную y {\displaystyle y} , из обеих сторон неравенства вычтите 9, а затем обе стороны разделите на 3:
        3 y + 9 > 9 x {\displaystyle 3y+9>9x}
        3 y + 9 − 9 > 9 x − 9 {\displaystyle 3y+9-9>9x-9}
        3 y > 9 x − 9 {\displaystyle 3y>9x-9}
        3 y 3 > 9 x − 9 3 {\displaystyle {\frac {3y}{3}}>{\frac {9x-9}{3}}}
        y > 3 x − 3 {\displaystyle y>3x-3}
    2. На координатной плоскости постройте график линейного уравнения. постройте график , как строите график любого линейного уравнения. Нанесите точку пересечения с осью Y, а затем при помощи углового коэффициента нанесите другие точки.

      • y > 3 x − 3 {\displaystyle y>3x-3} постройте график уравнения y = 3 x − 3 {\displaystyle y=3x-3} . Точка пересечения с осью Y имеет координаты , а угловой коэффициент равен 3 (или 3 1 {\displaystyle {\frac {3}{1}}} ). Таким образом, сначала нанесите точку с координатами (0 , − 3) {\displaystyle (0,-3)} ; точка над точкой пересечения с осью Y имеет координаты (1 , 0) {\displaystyle (1,0)} ; точка под точкой пересечения с осью Y имеет координаты (− 1 , − 6) {\displaystyle (-1,-6)}
    3. Проведите прямую. Если неравенство строгое (включает знак < {\displaystyle <} или > {\displaystyle >} ), проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой. Если неравенство нестрогое (включает знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } ), проведите сплошную прямую, потому что множество решений включает значения, лежащие на прямой.

      • Например, в случае неравенства y > 3 x − 3 {\displaystyle y>3x-3} проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой.
    4. Заштрихуйте соответствующую область. Если неравенство имеет вид y > m x + b {\displaystyle y>mx+b} , заштрихуйте область над прямой. Если неравенство имеет вид y < m x + b {\displaystyle y, заштрихуйте область под прямой.

      • Например, в случае неравенства y > 3 x − 3 {\displaystyle y>3x-3} заштрихуйте область над прямой.

    Графическое изображение квадратного неравенства на координатной плоскости

    1. Определите, что данное неравенство является квадратным. Квадратное неравенство имеет вид a x 2 + b x + c {\displaystyle ax^{2}+bx+c} . Иногда неравенство не содержит переменную первого порядка ( x {\displaystyle x} ) и/или свободный член (постоянную), но обязательно включает переменную второго порядка ( x 2 {\displaystyle x^{2}} ). Переменные x {\displaystyle x} и y {\displaystyle y} должны быть изолированы на разных сторонах неравенства.

      • Например, нужно построить график неравенства y < x 2 − 10 x + 16 {\displaystyle y.
    2. На координатной плоскости постройте график. Для этого преобразуйте неравенство в уравнение и постройте график , как строите график любого квадратного уравнения. Помните, что график квадратного уравнения является параболой.

      • Например, в случае неравенства y < x 2 − 10 x + 16 {\displaystyle y постройте график квадратного уравнения y = x 2 − 10 x + 16 {\displaystyle y=x^{2}-10x+16} . Вершина параболы находится в точке (5 , − 9) {\displaystyle (5,-9)} , и парабола пересекает ось Х в точках (2 , 0) {\displaystyle (2,0)} и (8 , 0) {\displaystyle (8,0)} .

Последние материалы раздела:

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...

Практические и графические работы по черчению б) Простые разрезы
Практические и графические работы по черчению б) Простые разрезы

Рис. 99. Задания к графической работе № 4 3) Есть ли отверстия в детали? Если есть, какую геометрическую форму отверстие имеет? 4) Найдите на...

Третичное образование Третичное образование
Третичное образование Третичное образование

Чешская система образования развивалась на протяжении длительного периода. Обязательное образование было введено с 1774 года. На сегодняшний день в...