Физические принципы детектирования элементарных частиц. Детектор элементарных частиц

2.1. Газоразрядные детекторы. Счетчики Гейгера-Троста, пропорциональные счетчики, ионизационные камеры. Сцинтилляционные счетчики.

2.2. Черенковские счетчики. Полупроводниковые счетчики.

2.3. Трековые детекторы с фильмовым съемом информации. Камера Вильсона, пузырьковые камеры, искровые и стримерные камеры. Метод ядерных фотоэмульсий.

2.4. Бесфильмовые камеры. Пропорциональные и дрейфовые камеры. Годоскопические системы из сцинтилляционных и черенковских счетчиков.

Методы измерений и математической обработки данных

3.1. Методы спектрометрических измерений. Магнитные спектрометры. Спектрометрические тракты измерений с полупроводниковыми и сцинтилляционными счетчиками с выводом данных на ЭВМ. Методы изображения многомерных спектров.

3.2. Дозиметрические измерения. Допустимые потоки излучений. Способы защиты.

3.3. Методы автоматической обработки фотографий трековых приборов. Механико-оптические и электронные системы сканирования с выводом данных на ЭВМ.

3.4. Физические установки с автоматическим выводом данных на ЭВМ. Типы накопительных устройств. Использование разных классов ЭВМ для приема, предварительной обработки и накопления информации, а также для контроля и управления.

Методы обработки экспериментальных данных

4.1. Основные понятия математической статистики. Теория статистических оценок и проверки гипотез. Метод максимального правдоподобия. Планирование эксперимента.

4.2. Системы математических программ обработки и анализа физических результатов. Геометрическая реконструкция пучков частиц. Система распознавания определенного класса событий. Анализ физических результатов.

VIII. Основные сведения
по экспериментальной ядерной физике

Основные свойства элементарных частиц

1.1. Движение заряженных частиц в электрических и магнитных полях; уравнения движения.

1.2. Взаимодействие заряженных частиц с веществом. Ионизационные потери и пробег тяжелых заряженных частиц; прохождение бета-частиц через вещество. Взаимодействие нейтральных частиц с веществом.

1.3. Элементарные частицы и ядра. Основные характеристики ядер. Физические свойства частиц: заряды, масса, спин, четность, изоспин. Времена жизни частиц.

Методы регистрации элементарных частиц

2.1. Методы регистрации заряженных и нейтральных частиц.

2.2. Газонаполненные счетчики и их типы. Ионизационные камеры. Газонаполненные камеры с оптическим методом съема информации. Искровые и стримерные камеры.



2.3. Газонаполненные камеры с электронными методами съема информации. Многопроволочные искровые, пропорциональные и дрейфовые камеры.

2.4. Сцинтилляционные и черенковские детекторы. Фотоумножители.

2.5. Полупроводниковые детекторы. Позиционно-чувствительные
детекторы.

2.6. Регистрация частиц с помощью пузырьковых камер.

Статистическая обработка результатов измерений

3.1. Основы теории вероятностей. Случайные величины. Основные законы распределения случайных величин: биномиальное распределение Пуассона, распределение Гаусса.

3.2. Основы теории ошибок измерений.

3.3. Основы теории просчетов регистрирующих систем.

IX. Общая радиоэлектроника и вычислительная техника
(по технической отрасли науки)

Методы расчета электрических цепей и схем

1.1. Анализ линейных электрических цепей. Эквивалентные схемы. Законы Кирхгофа, теорема об эквивалентном генераторе, метод узловых потенциалов, метод контурных токов. Четырехполюсники.

1.2. Анализ электрических сигналов. Дельта-функция и ступенчатая функция. Преобразование Фурье.

1.3. Передача сигналов через линейные системы. Дифференциальные уравнения, описывающие процессы в электрических цепях. Импульсная характеристика линейной системы. Интеграл суперпозиции. Формула свертывания. Передаточная функция. Переходные процессы в длинных цепях.

1.4. Основы операционного исчисления. Преобразование Лапласа.

1.5. Основы алгебры логики. Составление логических электронных схем.

Полупроводниковые приборы

2.1.Физические принципы работы полупроводниковых приборов. Их классификация.

2.2. Полупроводниковые диоды. Принцип действия, основные характеристики, параметры и режимы работы. Разновидности диодов: импульсные диоды, диоды с накоплением заряда, туннельные диоды, стабилитроны, светоизлучающие диоды и др. Примеры применения.



2.3. Биполярные транзисторы. Принцип действия, основные характеристики, параметры и режимы работы. Схемы включения, эквивалентные схемы, работа в линейном и ключевом режимах. Разновидности триодов. Примеры их применения.

2.4. Полевые транзисторы. Принцип действия, разновидности полевых транзисторов. Основные характеристики, параметры и режимы работы. Примеры применения.

2.5. Другие разновидности полупроводниковых приборов: динистор, тиристор, однопереходный транзистор и др. Их основные характеристики и параметры. Примеры применения.

Интегральные схемы

3.1. Гибридные и монолитные интегральные схемы. Монолитные интегральные схемы на основе биполярных и МДП-транзисторов, их особенности. Технология изготовления интегральных схем различных типов.

3.2. Аналоговые интегральные схемы: дифференциальные и операционные усилители, регуляторы напряжения, преобразователи код-аналог и аналог-код. Их основные параметры, примеры применения.

3.3. Логические интегральные схемы. Их классификация по схемо-техническому исполнению. Основные параметры. Быстродействие схем. Система логических элементов. Типы триггеров. Примеры применения.

3.4. Интегральные схемы со средней степенью интеграции: счетчики, регистры, коммутаторы, дешифраторы, сумматоры и др.

3.5. Интегральные схемы с большой степенью интеграции: сложные логические устройства, запоминающие устройства, микропроцессоры и др. Пути дальнейшего повышения степени интеграции.

29 апреля поздно вечером (перенесли пока) NASA запускает на орбиту церновский детектор элементарных частиц AMS-02 . Строили этот детектор 10 лет, его старшие «собратья» уже вовсю работают на Большом адронном коллайдере, то бишь, под землей, а этот — полетит в космос! :)

Вот церновский пресс-релиз , вот будет вестись онлайн-трансляция запуска начиная с 21:30 по средне-европейскому времени, твиттер ЦЕРНа тоже будет передавать сводки. Запуск и всю последующую работу можно отслеживать на сайте эксперимента . А я пока вкратце расскажу про аппарат и научные задачи.

AMS-02 — это самый настоящий детектор элементарных частиц (почти) со всеми его атрибутами. Размер его — 4 метра, масса — 8,5 тонн. Конечно, с такой махиной, как ATLAS , он не сравнится, но для запуска в космос (и установки на МКС) и этого немало.

Если подземные детекторы регистрируют частицы, родившиеся при рукотворном столкновении протонов и иных частиц, то AMS-02 будет регистрировать космические лучи — частицы очень больших энергий, прилетающие к нам из глубокого космоса, разогнанные на «природных ускорителях». Космические лучи, конечно, изучаются уже давно, почти век, но с ними до сих пор связано много загадок.

Самая главная задача нового детектора — со сверхвысокой точностью измерить состав космических лучей. Какова доля антивещества в космических лучях? Как она изменяется с энергией? Нет ли там в небольших количествах каких-то новых тяжелых стабильных частиц (частиц темной материи), которые не удается родить на коллайдерах, но которые смогла породить Вселенная? А может быть, какие-то тонкие особенности в энергетическом спектре обычных частиц укажут на то, что они получились при распаде неизвестных до сих пор сверхтяжелых частиц?

AMS-02 будет изучать эти вопросы, регистрируя пролет частиц космических лучей сквозь вещество детектора и измеряя их импульс, скорость, энерговыделение, заряд. «Окно» оптимальной чувствительности детектора по энергии частиц — от примерно 1 ГэВ до нескольких ТэВ. Это окно покрывает предсказания многих моделей, а также пересекается с окнами чувствительности детекторов на LHC. Но в отличие от Большого адронного коллайдера, тут в качестве ускорителя выступает сама вселенная, и это может иметь далеко идущие последствия.

Субдетекторы и подсистемы AMS-02 ().

Так же, как и классические наземные (точнее, подземные) детекторы, он содержит сразу несколько отдельных детектирующих систем, измеряющих разные характеристики частиц. Только в отличие от них, AMS-02 не вглядывается «вовнутрь», а «смотрит наружу»; он похож скорее на один сегмент передового современного детектора.

Кратко устройство описано на сайте эксперимента. Тут есть и трековые детекторы , восстанавливающие траекторию, черенковские детекторы, измеряющие скорость частиц, электромагнитные калориметры , измеряющие энергию частиц, и другие системы. Разделять разные заряды будут сразу два разных магнита (это я наврал). Разделять заряды будет постоянный магнит на 0,125 Тесла из неодимового сплава. И вдобавок, у AMS-02 есть нечто, чего нет у подземных детекторов — GPS датчики и система слежения за звездами:)

Строилось это всё 10 лет, стоимость — порядка 1,5 гигадолларов. В коллаборации AMS числятся 56 институтов из 16 стран.

Главное, чтоб сейчас эта штука удачно улетела. Завтра вечером будем следить за запуском!

Как и в любом физическом эксперименте, при изучении элементарных частиц требуется сначала поставить эксперимент, а потом зарегистрировать его результаты. Постановкой эксперимента (столкновением частиц) занимается ускоритель, а результаты столкновений изучаются с помощью детекторов элементарных частиц .

Для того чтобы восстановить картину столкновения, требуется не просто узнать, какие частицы родились, но и с большой точностью измерить их характеристики, прежде всего траекторию, импульс и энергию. Всё это измеряется с помощью разных типов детекторов, которые концентрическими слоями окружают место столкновения частиц.

Детекторы элементарных частиц можно разбить на две группы: трековые детекторы , которые измеряют траекторию частиц, и калориметры , которые измеряют их энергии. Трековые детекторы стараются проследить за движением частиц, не внося при этом никаких искажений. Калориметры, наоборот, должны полностью поглотить частицу, чтобы измерить ее энергию. В результате возникает стандартная компоновка современного детектора: внутри расположено несколько слоев трековых детекторов, а снаружи - несколько слоев калориметров, а также специальные мюонные детекторы . Общий вид типичного современного детектора показан на рис. 1.

Ниже кратко описаны строение и принцип работы основных компонентов современных детекторов. Акцент сделан на некоторых, самых общих принципах детектирования. Устройство конкретных детекторов, работающих на Большом адронном коллайдере, см. на странице Детекторы на LHC .

Трековые детекторы

Трековые детекторы восстанавливают траекторию частицы. Они обычно расположены в области магнитного поля, и тогда по искривлению траектории частицы можно определить ее импульс.

Работа трековых детекторов основана на том, что пролетающая заряженная частица создает ионизационный след - то есть она выбивает электроны из атомов на пути своего движения. При этом интенсивность ионизации зависит как от типа частицы, так и от материала детектора. Свободные электроны собираются электроникой, сигнал с которой сообщает о координатах частиц.

Вершинный детектор

Вершинный (микровершинный, пиксельный) детектор - это многослойный полупроводниковый детектор, состоящий из отдельных тонких пластинок с нанесенной прямо на них электроникой. Это самый внутренний слой детекторов: начинается он обычно сразу за пределами вакуумной трубы (иногда первый слой монтируется прямо на внешней стенке вакуумной трубы) и занимает в радиальном направлении первые несколько сантиметров. В качестве полупроводникового материала обычно выбирается кремний из-за его высокой радиационной стойкости (внутренние слои детектора подвержены огромным дозам жесткой радиации).

По сути, вершинный детектор работает так же, как матрица цифрового фотоаппарата. Когда заряженная частица пролетает сквозь эту пластинку, она оставляет в ней след - облачко ионизации размером в несколько десятков микрон. Эта ионизация считывается электронным элементом непосредственно под пикселем. Узнав координаты точек пересечения частицы с несколькими идущими подряд пластинками пиксельного детектора, можно восстановить трехмерные траектории частиц и проследить их назад, внутрь трубы. Через пересечение таких восстановленных траекторий в какой-то точке в пространстве восстанавливается вершина - та точка, в которой эти частицы родились.

Иногда оказывается, что таких вершин несколько, причем одна из них обычно лежит прямо на оси столкновения встречных пучков (первичная вершина), а вторая - поодаль. Это обычно означает, что в первичной вершине столкнулись протоны и сразу породили несколько частиц, но некоторые из них успели пролететь какую-то дистанцию, прежде чем распасться на дочерние частицы.

В современных детекторах точность восстановления вершины достигает 10 микрон. Это позволяет надежно регистрировать случаи, когда вторичные вершины отстоят от оси столкновений на 100 микрон. Как раз на такие дистанции отлетают разнообразные метастабильные адроны, имеющие в своем составе c- или b-кварк (так называемые «очарованные» и «прелестные» адроны). Поэтому вершинный детектор является важнейшим инструментом детектора LHCb , главной задачей которого как раз будет изучение этих адронов.

По похожему принципу работают и полупроводниковые микрополосковые детекторы , в которых вместо маленьких пикселей используются тончайшие, но довольно длинные полоски чувствительного материала. В них ионизация не оседает тут же, а смещается вдоль полоски и считывается на ее конце. Полоски конструируются с таким расчетом, чтобы скорость смещения облачка заряда по ней была постоянной и чтобы оно не расплывалось. Поэтому, зная момент прихода заряда на считывающий элемент, можно вычислить координаты той точки, где заряженная частица пронзила полоску. Пространственное разрешение у микрополосковых детекторов хуже, чем у пиксельных, но ими зато можно покрыть намного бо льшую площадь, поскольку они не требуют столь большого числа считывающих элементов.

Дрейфовые камеры

Дрейфовые камеры - это газонаполненные камеры, которые ставятся снаружи полупроводниковых трековых детекторов, там, где уровень радиации относительно низкий и не требуется столь большая точность определения координат, как у полупроводниковых детекторов.

Классическая дрейфовая камера - это заполненная газом трубка, внутри которой натянуто много тончайших проволочек. Работает она наподобие вершинного детектора, но только не на плоской пластинке, а в объеме. Все проволочки находятся под напряжением, а их расположение выбрано таким образом, чтобы в пространстве между двумя массивами проволочек возникало однородное электрическое поле. Когда заряженная частица пролетает сквозь газовую камеру, она оставляет пространственный ионизационный след. Под действием электрического поля ионизация (прежде всего, электроны) движется с постоянной скоростью (физики говорят «дрейфует») вдоль линий поля по направлению к проволочкам-анодам. Достигнув края камеры, ионизация тут же поглощается электроникой, которая передает на выход сигнальный импульс. Поскольку считывающих элементов очень много, по сигналам с них можно с хорошей точностью восстановить координаты пролетевшей частицы, а значит, и траекторию.

Обычно количество ионизации, которое создает в газовой камере пролетающая частица, невелико. Для того чтобы увеличить надежность сбора и регистрации заряда и уменьшить погрешность его измерения, требуется усилить сигнал еще до регистрации его электроникой. Делается это с помощью специальной сети анодных и катодных проволочек, натянутых вблизи считывающей аппаратуры. Проходя вблизи анодной проволочки, облачко электронов порождает на ней лавину, в результате которой электронный сигнал многократно усиливается.

Чем сильнее магнитное поле и чем больше размеры самого детектора, тем сильнее траектория частицы отклоняется от прямой, а значит, тем надежнее можно измерить ее радиус кривизны и восстановить отсюда импульс частицы. Поэтому для изучения реакций с частицами очень высоких энергий, в сотни ГэВ и ТэВы, желательно построить детекторы побольше и использовать магнитные поля посильнее. По чисто инженерным причинам обычно удается увеличить только одну из этих величин в ущерб другой. Два крупнейших детектора на LHC - ATLAS и CMS - как раз отличаются тем, какая из этих величин оптимизирована. У детектора ATLAS побольше размеры, но поменьше поле, в то время как в детекторе CMS сильнее поле, но в целом он более компактен.

Время-проекционная камера

Особый тип дрейфовой камеры - это так называемая время-проекционная камера (ВПК). По сути дела, ВПК - это одна большая, размером в несколько метров, цилиндрическая дрейфовая ячейка. Во всём ее объеме создано однородное электрическое поле вдоль оси цилиндра. Весь закрученный ионизационный след, который оставляют частицы при пролете сквозь эту камеру, равномерно дрейфует к торцам цилиндра, сохраняя свою пространственную форму. Траектории как бы «проецируются» на торцы камеры, где большой массив из считывающих элементов регистрирует приход заряда. Радиальная и угловая координаты определяются по номеру датчика, а координата вдоль оси цилиндра - по времени прихода сигнала. Благодаря этому удается восстановить трехмерную картину движения частиц.

Среди работающих на LHC экспериментов время-проекционную камеру использует детектор ALICE .

Детекторы Roman Pots

Существует особый тип полупроводниковых пиксельных детекторов, которые работают прямо внутри вакуумной трубы , в непосредственной близости к пучку. Впервые их предложила в 1970-е годы исследовательская группа из Рима, и за ними с тех пор закрепилось название Roman Pots («римские горшочки»).

Детекторы Roman Pots были разработаны для детектирования частиц, отклонившихся в процессе столкновения на очень малые углы. Обычные детекторы, располагающиеся снаружи вакуумной трубы, здесь непригодны просто потому, что частица, испущенная под очень малым углом, может многие километры лететь внутри вакуумной трубы, поворачивая вместе с основным пучком и не выходя наружу. Для того чтобы зарегистрировать такие частицы, приходится ставить маленькие детекторы внутри вакуумной трубы поперек оси пучка, но не задевая при этом сам пучок.

Для этого на определенном участке ускорительного кольца, обычно на расстоянии сотни метров от места столкновения встречных пучков, вставляется специальный участок вакуумной трубы с поперечными «рукавами». В них на подвижных платформах размещены небольшие, размером несколько сантиметров, пиксельные детекторы. Когда пучок только впрыснут, он еще нестабилен и имеет большие поперечные колебания. Детекторы в это время прячутся внутри рукавов для того, чтобы избежать повреждений при прямом попадании пучка. После того как пучок стабилизируется, платформы выдвигаются из своих рукавов и пододвигают чувствительные матрицы детекторов Roman Pots в непосредственную близость к пучку, на расстояние 1-2 миллиметра. В конце очередного цикла ускорителя, перед сбросом старого пучка и инжекцией нового, детекторы вновь втягиваются в свои рукава и ждут очередного сеанса работы.

Пиксельные детекторы, используемые в Roman Pots, отличаются от обычных вершинных детекторов тем, что в них максимизирована доля поверхности пластины, занятая чувствительными элементами. В частности, на той кромке пластины, которая ближе всего подносится к пучку, практически отсутствует нечувствительная «мертвая» зона (“edgeless” -технология).

Один из экспериментов на Большом адронном коллайдере, TOTEM , как раз будет использовать несколько таких детекторов. Еще несколько подобных проектов находятся в разработке. Вершинный детектор эксперимента LHCb тоже несет в себе некоторые элементы этой технологии.

Подробнее про эти детекторы можно прочитать в статье Roman pots for the LHC из журнала CERN Courier или в технической документации эксперимента TOTEM .

Калориметры

Калориметры измеряют энергию элементарных частиц. Для этого на пути частиц ставят толстый слой плотного вещества (обычно тяжелого металла - свинца, железа, латуни). Частица в нём сталкивается с электронами или ядрами атомов и порождает в результате поток вторичных частиц - ливень . Энергия исходной частицы распределяется между всеми частицами ливня, так что энергия каждой отдельной частицы в этом ливне становится небольшой. В результате ливень застревает в толще вещества, его частицы поглощаются и аннигилируют, и некоторая, вполне определенная, доля энергии выделяется в виде света. Эта вспышка света собирается на торцах калориметра фотоумножителями, которые превращают ее в электрический импульс. Кроме того, энергию ливня можно измерить, собирая ионизацию чувствительными пластинками.

Электроны и фотоны, проходя через вещество, сталкиваются в основном с электронными оболочками атомов и порождают электромагнитный ливень - поток из большого числа электронов, позитронов и фотонов. Такие ливни быстро развиваются на небольшой глубине и обычно поглощаются в слое вещества толщиной несколько десятков сантиметров. Высокоэнергетические адроны (протоны, нейтроны, пи-мезоны и К-мезоны) теряют энергию преимущественно за счет столкновений с ядрами. При этом порождается адронный ливень, который проникает гораздо глубже в толщу вещества, чем электромагнитный, и к тому же он более широкий. Поэтому для того, чтобы полностью поглотить адронный ливень от частицы очень высокой энергии, требуется один-два метра вещества.

Различие характеристик электромагнитный и адронных ливней максимально используется в современных детекторах. Калориметры часто делают двухслойными: внутри расположены электромагнитные калориметры , в которых поглощаются преимущественно электромагнитные ливни, а снаружи - адронные калориметры , до которых «достают» только адронные ливни. Таким образом, калориметры не только измеряют энергию, но и определяют «тип энергии» - является ли она электромагнитного или адронного происхождения. Это очень важно для правильного понимания произошедшего в центре детектора столкновения протонов.

Для регистрации ливня оптическим способом вещество калориметра должно обладать сцинтилляционными свойствами. В сцинтилляторе фотоны одной длины волны поглощаются очень эффективно, приводя к возбуждению молекул вещества, и это возбуждение снимается за счет испускания фотонов более низкой энергии. Для излученных фотонов сцинтиллятор уже прозрачен, и поэтому они могут долететь до края калориметрической ячейки. В калориметрах используются стандартные, давно изученные сцинтилляторы, для которых хорошо известно, какая часть от энергии исходной частицы превращается в оптическую вспышку.

Для эффективного поглощения ливней требуется использовать как можно более плотное вещество. Имеется два способа, как совместить это требование с требованиями к сцинтилляторам. Во-первых, можно выбрать очень тяжелые сцинтилляторы и заполнить ими калориметр. Во-вторых, можно сделать «слойку» из чередующихся пластин тяжелого вещества и легкого сцинтиллятора. Имеются и более экзотические варианты устройства калориметров, например «спагетти"-калориметры, в которых в матрицу из массивного поглотителя внедрено множество тонких кварцевых оптоволокон. Ливень, развиваясь вдоль такого калориметра, создает в кварце черенковский свет, который выводится по оптоволокнам на торец калориметра.

Точность восстановления энергии частицы в калориметре улучшается с ростом энергии. Для частиц с энергиями в сотни ГэВ погрешность составляет порядка процента для электромагнитных калориметров и несколько процентов - для адронных.

Мюонные камеры

Характерная особенность мюонов заключается в том, что они очень медленно теряют энергию при движении сквозь вещество. Так происходит из-за того, что они, с одной стороны, очень тяжелые, поэтому не могут эффективно передавать энергию электронам при столкновении, а во-вторых, они не участвуют в сильном взаимодействии, поэтому они слабо рассеиваются на ядрах. В результате мюоны могут пролететь до момента своей остановки многие метры вещества, проникнув туда, куда не долетают никакие другие частицы.

Это, с одной стороны, делает невозможным измерение энергии мюонов с помощью калориметров (ведь полностью мюон поглотить не удастся), но с другой стороны, позволяет хорошо отличать мюоны от других частиц. В современных детекторах мюонные камеры расположены в самых внешних слоях детектора, часто даже снаружи массивного металлического ярма, создающего магнитное поле в детекторе. Такие трубки измеряют не энергию, а импульс мюонов, и при этом можно с хорошей достоверностью считать, что эти частицы - именно мюоны, а не что-либо еще. Имеется несколько разновидностей мюонных камер, используемых для разных целей.

Идентификация частиц

Отдельный вопрос - это идентификация частиц , то есть выяснение того, что за частица пролетела сквозь детектор. Это не составило бы труда, знай мы массу частицы, но как раз ее мы обычно и не знаем. С одной стороны, массу в принципе можно вычислить по формулам релятивистской кинематики, зная энергию и импульс частицы, но, к сожалению, погрешности в их измерении обычно столь велики, что не позволяют отличить, например, пи-мезон от мюона из-за близости их масс.

В этой ситуации имеется четыре основных метода идентификации частиц:

  • По отклику в разных типах калориметрах и в мюонных трубках.
  • По энерговыделению в трековых детекторах. Разные частицы производят разное количество ионизации на сантиметр пути, и ее можно измерить по силе сигнала с трековых детекторов.
  • С помощью черенковских счетчиков . Если частица летит сквозь прозрачный материал с коэффициентом преломления n со скоростью больше, чем скорость света в этом материале (то есть больше, чем c/n ), то она испускает черенковское излучение в строго определенных направлениях. Если в качестве вещества детектора взять аэрогель (типичный показатель преломления n = 1,03), то черенковское излучение от частиц, движущихся со скоростью 0,99·c и 0,995·c , будет существенно различаться.
  • С помощью времяпролетных камер . В них с помощью детекторов с очень высоким временным разрешением измеряется время пролета частицей определенного участка камеры и из этого вычисляется ее скорость.

У каждого из этих методов есть свои сложности и погрешности, поэтому идентификация частиц обычно не бывает гарантированно правильной. Иногда программа обработки «сырых» данных с детектора может прийти к выводу, что в детекторе пролетел мюон, хотя на самом деле это был пион. Полностью избавиться от таких погрешностей невозможно. Остается лишь тщательно изучать детектор перед работой (например, с помощью космических мюонов), выяснить процент случаев неверной идентификации частиц и уже в дальнейшем при обработке реальных данных всегда его принимать в расчет.

Требования к детекторам

Современные детекторы элементарных частиц иногда называют «большими братьями» цифровых фотоаппаратов. Однако стоит помнить, что условия эксплуатации фотоаппарата и детектора кардинально различаются.

Прежде всего, все элементы детектора должны быть очень быстрыми и очень точно синхронизованными друг с другом. На Большом адронном коллайдере в пике производительности сгустки будут сталкиваться 40 миллионов раз в секунду. В каждом столкновении будет происходить рождение частиц, которые оставят свою «картинку» в детекторе, и детектор должен не «захлебнуться» этим потоком «снимков». В результате за 25 наносекунд требуется собрать всю ионизацию, которую оставили пролетевшие частицы, превратить ее в электрические сигналы, а также очистить детектор, подготовив его к очередной порции частиц. За 25 наносекунд частицы пролетают всего 7,5 метров, что сопоставимо с размерами крупных детекторов. Пока во внешних слоях детектора собирается ионизация от пролетевших частиц, сквозь его внутренние слои уже летят частицы из следующего столкновения!

Второе ключевое требование к детектору - радиационная стойкость . Элементарных частицы, разлетающиеся от места столкновения сгустков, - это самая настоящая радиация, причем очень жесткая. Например, ожидаемая поглощенная доза ионизирующей радиации, которую получит вершинный детектор за время работы, составляет 300 килогрей плюс суммарный нейтронный поток 5·10 14 нейтронов на см 2 . В этих условиях детектор должен работать годами и при этом оставаться исправным. Это касается не только материалов самого детектора, но и электроники, которой он напичкан. На создание и тестирование отказоустойчивой электроники, которая будет работать в столь радиационно жестких условиях, ушло несколько лет.

Еще одно требование к электронике - низкое энерговыделение . Внутри многометровых детекторов нет свободного места - каждый кубический сантиметр объема заполнен полезной аппаратурой. Система охлаждения неизбежно отбирает рабочий объем детектора - ведь если частица пролетит прямо сквозь охлаждающую трубу, она просто не будет зарегистрирована. Поэтому энерговыделение от электроники (а это сотни тысяч отдельных плат и проводов, снимающих информацию со всех компонентов детектора) должно быть минимальным.

Дополнительная литература:

  • К. Групен. «Детекторы элементарных частиц» // Сибирский Хронограф, Новосибирск, 1999.
  • Particle Detectors (PDF, 1,8 Мб).
  • Детекторы частиц // глава из учебного пособия Б. С. Ишханов, И. М. Капитонов, Э. И. Кэбин. «Частицы и ядра. Эксперимент». М.: Издательство МГУ, 2005.
  • Н. М. Никитюк. Прецизионные микровершинные детекторы (PDF, 2,9 Мб) // ЭЧАЯ, т. 28, вып. 1, стр.191–242 (1997).

В гл. ХХIII мы познакомились с приборами, служащими для обнаружения микрочастиц,- камерой Вильсона, счетчиком сцинтилляций, газоразрядным счетчиком. Эти детекторы, хотя и применяются в исследованиях элементарных частиц, однако не всегда удобны. Дело в том, что наиболее интересные процессы взаимодействия, сопровождающиеся взаимными превращениями элементарных частиц, происходят весьма редко. Частица должна встретить на своем пути очень много нуклонов или электронов, чтобы произошло интересное столкновение. Практически она должна пройти в плотном веществе путь, измеряемый десятками сантиметров - метрами (yа таком пути заряженная частица с энергией в миллиарды электрон-вольт теряет вследствие ионизации только часть своей энергии).

Однако в камере Вильсона или газоразрядном счетчике чувствительный слой (в пересчете на плотное вещество) крайне тонок. В связи с этим получили применение некоторые другие методы регистрации частиц.

Очень плодотворным оказался фотографический метод. В специальных мелкозернистых фотоэмульсиях каждая заряженная частица, пересекающая эмульсию, оставляет след, который после проявления пластинки обнаруживается под микроскопом в виде цепочки черных зерен. По характеру следа, оставленного частицей в фотоэмульсии, можно установить природу этой частицы - ее заряд, массу, а также энергию. Фотографический метод удобен не только из-за того, что можно использовать толстые слон вещества, но и потому, что в фотопластинке, в отличие от камеры Вильсона, следы заряженных частиц не исчезают вскоре после пролета частицы. При изучении редко случающихся событий пластинки могут экспонироваться длительное время; это особенно полезно в исследованиях космических лучей. Примеры редких событии, запечатленных в фотоэмульсии, приведены выше на рис. 414, 415; особенно интересен рис. 418.

Другой замечательный метод основан на использовании свойств перегретых жидкостей (см. том I, § 299). При нагреве очень чистой жидкости до температуры, даже чуть большей температуры кипения, жидкость не вскипает, так как поверхностное натяжение препятствует образованию пузырьков пара. Американский физик Дональд Глезер (р. 1926) заметил в 1952г., что перегретая жидкость мгновенно вскипает при достаточно интенсивном -облучении; добавочная энергия, выделяемая в следах быстрых электронов, создаваемых в жидкости -излучением, обеспечивает условия для образования пузырьков.

На основе этого явления Глезер разработал так называемую жидкостную пузырьковую камеру. Жидкость при повышенном давлении нагревается до температуры, близкой, но меньшей температуры кипения. Затем давление, а с ним и температура кипения понижаются, и жидкость оказывается перегретой. Вдоль траектории заряженной частицы, пересекающей в этот момент жидкость, формируется след пузырьков пара. При подходящем освещении он может быть запечатлен фотоаппаратом. Как правило, пузырьковые камеры располагают между полюсами сильного электромагнита, магнитное поле искривляет траектории частиц. Измеряя длину следа частицы, радиус его кривизны, плотность пузырьков, можно установить характеристики частицы. Сейчас пузырьковые камеры достигли высокого совершенства; работают, например, камеры, заполненные жидким водородом, с чувствительным объемом в несколько кубических метров. Примеры фотографий следов частиц в пузырьковой камере приведены на рис. 416, 417, 419, 420.

Рис. 418. Превращения частиц, зафиксированные в стопке фотоэмульсий, облученной космическими лучами. В точке невидимая быстрая нейтральная частица вызвала расщепление одного из ядер фотоэмульсии и образовала мезоны («звезда» из 21 следа). Один из мезонов, -мезон, пройдя путь около (на снимке приведены лишь начало и конец следа; при использованном на фотографии увеличении длина всего следа была бы ), остановился в точке и распался по схеме . -мезон, след которого направлен вниз, в точке захватился ядром , вызвав его расщепление. Одним из осколков расщепления было ядро , которое путем -распада превратилось в ядро , мгновенно распадающееся на две летящие в противоположные стороны -частнцы - на снимке они образуют «молоток». -мезон, остановившись, превратился в -мюон (и нейтрино) (точка ). Окончание следа -мюона приведено в правом верхнем углу рисунка; виден след позитрона, образованного при распаде .

Рис. 419. Образование и распад -гиперонов. В водородной пузырьковой камере, находившейся в магнитном поле и облученной антипротонами, зафиксирована реакция . Она произошла в точке окончания следа (см. схему в верхней части рисунка). Нейтральные лямбда- и антилямбда-гипероны, пролетев без образования следа небольшой путь, распадаются по схемам . Антипротон аннигилирует с протоном, образуя два и два -мезона-квантом на протоне; протон не дает видимого следа, так как ввиду большой массы не получает при взаимодействии с -квантом достаточной, энергии

В ядерной физике и физике элементарных частиц, а также в многочисленных областях науки, использующих в своей практике радиоактивные частицы (медицина, судебная экспертиза, промышленный контроль и т. п.), существенное место отводится вопросам обнаружения, идентификации, спектрального анализа заряженных частиц и фотонов высоких энергий (рентгеновских лучей и гамма-лучей). Сначала рассмотрим детекторы рентгеновского и гамма-излучения, а затем детекторы заряженных частиц.

Детекторы рентгеновского и гамма-излучения.

Классический образ искателя урана предполагает седеющего, измученного жарой субъекта, который бродит по пустыне со счетчиком Гейгера в руке. В наши дни в отношении детекторов достигнут значительный прогресс. Во всех современных детекторах используется следующий эффект: энергия поступающего в детектор фотона используется для ионизации какого-либо атома, при этом благодаря фотоэлектрическому эффекту излучается электрон. С этим электроном поступают по-разному в различных типах датчиков.

Рис. 15.19. Пропорциональный счетчик частиц.

Ионизационная камера, пропорциональный счетчик, счетчик Гейгера. Эти детекторы состоят из цилиндрической (как правило) камеры, имеющей в диаметре несколько сантиметров, и проходящего в центре тонкого провода. Камера бывает заполнена каким-либо газом или смесью газов. С одной стороны имеется узкое «окошко» из материала, пропускающего интересующее вас излучение (пластик, бериллий и т.п.). Центральный провод имеет положительный потенциал и подключается к некоторой электронной схеме. Типичная конструкция такого детектора представлена на рис. 15.19.

Когда в камере появляется квант излучения, он ионизирует атом, и тот испускает фотоэлектрон, последний затем отдает энергию, ионизируя атомы газа до тех пор, пока запас энергии не иссякнет. Оказывается, что электрон отдает около 20 В энергии в расчете на создаваемую им пару электрон-ион, следовательно, полный заряд, высвобожденный фотоэлектроном, пропорционален энергии, которую первоначально несло излучение. В ионизационной камере этот заряд собирается и усиливается усилителем заряда (интегрирующим), который работает также как фотоумножитель. Итак, выходной импульс пропорционален энергии излучения. Аналогичным образом работает пропорциональный счетчик, но на его центральном проводе поддерживается более высокое напряжение, следовательно, притягиваемые к нему электроны вызывают дополнительную ионизацию и результирующий сигнал получается большим. Эффект умножения заряда позволяет использовать пропорциональные счетчики при небольших значениях энергии излучения (порядка киловольт и ниже), когда ионизационные счетчики использовать невозможно. В счетчике Гейгера на центральном проводе поддерживается достаточно высокое напряжение, при котором любая начальная ионизация порождает большой одиночный выходной импульс (фиксированной величины). В данном случае вы получаете хороший большой выходной импульс, но не имеете никакой информации об энергии рентгеновского излучения.

В разд. 15.16 вы познакомитесь с интересным прибором, называемым анализатором ширины импульсов, который позволяет преобразовать последовательность импульсов различной ширины в гистограмму. Если ширина импульса является мерой энергии частицы, то с помощью такого прибора получим не что иное, как энергетический спектр! Итак, с помощью пропорционального счетчика (но не счетчика Гейгера) можно проводить спектрографический анализ излучения.

Подобные газонаполненные счетчики используют в диапазоне значений энергии от до . Пропорциональные счетчики обладают разрешающей способностью порядка 15% при значении энергии (распространенная для излучения калибровка, которую обеспечивает распад железа-55). Они недороги и могут иметь как очень большие, так и очень маленькие габариты, но для них требуется высокостабильный источник питания (умножение растет по экспоненциальному закону с напряжением), и они не отличаются высоким быстродействием (максимальная практически достижимая скорость счета грубо определяется величиной 25 000 имп/с).

Сцинтилляторы. Сцинтилляторы преобразуют энергию фотоэлектрона, электрона Комптона или пары электрон-позитрон в световой импульс, который воспринимается подключенным к прибору фотоумножителем.

Распространенным сцинтиллятором является кристаллический иодид натрия с примесью талия. Как и в пропорциональном счетчике, в этом датчике выходной импульс пропорционален поступающей энергии рентгеновского (или гамма) излучения, а это значит, что с помощью анализатора ширины импульсов можно производить спектрографический анализ (разд. 15.16). Обычно кристалл обеспечивает разрешение порядка 6% при значении энергии 1,3 МэВ (распространенная для гамма-излучения калибровка, которую обеспечивает распад ) и используется в энергетическом диапазоне от до нескольких ГэВ. Световой импульс имеет длительность порядка , следовательно, эти детекторы обладают достаточно высоким быстродействием. Кристаллы могут иметь различные размеры, вплоть до нескольких сантиметров, однако они сильно поглощают воду, следовательно, хранить их следует в закрытом виде. В связи с тем, что свет нужно каким-то образом устранять, кристаллы обычно поставляют в металлическом корпусе, имеющем окошко, закрытое тонкой пластинкой алюминия или бериллия, в котором находится интегральный фотоумножитель.

В сцинтилляторах используют также пластики (органические материалы), которые отличаются тем, что они очень недороги. Разрешение у них хуже, чем у иодида натрия, и используют их в основном в тех случаях, когда имеют дело с энергией выше 1 МэВ. Световые импульсы получаются очень короткими - их длительность составляет примерно 10 не. В биологических исследованиях в качестве сцинтилляторов используют жидкости («коктейли»). При этом материал, исследуемый на радиоактивность, примешивается к «коктейлю», который помещается в темную камеру с фотоумножителем. В биологических лабораториях можно встретить очень красивые приборы, в которых процесс автоматизирован; в них через камеру счетчика одна за другой помещаются различные ампулы и регистрируются результаты.

Детекторы на твердом теле. Как и в других областях электроники, революцию в области обнаружения рентгеновского и гамма-излучения произвели достижения в технологии изготовления кремниевых и германиевых полупроводников. Детекторы на твердом теле работают точно так же, как классические ионизационные камеры, но активный объем камеры заполняется в данном случае непроводящим (чистым) полупроводником. Приложенный потенциал порядка 1000 В вызывает ионизацию и генерирует импульс заряда. При использовании кремния электрон теряет всего около 2 эВ на пару электрон-ион, значит, при той же энергии рентгеновского излучения создается гораздо больше ионов, чем в пропорциональном газонаполненном детекторе, и обеспечивается лучшее энергетическое разрешение благодаря более представительным статистическим данным. Некоторые другие, менее значительные эффекты также способствуют тому, что прибор имеет улучшенные характеристики.

Выпускают несколько разновидностей детекторов на твердом теле: на основе (называются ), («жил-ли») и чистого германия (или IG), отличающихся друг от друга материалом полупроводника и примесей, используемых для того, чтобы обеспечить изолирующие свойства. Все они работают при температуре жидкого азота , и все типы полупроводников с примесью лития нужно постоянно держать в холодном состоянии (повышенная температура влияет на детектор так же плохо, как на свежую рыбу). Типовые детекторы на основе имеют диаметр от 4 до 16 мм и используются в энергетическом диапазоне от 1 до . Детекторы на основе и IG используют при работе с более высокими значениями энергии, от до 10 МэВ. Хорошие детекторы на основе обладают разрешением 150 эВ при значении энергии разрешение в 6-9 раз лучше, чем у пропорциональных счетчиков), германиевые детекторы обладают разрешением порядка при значении энергии 1,3 МэВ .

Рис. 15.20. Рентгеновский спектр листа нержавеющей стали, полученный с помощью аргонового пропорционального счетчика и детектора на основе .

Для того чтобы проиллюстрировать, что дает такое высокое разрешение, мы бомбардировали лист нержавеющей стали протонами с энергией 2 МэВ и проанализировали полученный рентгеновский спектр. Это явление называют рентгеновской эмиссией за счет протонов, и оно является мощным средством анализа веществ, при котором используется взаимное расположение спектров элементов. На рис. 15.20 показан энергетический спектр (полученный с помощью анализатора ширины импульсов), каждому элементу соответствуют два видимых рентгеновских импульса, по крайней мере при использовании детектора на основе . На графике можно видеть железо, никель и хром. Если нижнюю часть графика укрупнить, то можно будет увидеть и другие элементы. При использовании пропорционального счетчика получается «каша».

Рис. 15.21 иллюстрирует аналогичное положение для детекторов гамма-излучения.

Рис. 15.21. Гамма-спектр кобальта-60, полученный с помощью сцинтиллятора на основе иодида натрия и детектора на основе Ge(Li). (Из брошюры Canberra Ge(Li) Detector Systems фирмы Canberra Industries, Inc.)

Рис. 15.22. Криостат с датчиком . (С разрешения фирмы Canberra Industries, )

На этот раз сравниваются между собой сцинтиллятор на основе и датчик на основе . Этот график нам помогли получить коллеги из фирмы Canberra Industries. Выражаем благодарность мистеру Тенчу. Как и в предыдущем случае, преимущество в отношении разрешающей способности оказалось на стороне детекторов на твердом теле.

Детекторы на твердом теле обладают самым высоким энергетическим разрешением среди всех детекторов рентгеновского и гамма-излучения, но у них есть и недостатки: маленькая активная область в большом и неуклюжем корпусе (см., например, рис. 15.22), относительно невысокое быстродействие (время восстановления составляет и более), высокая стоимость и, кроме того, для работы с ними нужно запастись большим терпением (но может быть вам и понравится нянчиться с «пожирателем» жидкого азота, кто знает).

Детекторы заряженных частиц.

Детекторы, которые мы только что описали, предназначены для определения энергии фотонов (рентгеновских и гамма-лучей), но не элементарных частиц. Детекторы элементарных частиц имеют несколько иной облик; кроме того, заряженные частицы отклоняются электрическим и магнитным полями в соответствии с их зарядом, массой и энергией, благодаря чему измерять энергию заряженных частиц значительно проще.

Детекторы с поверхностным энергетическим барьером. Эти германиевые и кремниевые детекторы аналогичны детекторам из . Однако их не требуется охлаждать, а это намного упрощает конструктивное оформление прибора. (А у вас появляется шанс получить свободное время!) Детекторы с поверхностным энергетическим барьером выпускают с диаметрами от 3 до 50 мм. Их используют в энергетическом диапазоне от 1 МэВ до сотен МэВ, они обладают разрешением от 0,2 до 1% при значении энергии альфа-частиц, равном 5,5 МэВ (распространенная энергетическая калибровка, которая обеспечивается при распаде америция-241).

Детекторы Черенкова. При очень высоких значениях энергии (1 ГэВ и выше) заряженная частица может опередить свет в материальной среде и вызвать излучение Черенкова, «видимую ударную волну». Они находят широкое применение при экспериментах в физике высоких энергий.

Ионизационные камеры. Классическую газонаполненную камеру, которую мы рассмотрели выше в связи с рентгеновским излучением, можно использовать также в качестве детектора заряженных частиц. Простейшая ионизационная камера состоит из камеры, заполненной аргоном, и проходящего по всей ее длине провода. В зависимости от того, для работы с какими энергиями предназначена камера, ее длина может составлять от нескольких сантиметров до нескольких десятков сантиметров; в некоторых разновидностях прибора используют не один, а несколько проводов или пластин и другие газы-наполнители.

Душевые камеры. Душевая камера является электронным эквивалентом ионизационной камеры. Электрон попадает в камеру, заполненную жидким аргоном, и создает «душ» из заряженных частиц, которые затем притягиваются к заряженным пластинам.

Специалисты в области физики высоких энергий любят называть такие приборы калориметрами.

Сцинтилляционные камеры. Заряженную частицу можно обнаружить с очень хорошим энергетическим разрешением с помощью фотоумножителей по ультрафиолетовым вспышкам, которые возникают при движении заряженной частицы в камере, заполненной жидким или газообразным аргоном или ксеноном. Сцинтилляционные камеры обладают более высоким быстродействием по сравнению с ионизационными и душевыми камерами.

Дрейфовые камеры. Это новейшее достижение в области физики высоких энергий, которое обусловлено успехами в области быстродействующих диалоговых вычислительных систем. Концепция их проста: камера, в которой под атмосферным давлением находится газ (обычная смесь аргона с этаном) и множество проводов с приложенным к ним напряжением. В камере действуют электрические поля, и когда в нее попадает заряженная частица, ионизирующая газ, ионы оказываются в сфере действия проводов. Отслеживаются амплитуды сигналов и моменты времени по всем проводам (вот здесь и приходит на помощь ЭВМ), и на основе этой информации строится траектория движения частицы. Если в камере действует еще магнитное поле, то можно также определить количество движения.

Дрейфовая камера завоевала положение универсального детектора заряженных частиц для физики высоких энергий. Она может обеспечить пространственное разрешение порядка 0,2 мм и выше для объемов, которые могут вместить даже вас.

Последние материалы раздела:

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...