Что такое математическая модель в программе. Основные этапы математического моделирования

Что такое математическая модель?

Понятие математической модели.

Математическая модель - очень простое понятие. И очень важное. Именно математические модели связывают математику и реальную жизнь.

Говоря простым языком, математическая модель - это математическое описание любой ситуации. И всё. Модель может быть примитивной, может быть и суперсложной. Какая ситуация, такая и модель.)

В любом (я повторяю - в любом! ) деле, где нужно чего-нибудь посчитать да рассчитать - мы занимаемся математическим моделированием. Даже если и не подозреваем об этом.)

Р = 2·ЦБ + 3·ЦМ

Вот эта запись и будет математической моделью расходов на наши покупки. Модель не учитывает цвет упаковки, срок годности, вежливость кассиров и т.п. На то она и модель, а не реальная покупка. Но расходы, т.е. то, что нам надо - мы узнаем точно. Если модель правильная, конечно.

Представлять, что такое математическая модель полезно, но этого мало. Самое главное - уметь эти модели строить.

Составление (построение) математической модели задачи.

Составить математическую модель - это значит, перевести условия задачи в математическую форму. Т.е. превратить слова в уравнение, формулу, неравенство и т.д. Причём превратить так, чтобы эта математика строго соответствовала исходному тексту. Иначе у нас получится математическая модель какой-то другой, неведомой нам задачи.)

Говоря конкретнее, нужно

Задач в мире - бесконечное количество. Поэтому предложить чёткую пошаговую инструкцию по составлению математической модели любой задачи - невозможно.

Но можно выделить три основных момента, на которые нужно обратить внимание.

1. В любой задаче есть текст, как ни странно.) В этом тексте, как правило, имеется явная, открытая информация. Числа, значения и т.п.

2. В любой задаче имеется скрытая информация. Это текст, который предполагает наличие дополнительных знаний в голове. Без них - никак. Кроме того, математическая информация частенько скрывается за простыми словами и... проскакивает мимо внимания.

3. В любой задаче должно быть дана связь данных между собой. Эта связь может быть дана открытым текстом (что-то равно чему-то), а может быть и скрыта за простыми словами. Но простые и понятные факты частенько упускаются из виду. И модель никак не составляется.

Сразу скажу: чтобы применить эти три момента, задачу приходится читать (и внимательно!) несколько раз. Обычное дело.

А теперь - примеры.

Начнём с простой задачки:

Петрович вернулся с рыбалки и гордо предъявил семье улов. При ближайшем рассмотрении оказалось, что 8 рыбин родом из северных морей, 20% всех рыбин - из южных, а из местной реки, где рыбачил Петрович - нет ни одной. Сколько всего рыбин купил Петрович в магазине "Морепродукты"?

Все эти слова нужно превратить в какое-то уравнение. Для этого нужно, повторюсь, установить математическую связь между всеми данными задачи.

С чего начинать? Сначала вытащим из задачи все данные. Начнём по порядочку:

Обращаем внимание на первый момент.

Какая здесь явная математическая информация? 8 рыбин и 20%. Не густо, да нам много и не надо.)

Обращаем внимание на второй момент.

Ищем скрытую информацию. Она здесь есть. Это слова: "20% всех рыбин ". Здесь нужно понимать, что такое проценты и как они считаются. Иначе задача не решается. Это как раз та дополнительная информация, которая должна быть в голове.

Здесь ещё имеется математическая информация, которую совершенно не видно. Это вопрос задачи: "Сколько всего рыбин купил..." Это ведь тоже какое-то число. И без него никакая модель не составится. Поэтому обозначим это число буквой "х". Мы пока не знаем, чему равен икс, но такое обозначение очень нам пригодится. Подробнее, что брать за икс и как с ним обращаться, написано в уроке Как решать задачи по математике? Вот так сразу и запишем:

х штук - общее количество рыб.

В нашей задаче южные рыбы даны в процентах. Надо их перевести в штуки. Зачем? Затем, что в любой задаче модели надо составлять в однотипных величинах. Штуки - так всё в штуках. Если даны, скажем часы и минуты - всё переводим во что-нибудь одно - или только часы, или только минуты. Не суть важно во что. Важно, чтобы все величины были однотипными.

Возвращаемся к раскрытию информации. Кто не знает, что такое процент, никогда не раскроет, да... А кто знает, тот сразу скажет, что проценты здесь от общего числа рыб даны. А нам это число неизвестно. Ничего не выйдет!

Общее количество рыб (в штуках!) мы не зря буквой "х" обозначили. Посчитать южных рыб в штуках не получится, но записать-то мы сможем? Вот так:

0,2·х штук - количество рыб из южных морей.

Вот теперь мы скачали всю информацию с задачи. И явную, и скрытую.

Обращаем внимание на третий момент.

Ищем математическую связь между данными задачи. Эта связь настолько проста, что многие её не замечают... Такое часто бывает. Здесь полезно просто записать собранные данные в кучку, да и посмотреть, что к чему.

Что у нас есть? Есть 8 штук северных рыб, 0,2·х штук - южных рыб и х рыб - общее количество. Можно связать эти данные как-то воедино? Да легко! Общее количество рыб равно сумме южных и северных! Ну кто бы мог подумать...) Вот и записываем:

х = 8 + 0,2х

Вот это уравнение и будет математической моделью нашей задачи.

Прошу заметить, что в этой задаче нас не просят ничего складывать! Это мы сами, из головы, сообразили, что сумма южных и северных рыб даст нам общее количество. Вещь настолько очевидная, что проскакивает мимо внимания. Но без этой очевидности математическую модель не составить. Вот так.

Теперь уже можно применить всю мощь математики для решения этого уравнения). Именно для этого и составлялась математическая модель. Решаем это линейное уравнение и получаем ответ.

Ответ: х=10

Составим математичесскую модель ещё одной задачки:

Спросили Петровича: "А много ли у тебя денег?" Заплакал Петрович и отвечает: "Да всего чуть-чуть. Если я потрачу половину всех денег, да половину остатка, то всего-то один мешок денег у меня и останется..." Сколько денег у Петровича?

Опять работаем по пунктам.

1. Ищем явную информацию. Тут её не сразу и обнаружишь! Явная информация - это один мешок денег. Есть ещё какие-то половинки... Ну, это во втором пункте разберём.

2. Ищем скрытую информацию. Это половинки. Чего? Не очень понятно. Ищем дальше. Есть ещё вопрос задачи: "Сколько денег у Петровича?" Обозначим количество денег буквой "х" :

х - все деньги

И вновь читаем задачу. Уже зная, что у Петровича х денег. Вот тут уже и половинки сработают! Записываем:

0,5·х - половина всех денег.

Остаток будет тоже половина, т.е. 0,5·х. А половину от половины можно записать так:

0,5·0,5·х = 0,25х - половина остатка.

Теперь вся скрытая информация выявлена и записана.

3. Ищем связь между записанными данными. Здесь можно просто читать страдания Петровича и записывать их математически):

Если я потрачу половину всех денег ...

Запишем этот процесс. Всех денег - х. Половина - 0,5·х . Потратить - это отнять. Фраза превращается в запись:

х - 0,5·х

да половину остатка...

Отнимем ещё половину остатка:

х - 0,5·х - 0,25х

то всего-то один мешок денег у меня и останется...

А вот и равенство нашлось! После всех вычитаний один мешок денег остаётся:

х - 0,5·х - 0,25х = 1

Вот она, математическая модель! Это опять линейное уравнение, решаем, получаем:

Вопрос на соображение. Четыре - это чего? Рубля, доллара, юаня? А в каких единицах у нас деньги в математической модели записаны? В мешках! Значит, четыре мешка денег у Петровича. Тоже неплохо.)

Задачки, конечно, элементарные. Это специально, чтобы уловить суть составления математической модели. В некоторых задачах может быть гораздо больше данных, в которых легко запутаться. Это часто бывает в т.н. компетентностных задачах. Как вытаскивать математическое содержание из кучи слов и чисел показано на примерах

Ещё одно замечание. В классических школьных задачах (трубы заполняют бассейн, куда-то плывут катера и т.п.) все данные, как правило, подобраны очень тщательно. Там выполняются два правила:
- информации в задаче хватает для её решения,
- лишней информации в задаче не бывает.

Это подсказка. Если осталась какая-то неиспользованная в математической модели величина - задумайтесь, нет ли ошибки. Если данных никак не хватает - скорее всего, не вся скрытая информация выявлена и записана.

В компетентностных и прочих жизненных задачах эти правила строго не соблюдаются. Нету подсказки. Но и такие задачи можно решать. Если, конечно, потренироваться на классических.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Пример 1.5.1.

Пусть некоторый экономический регион производит несколько (n) видов продуктов исключительно своими силами и только для населения данного региона. Предполагается, что технологический процесс отработан, а спрос населения на эти товары изучен. Надо определить годовой объем выпуска продуктов, с учетом того, что этот объем должен обеспечить как конечное, так и производственное потребление.

Составим математическую модель этой задачи. По ее условию даны: виды продуктов, спрос на них и технологический процесс; требуется найти объем выпуска каждого вида продукта.

Обозначим известные величины:

c i – спрос населения на i -й продукт (i =1,...,n ); a ij – количество i -го продукта, необходимое для выпуска единицы j -го продукта по данной технологии (i =1,...,n ; j =1,...,n );

х i – объем выпуска i -го продукта (i =1,...,n ); совокупность с =(c 1 ,..., c n ) называется вектором спроса, числа a ij – технологическими коэффициентами, а совокупность х =(х 1 ,..., х n ) – вектором выпуска.

По условию задачи вектор х распределяется на две части: на конечное потребление (вектор с ) и на воспроизводство (вектор х-с ). Вычислим ту часть вектора х которая идет на воспроизводство. По нашим обозначениям для производства х j количества j-го товара идет a ij · х j количества i -го товара.

Тогда сумма a i1 · х 1 +...+ a in · х n показывает ту величину i -го товара, которая нужна для всего выпуска х =(х 1 ,..., х n ).

Следовательно, должно выполняться равенство:

Распространяя это рассуждение на все виды продуктов, приходим к искомой модели:

Решая эту систему из n линейных уравнений относительно х 1 ,...,х n и найдем требуемый вектор выпуска.

Для того, чтобы написать эту модель в более компактной (векторной) форме, введем обозначения:

Квадратная (
) -матрицаА называется технологической матрицей. Легко проверить, что наша модель теперь запишется так:х-с=Ах или

(1.6)

Мы получили классическую модель «Затраты – выпуск », автором которой является известный американский экономист В. Леонтьев.

Пример 1.5.2.

Нефтеперерабатывающий завод располагает двумя сортами нефти: сортом А в количестве 10 единиц, сортом В - 15 единиц. При переработке из нефти получаются два материала: бензин (обозначим Б ) и мазут (М ). Имеется три варианта технологического процесса переработки:

I : 1ед.А + 2ед.В дает 3ед.Б + 2ед.М

II: 2ед.А + 1ед.В дает 1ед.Б + 5ед.М

III : 2ед.А + 2ед.В дает 1ед.Б + 2ед.М

Цена бензина - 10 долл. за единицу, мазута - 1 долл. за единицу.

Требуется определить наиболее выгодное сочетание технологических процессов переработки имеющегося количества нефти.

Перед моделированием уточним следующие моменты. Из условия задачи следует, что «выгодность» технологического процесса для завода следует понимать в смысле получения максимального дохода от реализации своей готовой продукции (бензина и мазута). В связи с этим понятно, что «выбор (принятие) решения» завода состоит в определении того, какую технологию и сколько раз применить. Очевидно, что таких возможных вариантов достаточно много.

Обозначим неизвестные величины:

х i – количество использованияi -го технологического процесса(i=1,2,3) . Остальные параметры модели (запасы сортов нефти, цены бензина и мазута)известны .

Теперь одно конкретное решение завода сводится к выбору одного вектора х =(х 1 2 3 ) , для которого выручка завода равна(32х 1 +15х 2 +12х 3 ) долл. Здесь 32 долл. – это доход, полученный от одного применения первого технологического процесса (10 долл. ·3ед.Б + 1 долл. ·2ед.М = 32 долл.). Аналогичный смысл имеют коэффициенты 15 и 12 для второго и третьего технологических процессов соответственно. Учет запаса нефти приводит к следующим условиям:

для сорта А :

для сорта В :,

где в первом неравенстве коэффициенты 1, 2, 2 – это нормы расхода нефти сорта А для одноразового применения технологических процессов I ,II ,III соответственно. Коэффициенты второго неравенства имеют аналогичный смысл для нефти сорта В.

Математическая модель в целом имеет вид:

Найти такой вектор х = (х 1 2 3 ) , чтобы максимизировать

f(x) =32х 1 +15х 2 +12х 3

при выполнении условий:

Сокращенная форма этой записи такова:

при ограничениях

(1.7)

Мы получили так называемую задачу линейного программирования.

Модель (1.7.) является примером оптимизационной модели детерминированного типа (с вполне определенными элементами).

Пример1.5.3.

Инвестору требуется определить наилучший набор из акций, облигаций и других ценных бумаг для приобретения их на некоторую сумму с целью получения определенной прибыли с минимальным риском для себя. Прибыль на каждый доллар, вложенный в ценную бумагу j - го вида, характеризуется двумя показателями: ожидаемой прибылью и фактической прибылью. Для инвестора желательно, чтобы ожидаемая прибыль на один доллар вложений была для всего набора ценных бумаг не ниже заданной величины b .

Заметим, что для правильного моделирования этой задачи от математика требуются определенные базовые знания в области портфельной теории ценных бумаг.

Обозначим известные параметры задачи:

n – число разновидностей ценных бумаг; а j – фактическая прибыль (случайное число) от j-го вида ценной бумаги; – ожидаемая прибыль отj -го вида ценной бумаги.

Обозначим неизвестные величины :

y j - средства, выделенные для приобретения ценных бумаг вида j .

По нашим обозначениям вся инвестированная сумма выражается как . Для упрощения модели введем новые величины

.

Таким образом, х i - это доля от всех средств, выделяемая для приобретения ценных бумаг видаj .

Ясно, что

Из условия задачи видно, что цель инвестора - достижение определенного уровня прибыли с минимальным риском. Содержательно риск - это мера отклонения фактической прибыли от ожидаемой. Поэтому его можно отождествить с ковариацией прибыли для ценных бумаг вида i и вида j. Здесь М - обозначение математического ожидания.

Математическая модель исходной задачи имеет вид:

при ограничениях

,
,
,
. (1.8)

Мы получили известную модель Марковица для оптимизации структуры портфеля ценных бумаг.

Модель (1.8.) является примеров оптимизационной модели стохастического типа (с элементами случайности).

Пример1.5.4.

На базе торговой организации имеется n типов одного из товаров ассортиментного минимума. В магазин должен быть завезен только один из типов данного товара. Требуется выбрать тот тип товара, который целесообразно завести в магазин. Если товар типа j будет пользоваться спросом, то магазин от его реализации получит прибыльр j , если же он не будет пользоваться спросом - убытокq j .

Перед моделированием обсудим некоторые принципиальные моменты. В данной задаче лицом, принимающим решение (ЛПР), является магазин. Однако исход (получение максимальной прибыли) зависит не только от его решения, но и от того, будет ли завезенный товар пользоваться спросом, т. е. будет ли выкуплен населением (предполагается, что по какой-то причине у магазина нет возможности изучить спрос населения). Поэтому население может рассматриваться как второе ЛПР, выбирающее тип товара согласно своего предпочтения. Наихудшим для магазина «решением» населения является: «завезенный товар не пользуется спросом». Так что, для учета всевозможных ситуаций, магазину нужно считать население своим «противником» (условно), преследующим противоположную цель – минимизировать прибыль магазина.

Итак, имеем задачу принятия решения с двумя участниками, преследующими противоположные цели. Уточним, что магазин выбирает один из типов товаров для продажи (всего n вариантов решений), а население - один из типов товаров, который пользуется наибольшим спросом (n вариантов решений).

Для составления математической модели нарисуем таблицу с n строками и n столбцами (всего n 2 клеток) и условимся, что строки соответствуют выбору магазина, а столбики - выбору населения. Тогда клетка (i, j) соответствует той ситуации, когда магазин выбирает i -й тип товара (i -ю строку), а население выбирает j -й тип товара (j- ю столбик). В каждую клетку запишем числовую оценку (прибыль или убыток) соответствующей ситуации с точки зрения магазина:

Числа q i написаны с минусом для отражения убытка магазина; в каждой ситуации «выигрыш» населения (условно) равен «выигрышу» магазина, взятому с обратным знаком.

Сокращенный вид этой модели таков:

(1.9)

Мы получили так называемую матричную игру. Модель (1.9.) является примером игровых моделей принятия решения.

Если цель моделирования ясна, то возникает следующая задача – задача построения математической модели. На этом этапе исходные предположения переводятся на четкий однозначный язык количественных отношений и устраняются нечеткие, неоднозначные высказывания или определения, которые заменяются, быть может, и приближенными, но четкими, не допускающими различных толкований высказываниями.

Построение математической модели выполняется в следующей последовательности :

1) выбор вида моделей и подмоделей;

2) проектирование структуры и состава моделей (подмоделей);

3) разработка отдельных подмоделей;

4) сборка модели в целом;

5) идентификация параметров моделей и подготовка исходных данных;

6) проверка достоверности модели системы.

На первом и втором подэтапах выполняется формализация описания системы: устанавливаются ее структура и существенные зависимости между элементами. Основная задача этих двух подэтапов – получение математического описания процессов в моделируемой системе и её структурной схемы, которая должна быть идентична структурной схеме промышленной системы.

При большой сложности системы первоначально производится разбиение процесса функционирования системы на отдельные достаточно автономные подпроцессы. Таким образом, модель функционально подразделяется на подмодели, каждая из которых в свою очередь может быть разбита на еще более мелкие элементы.

Для правильно построенной модели характерным является то, что она выявляет лишь те закономерности, которые нужны исследователю, и не рассматривает свойства системы, не существенные для данного исследования. Следует отметить, что оригинал и модель должны быть одновременно сходны по одним признакам и различны по другим, что позволяет выделить наиболее важные изучаемые свойства.

Разработка отдельных подмоделей состоит в составлении их математического описания: в установлении связей между параметрами процесса и выявлении их граничных и начальных условий, а также в формализации процесса в виде системы математических соотношений, характеризующих изучаемый объект (технологический процесс). При составлении математического описания используется либо теоретический, либо статистический подход (см. п.2.2.4).

При выполнении этого этапа особенно важно выбрать математическую модель минимально необходимой сложности. Если модель сложной системы образуется простым объединением полных моделей подсистем нижних уровней, то может возникнуть диспропорция между требуемой точностью и фактической сложностью модели. Эта диспропорция может быть устранена загрублением моделей низшего уровня (после детального автономного исследования их). Возможными вариантами такого загрубления являются:

Сведение детальных описаний многокомпонентного процесса к главной составляющей с поправочными коэффициентами;

Укрупнение состояний и фаз процессов;

Аппроксимация выявленных зависимостей;

Усреднение характеристик процессов по их аргументам;

Замораживание медленно меняющихся параметров;

Снижение требований к точности итераций;

Пренебрежение взаимной зависимостью переменных;

Для выведенных математических соотношений на следующем подэтапе выполняется идентификация их параметров. В настоящее время широко применяют различные способы оценки параметров: по методу наименьших квадратов, по методу максимального правдоподобия, байесовские, марковские оценки.

Подготовка исходных данных состоит в сборе и обработке результатов наблюдений за изучаемой системой. Обработка в типичном случае заключается в построении функций распределения соответствующих случайных величин или вычислении числовых характеристик распределений. Эти исходные данные, полученные в результате проведения исследования на реальной системе, будут использоваться в качестве параметров модели при реализации ее на ЭВМ.

Проверка достоверности модели системы является первой из проверок, выполняемых на этапе реализации модели. Так как модель представляет собой приближенное описание процесса функционирования реальной системы, то до тех пор, пока не доказана достоверность модели, нельзя утверждать, что с ее помощью будут получены результаты, совпадающие с теми, которые могли бы быть получены при проведении натурного эксперимента с реальной системой. Поэтому определение достоверности модели устанавливает степень доверия к результатам, полученным методом моделирования. Проверка модели на рассматриваемом подэтапе должна дать ответ на вопрос, насколько логическая схема модели системы и используемые математические соотношения отражают замысел модели, сформированный на первом этапе. При этом проверяются возможность решения поставленной задачи, точность отражения замысла в логической схеме, полнота логической схемы модели, правильность используемых математических соотношений.

Только после того, как разработчик убеждается путем соответствующей проверки в правильности всех этих положений, можно считать, что разработанная логическая схема модели системы пригодна для дальнейшей работы по реализации модели на ЭВМ.

Аннотация: В лекции описан процесс построения математической модели. Приведен словесный алгоритм процесса.

Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель .

Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи .

Для построения математической модели необходимо:

  1. тщательно проанализировать реальный объект или процесс;
  2. выделить его наиболее существенные черты и свойства;
  3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;
  4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);
  5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
  6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование , кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

  1. построение алгоритма, моделирующего поведение объекта, процесса или системы;
  2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;
  3. корректировка модели;
  4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

  1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности , теории упругости и т.д.
  2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.

Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации , она является приближенным описанием объекта. Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.

Обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола.

Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник . В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой. Для одного и того же стола мы можем принять либо модель прямоугольника, либо более сложную модель четырехугольника общего вида, либо четырехугольника с закругленными углами. Выбор той или иной модели определяется требованием точности. С повышением точности модель приходится усложнять, учитывая новые и новые особенности изучаемого объекта, процесса или системы.

Рассмотрим другой пример: исследование движения кривошипно-шатунного механизма (Рис. 2.1) .


Рис. 2.1.

Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого:

  1. Заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями ;
  2. Пользуясь этой схемой, мы выводим уравнение движения механизма;
  3. Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения 1-го и 2-го порядка.

Запишем эти уравнения:

где С 0 – крайнее правое положение ползуна С:

r – радиус кривошипа AB;

l – длина шатуна BC;

– угол поворота кривошипа;

Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно-шатунного механизма, основанную на следующих упрощающих предположениях:

  1. нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун – это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма;
  2. при движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела – упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма;
  3. мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.

Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимую задачу.

Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.

Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.

Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.

Построение математической модели в прикладных задачах – один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель – значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, – определенной математической культурой, опытом исследования в своей области, знанием ЭВМ и программирования.

Аннотация: В лекции описан процесс построения математической модели. Приведен словесный алгоритм процесса.

Для использования ЭВМ при решении прикладных задач прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель .

Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи .

Для построения математической модели необходимо:

  1. тщательно проанализировать реальный объект или процесс;
  2. выделить его наиболее существенные черты и свойства;
  3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;
  4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);
  5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
  6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование , кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

  1. построение алгоритма, моделирующего поведение объекта, процесса или системы;
  2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;
  3. корректировка модели;
  4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

  1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности , теории упругости и т.д.
  2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

На этапе выбора математической модели устанавливаются: линейность и нелинейность объекта, процесса или системы, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. При математическом моделировании сознательно отвлекаются от конкретной физической природы объектов, процессов или систем и, в основном, сосредотачиваются на изучении количественных зависимостей между величинами, описывающими эти процессы.

Математическая модель никогда не бывает полностью тождественна рассматриваемому объекту, процессу или системе. Основанная на упрощении, идеализации , она является приближенным описанием объекта. Поэтому результаты, полученные при анализе модели, носят приближенный характер. Их точность определяется степенью адекватности (соответствия) модели и объекта.

Обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола.

Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник . В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой. Для одного и того же стола мы можем принять либо модель прямоугольника, либо более сложную модель четырехугольника общего вида, либо четырехугольника с закругленными углами. Выбор той или иной модели определяется требованием точности. С повышением точности модель приходится усложнять, учитывая новые и новые особенности изучаемого объекта, процесса или системы.

Рассмотрим другой пример: исследование движения кривошипно-шатунного механизма (Рис. 2.1) .


Рис. 2.1.

Для кинематического анализа этого механизма, прежде всего, необходимо построить его кинематическую модель. Для этого:

  1. Заменяем механизм его кинематической схемой, где все звенья заменены жесткими связями ;
  2. Пользуясь этой схемой, мы выводим уравнение движения механизма;
  3. Дифференцируя последнее, получаем уравнения скоростей и ускорения, которые представляют собой дифференциальные уравнения 1-го и 2-го порядка.

Запишем эти уравнения:

где С 0 – крайнее правое положение ползуна С:

r – радиус кривошипа AB;

l – длина шатуна BC;

– угол поворота кривошипа;

Полученные трансцендентные уравнения представляют математическую модель движения плоского аксиального кривошипно-шатунного механизма, основанную на следующих упрощающих предположениях:

  1. нас не интересовали конструктивные формы и расположение масс, входящих в механизм тел, и все тела механизма мы заменили отрезками прямых. На самом деле, все звенья механизма имеют массу и довольно сложную форму. Например, шатун – это сложное сборное соединение, форма и размеры которого, конечно, будут влиять на движение механизма;
  2. при движения рассматриваемого механизма мы также не учитывали упругость входящих в механизм тел, т.е. все звенья рассматривали как абстрактные абсолютно жесткие тела. В действительности же, все входящие в механизм тела – упругие тела. Они при движении механизма будут как-то деформироваться, в них могут даже возникнуть упругие колебания. Это все, конечно, также будет влиять на движение механизма;
  3. мы не учитывали погрешность изготовления звеньев, зазоры в кинематических парах A, B, C и т.д.

Таким образом, важно еще раз подчеркнуть, что, чем выше требования к точности результатов решения задачи, тем больше необходимость учитывать при построении математической модели особенности изучаемого объекта, процесса или системы. Однако, здесь важно во время остановиться, так как сложная математическая модель может превратиться в трудно разрешимую задачу.

Наиболее просто строится модель, когда хорошо известны законы, определяющие поведение и свойства объекта, процесса или системы, и имеется большой практический опыт их применения.

Более сложная ситуация возникает тогда, когда наши знания об изучаемом объекте, процессе или системе недостаточны. В этом случае при построении математической модели приходится делать дополнительные предположения, которые носят характер гипотез, такая модель называется гипотетической. Выводы, полученные в результате исследования такой гипотетической модели, носят условный характер. Для проверки выводов необходимо сопоставить результаты исследования модели на ЭВМ с результатами натурного эксперимента. Таким образом, вопрос применимости некоторой математической модели к изучению рассматриваемого объекта, процесса или системы не является математическим вопросом и не может быть решен математическими методами.

Основным критерием истинности является эксперимент, практика в самом широком смысле этого слова.

Построение математической модели в прикладных задачах – один из наиболее сложных и ответственных этапов работы. Опыт показывает, что во многих случаях правильно выбрать модель – значит решить проблему более, чем наполовину. Трудность данного этапа состоит в том, что он требует соединения математических и специальных знаний. Поэтому очень важно, чтобы при решении прикладных задач математики обладали специальными знаниями об объекте, а их партнеры, специалисты, – определенной математической культурой, опытом исследования в своей области, знанием ЭВМ и программирования.

Последние материалы раздела:

Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков
Экспедиции XVIII века Самые выдающиеся географические открытия 18 19 веков

Географические открытия русских путешественников XVIII-XIX вв. Восемнадцатый век. Российская империя широко и вольно разворачивает плечи и...

Система управления временем Б
Система управления временем Б

Бюджетный дефицит и государственный долг. Финансирование бюджетного дефицита. Управление государственным долгом.В тот момент, когда управление...

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....