Далекие глубины вселенной. Что там, в глубинах Вселенной? С

От миниатюрных чёрных дыр до полного искажения материи и понятия пространство-время, от галактик, поглощающих друг друга, до материи, не имеющей массы, которую нельзя ни увидеть, ни вычислить, используя современные технологии и новейшие компьютеры, — таковы лишь некоторые космические секреты, неподдающиеся натиску человеческого разума, в необъятном космосе есть огромное количество необъяснимых загадок, напомним вам о некоторых из них.

КВАЗАРЫ

Яркие маяки светят и сигналят нам от самого далёкого края видимой части Вселенной, что настойчиво напоминает нашим учёным о космическом хаосе и младенческом возрасте нашей родной галактики. Эти сигнальные огни мы называем квазарами, в чью компетенцию входит способность излучать такое количество энергии, которое сопоставимо с сотнями галактик одновременно. Но главный вывод, сделанный мировым сообществом учёных, заключается в том, что квазары есть ни что иное, как чудовищные чёрные дыры в самом сердце бесконечно далёких галактик. Одного из этих космических монстров удалось запечатлеть на фотоплёнку ещё в 1979 году, его кодовое имя ЗС 273.

Квантовая физика объясняет нам, что, противореча собственному внешнему облику, пустые пространства являются целыми виртуальными заводами по производству субатомных частиц, которые беспрерывно там создаются и тут же уничтожаются. Быстрые частицы заполняют каждый кубический сантиметр Вселенной, принося с собой определённое количество энергии, которая, согласно закону относительности, создаёт там антигравитационные силы, пытающиеся разорвать космос на части, расширить его. Но, увы, никто не знает, что же заставляет увеличивать и ускорять такую экспансию Вселенной…

АНТИВЕЩЕСТВО И ЧЁРНЫЕ ДЫРЫ

Теперь коснёмся другой загадки, называемой антиматерия (антивещество). Частицы и молекулы, составляющие обычную материю, из коей состоят все земные и космические вещества и тела, имеют противоположную версию самих себя. К примеру, электроны (основные структурные элементы всякого вещества) несут в себе отрицательный заряд. Но их эквивалент антивещества — позитрон — имеет положительный. Поэтому материя и антиматерия аннигилируют, когда сталкиваются в пространстве, а их массы конвертируются в чистую энергию, согласно уравнению Эйнштейна Е=mс2. Вот поэтому космические межпланетные корабли будущего уже сейчас проектируются с прицелом на энергию антивещества.

Изумление у нас вызывают и миниатюрные чёрные дыры. Если радикально новая теория силы тяготения «бесконечного мира» (braneworld) верна, тогда по всему пространству нашей галактики (а может, и Вселенной) разбросано невероятное количество миниатюрных чёрных дыр, размеры которых не превышают габаритов атомного ядра. Однако в отличие от своих «глобальных» собратьев эти миниатюрные чёрные дыры изначально являют собой остаток и отголосок теории «Большого взрыва». Миниатюрные чёрные дыры влияют на пространство-время совершенно иным образом, из-за их близкого «родства» с пятым измерением.

И если уж мы упомянули теорию «большого взрыва», то здесь будет уместно напомнить всем об истоках космического микроволнового излучения. Это излучение — последствие самого «Большого взрыва», который зародился во Вселенной. Впервые его обнаружили в 60-х годах прошлого века по радиошумам, исходившим, как тогда показалось, из всех точек Космоса. Учёные посчитали, что излучение космических микроволн — лучшее подтверждение теории «Большого взрыва», которая только может существовать. Последние измерения показали, что температура в районах микроволнового излучения равна -270° по Цельсию.

Темной загадкой представляется нам и тёмная материя, которой в космосе огромное количество. Но её пока нельзя ни видеть, ни вычислить всеми доступными нам способами, используя даже самое последнее оборудование. Кандидатами на составную часть тёмной материи являются нейтрино (стабильная незаряженная элементарная частица с нулевой массой). Именно они считаются составной частью чёрных дыр. Некоторые учёные задаются вопросом: чёрная материя вообще-то реальна? Они полагают, что разгадка этой задачи лежит в области иного рассмотрения и понимания теории гравитации.

ЗЕМНЫЕ СТРАСТИ КОСМОСА

Вплоть до 90-х годов прошлого столетия мы знали только о близких нам планетах нашей солнечной системы. Но прошло совсем немного времени, и астрономы идентифицировали уже более 190 планет, находящихся вне солнечной системы. Планеты сильно разнятся по своим размерам и физическим данным, от гигантских газовых шаров до самых минимальных, чью орбиту даже невозможно вычислить. Но поиски новой (или второй) Земли пока к положительным результатам не привели. Однако астрономы уверены, что новейшие технологии позволят учёным обнаружить миры, схожие с нашей земной жизнью.

Волны гравитации подобны складкам на тканом материале. Именно так они представляются специалистам согласно теории относительности Альберта Эйнштейна. Волны гравитации распространяются со скоростью света, но они очень слабы. Специалисты надеются вычислить их уже в момент их образования во время любого серьёзного космического события. К примеру, в момент их поглощения одной из чёрных дыр Вселенной.

Уже созданы установки, которые смогут запечатлеть такое событие.

Кстати, такие явления (поглощения иных планет чёрной дырой) называются сегодня красивым словосочетанием — галактический каннибализм.

Как и на Земле, в космосе происходит борьба за выживание. Одна галактика пожирает другую, продолжая развиваться и со временем эволюционировать. Ближайшая соседка Млечного Пути — Андромеда «обедает» в данное время со своими сателлитами. Более чем дюжина звёздных скоплений разбросаны в туманности Андромеды, они являются всего лишь останками её предыдущих питательных процессов.

Учёные попытались компьютерно обрисовать галактическое столкновение Андромеды с нашей галактикой, которую астрономы ожидают в ближайшие 3 млрд лет. Впечатляющая получилась картина!

Тайной покрыто и малоизвестное нам нейтрино — стабильная незаряженная элементарная частица с нулевой массой, которая может беспрепятственно преодолевать любые расстояния. Некоторые из них прошли сквозь ваше тело, пока вы читаете эту статью, между прочим. Эти частицы возникли в глобальных котельных сгорающих здоровых звёзд или при суперновых галактических взрывах, погибающих звёзд. Детекторы нейтрино сейчас устанавливаются в глубинах мирового океана, согласно новому проекту IceCube. Некоторые такие детекторы крепятся к днищам огромных ледяных айсбергов. А результаты данных работ скоро станут нам известны.

И это лишь некоторые загадки космоса, которые человеку предстоит раскрыть в будущем.

Эмил Иванов - оперный певец и астроном-любитель в одном лице. С ранних лет он интересовался пением и астрономией. Первый телескоп Эмил построил в 9 лет: в дело пошли очковые стекла и объектив от театрального бинокля. А свои первые снимки звездного неба он получил с помощью 35-мм фотоаппарата «Смена»

Закончив школу, Эмил Иванов начал изучать в Государственном университете Софии астрономию, но через два года перевелся в Музыкальную академию, которую окончил спустя пять лет. А дальше началась его карьера оперного певца, в ходе которой он выступал на самых престижных площадках мира. Профессиональная занятость до самого последнего времени не позволяла ему обратиться к любимому хобби, однако с 2009 года, когда Эмил стал обладателем 12-дюймового астрографа, он получил возможность заниматься астрофотографией.

В результате за 3 года у Эмила скопилась внушительная коллекция астрономических снимков с изображениями планет и солнца, комет, Луны и самых разнообразных объектов глубокого космоса.

(Всего 20 фото)

1. Весной небо северного полушария бедно на звезды, так как мы смотрим в сторону от диска Галактики, где сосредоточены большинство звезд Млечного Пути, туманности и звездные скопления. Зато перед нами открываются глубины космоса - скопления галактик в созвездиях Волос Вероники и Девы. Одна из множества звездных систем, которые можно увидеть на небе весной, - великолепная спираль М94, галактика в созвездии Гончих Псов, расположенная на расстоянии 16 миллионов световых лет от нас. Вместе с еще примерно 20 галактиками М94 входит в группу галактик, которая является частью сверхскопления в Деве. Частью этого же сверхскопления является и наша галактика, Млечный Путь

2. У туманности IC 405 существует еще несколько номеров в разных каталогах (Sh 2-229, Колдуэлл 31), но любителям астрономии она известна под названием Туманность пламенеющей звезды. Это обширное скопление газа и пыли находится в созвездии Возничего и окружает очень горячую звезду AE Возничего (в центре снимка). Мощное излучение звезды ионизирует газ туманности, заставляя его светиться красным, а также отражается от чрезвычайно мелких пылинок поблизости. В результате мы видим вблизи звезды и голубые тона. По галактическим меркам АЕ Возничего сущий младенец - возраст ее составляет всего 2-3 миллиона лет. Однако за это время звезда проделала большой путь по небу: исследования показывают, что родилась АЕ Возничего в Туманности Ориона. Что придало звезде столь большую скорость, что она навсегда покинула свою колыбель, сегодня в точности не известно

3. Шаровое скопление М3 в созвездии Гончих Псов. Это довольно яркое шаровое скопление лучше всего видно на небе весной. Находится оно на полпути между ярким Арктуром и α Гончих Псов. Как и подавляющее большинство шаровых скоплений Галактики, М3 старое скопление - его возраст составляет, вероятно, больше 11 миллиардов лет. Очень четкие снимки вроде этого показывают множество красных гигантов - звезд, находящихся на поздних стадиях эволюции

4. Не секрет, что плоскость нашей Галактики сильно «запылена». Межзвездная пыль и молекулярные облака поглощают свет далеких звезд, скрывая от нас центр Млечного Пути и много других интересных объектов. Невооруженному глазу холодные облака предстают в лучшем случае в виде темных провалов на фоне бледного свечения Млечного Пути, но на фотографиях, подобных этой, можно в деталях рассмотреть их структуру. В центре снимка - яркая звезда β Цефея. В правом нижнем углу находится известная отражательная туманность Ирис (NGC 7023), чуть левее ее - туманность Призрак. А у левого края снимка находится вытянутая туманность Барнард 175

5. Красивая спиральная галактика М88 из созвездия Волосы Вероники. Эта звездная система находится на расстоянии 47 миллионов световых лет от Земли. В ядре М88 идут активные процессы, связанные, вероятно, со взаимодействием вещества галактики и сверхмассивной черной дыры. Астрономы установили, что масса центральной черной дыры составляет около 80 миллионов масс Солнца

6. М21, рассеянное звездное скопление в созвездии Стрельца. Это скопление находится довольно далеко от нас, на расстоянии свыше 4 тысяч световых лет, поэтому невооруженным глазом оно не видно. Однако даже небольшой бинокль без труда разрешает его на звезды. Скопление М21 очень молодо - его возраст оценивается в 4,6 миллиона лет.

7. Эмиссионная туманность NGC 2174. Эта обширная и довольно яркая туманность находится в созвездии Ориона, там, где на древних картах изображалась поднятая вверх дубинка охотника. Левый край туманности имеет сложную структуру; свечение водорода перемежается с темными прожилками пыли. На снимках телескопа «Хаббл» в этом месте видны глобулы и столбы пыли, подобные знаменитым Столбам Творения в туманности М16

8. детальное изображение участка созвездия Цефея с темными туманностями LBN 468, LDN 1148, LDN 1155, LDN 1158, HH 215. Первые четыре туманности вошли в каталоги ярких и темных туманностей Линдса (Lynds Bright Nebula, Lynds Dark Nebula), последний, похожий на головастик, объект справа внизу - объект Хербига-Аро 215

9. Группа галактик в Драконе. Прекрасное трио галактик состоит из двух спиральных (NGC 5981 и NGC 5985 - слева и справа) галактик и эллиптической NGC 5982 (в центре). Они действительно физически связаны друг с другом и располагаются примерно на одном и том же расстоянии от нас - около 100 миллионов световых лет. Из-за весьма солидного расстояния интегральный блеск каждой из этих галактик не превышает 11-й зв. величины. Однако на этом замечательном снимке проявились и гораздо более далекие галактики

10. Среди россыпей звезд в созвездии Стрелы находится маленькая эмиссионная туманность Sh2-82 (объект номер 82 из каталога Шарплесса). Туманность окружена голубоватой отражательной туманностью; обе они находятся позади мощного скопления пыли

11. М19 - далекое шаровое скопление в созвезии Змееносца. Возраст скопления составляет почти 12 миллиардов лет, оно состоит более чем из миллиона звезд, многие из которых уже сошли с главной последовательности и проходят стадию красных гигантов. Отчетливо видно, что форма М19 вытянута, однако на инфракрасных снимках скопление предстает почти идеальным шаром. Очевидно, и здесь не обошлось без межзвездной пыли, которая скрывает часть М19 от наших глаз.

12. Галактика Игла (она же NGC 4565) в созвездии Волосы Вероники. Эта великолепная спиральная галактика расположена к нам ребром, поэтому мы не наблюдаем спиральных рукавов, зато очень хорошо видим центральное утолщение - балдж - и прослойку межзвездной пыли. Если бы мы могли взглянуть на нашу собственную звездную систему, Млечный Путь, со стороны, то она выглядила бы, вероятно, очень похоже на галактику Игла. Кроме NGC 4565 на снимок попало еще две галактики - NGC 4562 (в левом верхнем углу) и IC 3571 (маленькое голубоватое пятнышко непосредственно под галактикой Игла).

13. Галактики М81 и М82 в созвездии Большой Медведицы. Замечательная пара галактик давно является излюбленным объектом для многих любителей астрономии - она прекрасно видна даже в 50-мм бинокли. М81 известна как галактика Боде, а М82 - как галактика Сигара или Взрывающаяся галактика. Изучая спектр галактики М82 (справа) астрономы еще 3-4 десятилетия назад полагали, будто в центре ее произошел грандиозный взрыв, однако современные исследования с помощью крупнейших телескопов предлагают другое объяснение внешнему виду галактики. Согласно ему в М82 идут процессы бурного звездообразования, и звездный ветер от тысяч молодых горячих звезд выдувает газ из галактики. Вспышка звездообразования, вероятно, произошла в результате гравитационного взаимодействия М81 и М82. На снимок также попала карликовая неправильная галактика Хольмберг IX, спутник галактики М81, которая видна чуть выше ее как клочковатое облачко

14. Темные провалы на небе давно были известны астрономам, но первым, кто взялся за их изучение, стал американский астроном Эдуард Барнард. В 1919 году он выпустил каталог темных туманностей, в который включил 182 подобных объекта. Одна из таких туманностей, Барнард 174, представлена на этом снимке. Астроном описал ее как узкую туманность неправильной формы, вытянутой с северо-востока на юго-запад и диаметром 19 угловых минут

15. Туманность Пузырь (NGC 7635) и рассеянное скопление М52 в созвездии Кассиопеи. Странная туманность сферической формы на первый взгляд кажется планетарной, однако на самом деле это не так. Пузырь выдувает горячая звезда, находящаяся внутри него, справа по центру. Мощный звездный ветер буквально расталкивает межзвездное вещество в разные стороны. Размеры пузыря уже достигли 10 световых лет

16. В созвездии Большой Медведицы. На снимок попали сразу два объекта каталога Мессье, которые имеют, правда, совершенно различную природу. Слева вверху находится планетарная туманность Сова (М97), в правом нижнем углу - спиральная галактика М108. Туманность Сова - это расширяющаяся оболочка умершей звезды. Ядро звезды - горячий белый карлик в центре туманности - нагревает оболочку своим ультрафиолетовым излучением и заставляет ее переизлучать фотоны в видимом диапазоне спектра. Расстояние до М97 - 2600 св. лет. Галактика М108 находится в 17,5 тысяч раз дальше, на расстоянии около 45 миллионов световых лет. Ее масса и размеры сопоставимы с массой и размерами Млечного Пути

17. Рассеянное скопление М7 (скопление Птолемея). Это одно из ярчайших рассеянных скоплений на нашем небе. Находится оно в созвездии Скорпиона, в самой гуще Млечного Пути, на расстоянии около 1000 световых лет от нас. Скопление состоит из 80 звезд-гигантов, чья общая масса составляет более 700 масс Солнца. Несмотря на то что скопление довольно молодо (возраст его составляет 200 миллионов лет), наиболее массивные его звезды уже значительно проэволюционировали

18. Туманность Калифорния (NGC 1499) в созвездии Персея, снятая в нескольких узких полосах спектра. Эта огромная туманность вытянулась на небе на 2,5°, что составляет почти 5 дисков Луны. Несмотря на внушительные размеры, наблюдать туманность визуально невероятно трудно из-за ее чрезвычайно низкой поверхностной яркости. Тем не менее на фотографиях с большой экспозицией ее очертания проявляются достаточно подробно, напоминая внешне очертания штата Калифорния. Расстояние до туманности - около 1000 св. лет

19. NGC 1333 - отражательная туманность в созвездии Персея. На этом изумительном по четкости и глубине снимке туманность представляется густым хитросплетением газовых и пылевых облаков, почти не излучающих свет. Отраженное свечение имеет голубоватый цвет, кстати, по той же причине, по которой является голубой и земная атмосфера. Туманность NGC 1333 - часть молекулярного облака Персея, которое располагается от нас на расстоянии около 1000 световых лет. Внутри облака находится множество очень молодых звезд возрастом не более миллиона лет - фактически, ровесников человечества

20. Галактика Подсолнух (М63) - красивая спиральная звездная система в созвездии Гончих Псов. Галактика была открыта в 1779 году французским астрономом Пьером Мешеном, а в середине XIX века лорд Росс установил ее спиральную структуру. Размеры М63 составляют около 100000 световых лет, что сопоставимо с размерами Млечного Пути. Ее структура чрезвычайно любопытна - на снимке мы видим маленькое плотное ядро с множеством коротких, сильно закрученных спиральных рукавов. Но кроме этого мы видим также продолжения спиральных ветвей в виде слабых петель, продолжающихся далеко за пределы диска М63. Вероятно, эти структуры, состоящие также из звезд и газа, образовались в результате гравитационного взаимодействия с галактиками-соседями

Мы познакомились с электромагнитными «вестника­ми далеких миров», которые уже служат астрономам, и нейтрино - стремительными частицами, которые иссле­дователи Вселенной только стараются приручить. У тех и у других есть общая черта. Порции электромагнитно­го излучения - фотоны и нейтрино - это элементарные «частицы» материи, не имеющие электрического заряда. Но космическое пространство в различных направлени­ях пронизывают также заряженные частицы вещества — космические лучи. Это прежде всего ядра атомов водо­рода - протоны, ядра атомов гелия - альфа-частицы, а также, хотя и в меньших количествах, ядра атомов остальных химических элементов.

Раньше других космическими лучами заинтересова­лись физики. Изучая их, они получили возможность на­блюдать разнообразные взаимодействия элементарных частиц, превращения вещества и излучения. В этой ес­тественной лаборатории были впервые открыты пози­троны, мезоны и некоторые другие частицы вещества. Однако не меньшее значение изучение космических лу­чей имеет для исследования Вселенной. И прежде всего частицы космического излучения несут важную инфор­мацию о космических объектах, которые являются их источниками. Астрофизикам также чрезвычайно важно знать, каким образом космические частицы приобрета­ют свои колоссальные энергии, что представляет собой загадочный природный «ускоритель», как он работает?

От всех прочих вестников далеких миров космиче­ские лучи отличаются не только отсутствием электриче­ского заряда, но и весьма большим разнообразием ме­тодов их регистрации. Ядра атомов, летящие к нам из космического пространства, улавливаются с помощью всякого рода фотопластинок, счетчиков, регистрацион­ных камер и других весьма сложных устройств. Их «подстерегают» в глубоких шахтах, с тем, чтобы менее энергичные частицы отсеялись, не сумев проникнуть сквозь толщу земли, регистрируют на специальных стан­циях, расположенных на вершинах гор, за ними охотят­ся в верхних слоях атмосферы с помощью стратостатов. Именно здесь, на больших высотах удается обнаружи­вать первичное излучение, в то время как до земной поверхности доходят в основном лишь вторичные лучи, возникающие в атмосфере.

В последние годы аппаратуру для изучения косми­ческих лучей стали устанавливать на борту искусствен­ных спутников Земли и автоматических межпланетных станций. На первых порах это были отдельные счетчи­ки, показания которых передавались по радиоканалу наземным пунктам. Однако для более глубоких исследо­ваний необходимо было доставить в космос более совер­шенную аппаратуру. Задача не из легких! Аппаратура для изучения космических лучей отличается довольно большим весом и габаритами. Поэтому для вынесения ее в космос необходимы тяжелые спутники достаточно больших размеров.

Первым таким спутником стала советская космиче­ская станция «Протон 1». Общий вес полезного груза, доставленного на орбиту, т. е. самой космической стан­ции и комплекса контрольно-измерительной аппарату­ры, составлял 12,2 т. Чтобы вывести на орбиту такой спутник, понадобилась необычайно мощная ракета, об­ладающая силовыми установками, способными развивать мощность свыше 60 млн. лошадиных сил.

Для «Протона 1» была разработана специальная из­мерительная аппаратура. Приборы, установленные на борту спутника, могли выполнять целый ряд задач: из­мерять энергии космических частиц, определять их при­роду, регистрировать электроны и т. п.

Управление работой научной аппаратуры и всех си­стем станции осуществлялось как с помощью бортовых программно-временных устройств, так и радиокоман­дами с Земли.

Для снабжения всей разнообразной аппаратуры стан­ции необходимым количеством электроэнергии на ее бор­ту была установлена мощная солнечная энергетическая установка. На специальных панелях, которые до выве­дения станции на орбиту находились в сложенном со­стоянии, был укреплен ряд солнечных элементов, способных превращать солнечное излучение в электрический ток. После выхода станции на орбиту панели раскры­лись и солнечные батареи начали вырабатывать электроэнергию. При движении спутника по освещенной ча­сти орбиты солнечные батареи обеспечивали электриче­ское питание всей аппаратуры. Кроме того, в это время производилась зарядка специальной химической бата­реи, которая вступала в работу, как только спутник вхо­дил в тень Земли.

Применение тяжелых искусственных спутников Зем­ли типа космической станции «Протон» открывает ши­рокие перспективы для решения целого ряда интерес­нейших проблем изучения Вселенной.

Космические лучи - свидетели и участники многих неизвестных нам процессов и явлений, протекающих в глубинах космоса в нашей Галактике, а возможно, и за пределами. По меткому выражению одного извест­ного физика - это «иероглифы природы». Но разгадать их нелегко.

Помимо того, что при анализе результатов измере­ний космических лучей ученые сталкиваются с много­численными сложными задачами, сам этот анализ пред­ставляет собой весьма кропотливую и трудоемкую работу. Представьте себе, например, несколько сотен ки­лограммов фотографической эмульсии, поднятой с по­мощью специального зонда на высоту 30 - 40 км. В та­кой эмульсии запечатлелись траектории множества ча­стиц, оставивших за время опыта свои следы. И среди них нужно отыскать след, быть может, одной-единственной частицы, представляющей особый интерес. Над ре­шением подобной задачи иногда в течение многих меся­цев трудятся сотрудники сразу нескольких лабораторий.

Еще одна трудность состоит в том, что космические частицы, которые приходят к нам на Землю, за исклю­чением разве только космических лучей солнечного про­исхождения, давным-давно утеряли всякую связь с объ­ектами, их породившими. Это объясняется тем, что, об­ладая электрическим зарядом, частицы космического излучения во время своих длительных скитаний в ми­ровом пространстве под действием межзвездных маг­нитных полей теряют первоначальное направление дви­жения. Другое дело, если бы удалось обнаружить в со­ставе космического излучения гамма-фотоны - порции электромагнитного излучения, которые движутся строго прямолинейно. Это открыло бы перед астрономией но­вые возможности познания Вселенной.

Но пока экспериментаторы не могут дать ответа на вопрос об источниках космических лучей, проблему пы­таются решить теоретики. Это тем более важно, что согласно современным представлениям, в прошлом в нашей области Вселенной плотность космического излу­чения могла быть весьма значительной, превосходящей плотность межзвездного газа. А это означает, что в определенную эпоху космические лучи могли играть весь­ма важную космогоническую роль.

В последние годы советские ученые В. Л. Гинзбург, II. С. Шкловский и другие успешно разрабатывают тео­рию происхождения космического излучения при вспыш­ках так называемых сверхновых звезд. Астрономические наблюдения подтверждают выводы этой теории и в на­стоящее время генерация космического излучения при вспышках сверхновых может считаться установленным фактом. Вполне вероятно, что именно сверхновые звез­ды, если и не единственные, то по крайней мере глав­ные «поставщики» космического излучения в нашей звездной системе.

Однако существуют и другие гипотезы. Некоторые из них утверждают, что подавляющая часть космиче­ских лучей образуется вне пределов нашей Галактики, в метагалактическом пространстве или в радиогалакти­ках, т. е. галактиках, излучающих радиоволны. Суще­ствует и промежуточная гипотеза, которую можно на­звать «расширенной» галактической теорией. По этой теории космические лучи приходят в нашу Галактику из соседних 15 - 20 галактик, которые вместе с ней обра­зуют так называемую Местную систему.

Какая же из этих гипотез верна? Ответ на этот во­прос попытались дать советские ученые В. Л. Гинзбург и С. И. Сыроватский. Предположим, что космические лучи поступают в Галактику извне, из других галактик. Но так как совокупность всех галактик - Метагалакти­ка- находится в состоянии непрерывного расширении, то нашей звездной системы, очевидно, могут достигать лишь те частицы, которые «рождаются» в сравнительно близкой области пространства. Несложные подсчеты по­казывают, что в такой области находится около десяти тысяч галактик, в том числе несколько радиогалактик, отличающихся особенно сильным космическим излуче­нием. Интенсивность космических лучей, выходящих из нашей Галактики, известна довольно точно. Поэтому не­трудно оценить тот общий вклад, который могут внести в «пополнение» космическими лучами метагалактического пространства остальные десять тысяч «нормаль­ных» галактик. Примерно столько же (даже несколько меньше) дают все радиогалактики вместе взятые. Такой подсчет позволяет оценить среднюю плотность энергии космических лучей внегалактического происхождения. Она оказывается весьма незначительной, примерно в тысячу раз меньшей, чем плотность космического излу­чения внутри нашей Галактики.

Но, может быть, в таком случае правы сторонники «расширенной» теории, которые считают, что плотность космического излучения велика лишь в пределах нашей Местной системы галактик? Однако и подобное предпо­ложение встречает ряд серьезных возражений. Всякая теория происхождения космических лучей должна объ­яснить наблюдаемое в них относительное количество ядер атомов различных химических элементов, в том числе лития, бериллия и бора. Дело в том, что в при­роде эти элементы встречаются гораздо реже, чем в со­ставе космических лучей. Наблюдения показывают, например, что в атмосферах звезд количество атомов ли­тия, бериллия и бора по сравнению с атомами азота, углерода и кислорода ничтожно. А это означает, что те ядра лития, бериллия и бора, которые мы находим в космических лучах, образовались в результате «вторич­ных процессов»: столкновений и расщепления более тя­желых ядер.

Для того чтобы получилось наблюдаемое количество лития, бериллия и бора, должно произойти достаточ­но большое число столкновений. Следовательно, части­цы космических лучей должны встречать на своем пу­ти достаточно большое количество вещества - меж­звездного газа.

Если попытаться дать объяснение этим фактам с точки зрения «расширенной» теории, то получится, что масса межзвездного газа в Местной системе галактик должна примерно в десять раз превосходить общую массу самих галактик. Но подобный вывод находится в явном противоречии с данными астрономических на­блюдений.

Есть и еще одно важное соображение против «рас­ширенной» теории. Для того чтобы сохранялась опреде­ленная концентрация космических лучей в пределах Местной системы галактик, необходимо, чтобы они удерживались внутри этой системы достаточно силь­ным магнитным полем. Однако существование подоб­ной магнитной ловушки также не находит себе подтвер­ждения в астрономических наблюдениях и вообще весь­ма маловероятно.

Космические лучи - не такой уж молодой вестник Вселенной. И они уже успели многое рассказать физи­кам о закономерностях строения материи. Но относи­тельно таинственных процессов, протекающих в глубинах Вселенной, космические лучи пока что упорно «отмалчи­ваются». Тем не менее есть все основания надеяться, что недалеко время, когда и они заговорят «полным голосом».

Приглашаем Вас обсудить данную публикацию на нашем .

Комаров В. Н. «Увлекательная астрономия» 1968 год. «Наука»




Россия отмечает День космонавтики! 12 апреля года исполняется 50 лет со дня полета первого человека в космос. На корабле "Восток" стартовал первопроходец Вселенной Юрий Гагарин Мы будем помнить В знак признанья Первопроходцев мирозданья – Тех, кто ушел дорогой млечной. Но в нашей памяти навечно! Анатолий Щербаков




КОНСТАНТИН ЭДУАРДОВИЧ ЦИОЛКОВСКИЙ () КОНСТАНТИН ЭДУАРДОВИЧ ЦИОЛКОВСКИЙ () «Ракета для меня только способ, только метод проникновения в глубину космоса, но отнюдь не самоцель... Будет иной способ передвижения в космосе, приму и его… Вся суть в переселении с Земли и в заселении космоса». Из этого высказывания К. Э. Циолковского следует важный вывод «Вселенная принадлежит человеку!» Из этого высказывания К. Э. Циолковского следует важный вывод «Вселенная принадлежит человеку!»


Планета есть колыбель разума, но нельзя вечно жить в колыбели. (Циолковский К.Э.) Планета есть колыбель разума, но нельзя вечно жить в колыбели. (Циолковский К.Э.) После своего первого в мире триумфального полета в космос Ю. А.Гагарин сказал: «Для нас, космонавтов, пророческие слова Циолковского об освоении космоса всегда будут программными, всегда будут звать вперед...» Памятник К.Э.Циолковскому – у обелиска "Космос" возле ВВЦ-1964г.


«Главный конструктор» (С.П. Королев) и «Главный теоретик» (М.В. Келдыш) М.В.Келдыш () С.П.Королев()


Спутником называли первый космический аппарат, который был выведен на околоземную орбиту 4 октября 1957 года.. Спутником называли первый космический аппарат, который был выведен на околоземную орбиту 4 октября 1957 года.. Первый искусственный спутник Земли представлял собой шар, диаметром 58 см и массой 83,6 кг, с установленными на нем антеннами (их было 4, длиной 2,4 м и 2,9 м).




Первый ИСЗ с животным ("Спутник-2" с собакой Лайкой). Памятник первой собаке, полетевшей в космос.


В начале марта 1960 года были определены 20 космонавтов из 250 кандидатов: летчиков – истребителей. Юрий Гагарин будет вспоминать о тех, кому суждено было войти в отряд космонавтов: "Славные подобрались у нас ребята... Есть одно, что роднит всех - это стремление стать настоящим летчиком, космонавтом. Космос зовет всех! И будет звать. Как вечный зов ". Юрий Гагарин будет вспоминать о тех, кому суждено было войти в отряд космонавтов: "Славные подобрались у нас ребята... Есть одно, что роднит всех - это стремление стать настоящим летчиком, космонавтом. Космос зовет всех! И будет звать. Как вечный зов ".




Порядковый номер: 1 Количество полетов: 1 Позывной: «Кедр» Налет: 000 суток, 01 час, 48 минут -108минут Космический корабль "ВОСТОК" Ю.Гагарин ()


Обращаясь ко всем жителям Земли перед стартом 12 апреля 1961 года Юрий Алексеевич Гагарин сказал: «Дорогие друзья, близкие и незнакомые, соотечественники, люди всех стран и континентов! Через несколько минут могучий космический корабль унесет меня в далекие просторы Вселенной....Вся моя жизнь кажется мне сейчас одним прекрасным мгновением. …Быть первым в космосе, вступить один на один в небывалый поединок с природой - можно ли мечтать о большем! Но вслед за этим я подумал о той колоссальной ответственности, которая легла на меня. Первым совершить то, о чем мечтали поколения людей, первым проложить дорогу человечеству в космос. Счастлив ли я, отправляясь в космический полет! Конечно, счастлив. Ведь во все времена и эпохи для людей было высшим счастьем участвовать в новых открытиях!»


Ему было всего 34 года... Ему было всего 34 года... Трагически погиб 27 марта Трагически погиб 27 марта 1968 года в авиационной катастрофе вблизи деревни Новоселово Киржачского района Владимирской области при выполнении тренировочного полета на самолете. Похоронен У Кремлевской стены на Красной площади в Москве.



«... Не вечен человек. Но память о нем может стать вечной, если он жил для людей. Память благодарность живых». (В. Гагарина из кн. «108 минут и вся жизнь») Пророчески звучат слова Алексея Суркова: Пророчески звучат слова Алексея Суркова: И навсегда останется нетленной Среди племен, живущих на Земле. Среди племен, живущих на Земле. Любовь к тому, кто на простор Вселенной Любовь к тому, кто на простор Вселенной Ушел с Земли на первом корабле. Ушел с Земли на первом корабле.


Полет, поразивший мир Герман Титов 6-7 августа 1961 года совершил первый длительный полет в космос. «Подвиг Юрия Алексеевича Гагарина сравним с подвигом Колумба. Подвиг Титова не сравним ни с чем, что до сего знала история человечества.» /Мстислав Келдыш, академик/






Новые корабли«Союз» Корабли «Восток» и «Восход» выполняли ограниченный круг научно- технических задач, главным образом экспериментально- исследовательских. Новые космические корабли серии «Союз» были предназначены для относительно длительных полетов, маневрирования, сближения и стыковки на околоземных орбитах. Новые космические корабли серии «Союз» были предназначены для относительно длительных полетов, маневрирования, сближения и стыковки на околоземных орбитах.




С танци я «Мир» была запущена 19 февраля (станция сведена с орбиты) Станция «Мир» и пристыкованный к ней «Шаттл»-1995г.









Космонавтика жизненно необходима всему человечеству Космонавтика нужна науке - она грандиозный и могучий инструмент изучения Вселенной, Земли, самого человека. С каждым днем все более расширяется сфера прикладного использования космонавтики. Служба погоды, навигация, спасение людей и спасение лесов, всемирное телевидение, всеобъемлющая связь, сверхчистые лекарства и полупроводники с орбиты, самая передовая технология - это уже и сегодняшний день, и очень близкий завтрашний день космонавтики. А впереди - электростанции в космосе, удаление вредных производств с поверхности планеты, заводы на околоземной орбите и Луне. И многое- многое другое. По сути дела, изучая Космос, изучая строение звезд и планет, мы ищем ответ на извечный вопрос, волнующий человечество не одно столетие: «Кто мы и откуда?» Возможно, что ответ действительно скрыт от нас где-то в недрах Вселенной. И однажды случится чудо. Кто-нибудь и когда-нибудь прочтет эти таинственные знаки Бытия.








1. Что означает слово "космос "? Вселенная Небо Небо Планета Планета










С помощью приемника MUSE, установленного на Очень Большом Телескопе ESO VLT, астрономы осуществили лучшее на сегодняшний день трехмерное глубокое зондирование дальней Вселенной. Наблюдения площадки Hubble Deep Field South, продолжавшиеся в общей сложности 27 часов, позволили измерить расстояния, собственные движения и другие параметры у значительно большего числа галактик, чем было известно прежде в этом маленьком участке неба. Ученым удалось заглянуть за пределы расстояния, доступного для телескопа Хаббла, и выявить прежде не наблюдавшиеся объекты.

Путем фотографирования определенных участков неба с очень длинными экспозициями астрономы получили множество так называемых глубоких полей , изучая которые, удалось многое узнать о ранней Вселенной. Самой знаменитой из этих площадок стало поле Hubble Deep Field, изображение которого было получено с Космическим телескопом Хаббла NASA/ESA в течение нескольких дней в конце 1995 года. Этот великолепный снимок резко изменил наше представление о том, какой была Вселенная на раннем этапе своего развития. Спустя два года было получено изображение аналогичной площадки на южном небе - Hubble Deep Field South .


Эти снимки, однако, не могли ответить на все вопросы: чтобы получить подробную информацию о галактиках в глубоких полях астрономам необходимо тщательно изучить каждую из них при помощи разнообразных инструментов, а это трудная и требующая больших затрат времени задача. И вот теперь новому приемнику MUSE впервые удалось одновременно получить изображение глубокого поля и детально исследовать находящиеся в нем объекты, и к тому же выполнить обе эти работы гораздо быстрее, чем это было возможно прежде.


Одной из первых наблюдательных программ с использованием приемника MUSE после того, как он успешно прошел тестирование на телескопе VLT в 2014 г., были именно длительные и трудоемкие исследования площадки Hubble Deep Field South (HDF-S). Результаты этой работы превзошли все ожидания.


Уже через несколько часов наблюдений мы быстро просмотрели полученные данные и обнаружили большое количество галактик. Это было очень обнадеживающе. Когда мы вернулись в Европу, мы начали исследовать эти данные более детально. Это было похоже на глубоководную рыбалку . Каждая новая находка вызывала всплеск восторга и споров ”, --говорит Ролан Бекон (Roland Bacon) из Лионского центра астрофизических исследований (Франция , CNRS), научный руководитель проекта MUSE и глава комиссии по приемке инструмента в эксплуатацию.


Элементом изображения HDF-S, получаемого приемником MUSE, является не только пиксель полевого изображения, но еще и спектр, то есть информацию об интенсивности излучения в этой точке в различных цветовых полосах. В целом в поле приемника оказывается около 90 000 спектров . Используя эту информацию, можно определить расстояние, химический состав и внутренние движения сотен удаленных галактик, а также зарегистрировать небольшое количество очень слабых звезд, принадлежащих Млечному Пути.


Несмотря на то, что общее время экспозиции с MUSE было гораздо меньше, чем у снимков, полученных с телескопом Хаббла, полученные данные позволили выявить на HDF-S более двадцати очень слабых объектов, которых Космический телескоп не зарегистрировал .


Самый волнующий момент был, когда мы обнаружили на нашем снимке очень слабые галактики, которых на самых глубоких изображениях, полученных с телескопом Хаббла, вообще не было. После стольких лет напряженной работы по созданию этого приемника я увидел, как наши мечты становятся явью. Это был незабываемый момент ”, -- признается Ролан Бекон.


Тщательно исследовав все спектры, полученные при наблюдениях площадки HDF-S с инструментом MUSE, группа измерила расстояния до 189 галактик. Среди них есть несколько относительно близких, но некоторые из них видны такими, какими они были, когда Вселенной было менее одного миллиарда лет. В целом, благодаря MUSE количество объектов, до которых удалось измерить расстояния, выросло более, чем в десять раз.


Для близких галактик MUSE может даже измерить распределение физических параметров по различным частям галактики. Так можно, например, детально исследовать особенности вращения галактики. Эти измерения помогают понять, как галактики эволюционируют в космической шкале времени.


Теперь, когда нам удалось продемонстрировать уникальные качества приемника MUSE для изучения дальней Вселенной, мы собираемся заняться и другими глубокими полями, например, Hubble Ultra Deep field . Мы сможем исследовать тысячи галактик и открыть новые крайне слабые и исключительно удаленные объекты. Эти маленькие новорожденные галактики, которые мы видим, проникая в прошлое более, чем на 10 миллиардов лет, постепенно вырастут и станут такими, как наша галактика Млечного Пути, какой мы видим ее сегодня ”, -- заключает Ролан Бекон.

Примечания

Каждый такой спектр покрывает интервал длин волн излучения от 375 до 930 нанометров, т.е. от голубых лучей до ближней инфракрасной области.


MUSE особенно чувствителен к объектам, которые излучают большую часть энергии на нескольких отдельных длинах волн. Именно такие спектры обычно присущи галактикам ранней Вселенной, так как они содержат водород, светящийся в определенных эмиссионных линиях под воздействием ультрафиолетового излучения молодых горячих звезд.

Узнать больше

Результаты исследования представлены в статье “The MUSE 3D view of the Hubble Deep Field South”, R. Bacon и др., которая выходит в журнале Astronomy & Astrophysics 26 февраля 2015 г.


Состав группы исследователей: R. Bacon (Observatoire de Lyon, CNRS, Université Lyon, Saint Genis Laval, France ), J. Brinchmann (Leiden Observatory, Leiden University, Leiden, The Netherlands ), J. Richard (Lyon), T. Contini (Institut de Recherche en Astrophysique et Planétologie, CNRS, Toulouse, France; Université de Toulouse, France ), A. Drake (Lyon), M. Franx (Leiden), S. Tacchella (ETH Zurich, Institute of Astronomy, Zurich, Switzerland ), J. Vernet (ESO, Garching, Germany), L. Wisotzki (Leibniz-Institut für Astrophysik Potsdam, Potsdam, Germany ), J. Blaizot (Lyon), N. Bouché (IRAP), R. Bouwens (Leiden), S. Cantalupo (ETH), C.M. Carollo (ETH), D. Carton (Leiden), J. Caruana (AIP), B. Clément (Lyon), S. Dreizler (Institut für Astrophysik, Universität Göttingen, Göttingen, Germany ), B. Epinat (IRAP; Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille, Marseille, France), B. Guiderdoni (Lyon), C. Herenz (AIP), T.-O. Husser (AIG), S. Kamann (AIG), J. Kerutt (AIP), W. Kollatschny (AIG), D. Krajnovic (AIP), S. Lilly (ETH), T. Martinsson (Leiden), L. Michel-Dansac (Lyon), V. Patricio (Lyon), J. Schaye (Leiden), M. Shirazi (ETH), K. Soto (ETH), G. Soucail (IRAP), M. Steinmetz (AIP), T. Urrutia (AIP), P. Weilbacher (AIP) и T. de Zeeuw (ESO, Garching, Germany; Leiden).

Ссылки

Перевод пресс-релиза ESO eso1507

Последние материалы раздела:

Вузы курска Курские высшие учебные заведения государственные
Вузы курска Курские высшие учебные заведения государственные

Какую профессию можно получить, поступив в высшие учебные заведения нашего города. На этой неделе во всех школах региона прозвенит последний...

Слои атмосферы по порядку от поверхности земли
Слои атмосферы по порядку от поверхности земли

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность....

Берестяная трубочка — Михаил Пришвин
Берестяная трубочка — Михаил Пришвин

Жанр: рассказГлавные герои: рассказчик - авторЛюди все меньше времени и внимания уделяют природе, а краткое содержание рассказа «Берестяная...