Современные представления о природе гена. Реферат: Современная концепция гена

Вопрос 1. Что такое геном?
Геном - это совокупность генов, характерных для гаплоидного набора хромосом данного биоло-гического вида. Геном, в отличие от генотипа, является характеристикой вида, а не особи, поскольку описывает набор генов, свойственных данному виду, а не их аллели, обуславливающие индивидуальные отличия отдельных организмов. Степень сходства геномов разных видов отражает их эволюционное родство.
Вопрос 2. Чем определяется существующая специализация клеток?
Специализация клеток организма опредееяется избирательным функционированием генов. В каждой клетке работают гены, характерные именно для данного типа тканей и органов: в клетках мускулатуры - гены мышечных белков, в клетках стенок желудка - гены пищеварительных ферментов и т. д. Большинство остальных генов при этом заблокировано, и их активация может привести к развитию серьезнейших заболеваний (например, к появлению раковой опухоли).

Вопрос 3. Какие обязательные элементы входят в состав гена эукариотической клетки?
Обязательными элементами гена эукариот являются:
1. регуляторные участки, расположенные в начале и конце гена, а также иногда вне гена (на некотором удалении от него). Они определяют, когда, при каких обстоятельствах и в каких типах тканей будет работать этот ген (левые, промежуточные и правые регуляторные элементы).
2. участок ДНК, кодирующий первичный транскрипт, включающий последовательность нуклеотидов, обнаруживаемую в молекулах РНК; интроны (для мРНК), промежуточные последовательности - спейсеры (для рРНК). Интроны и спейсеры удаляются в ходе процессинга первичных транскриптов; нетранслируемые последовательности нуклеотидов.
3. Минимальные последовательности, необходимые для начала транскрипции (промотор) и конца транскрипции (терминатор).
4. Последовательности, регулирующие частоту инициации транскрипции; ответственные за индуцибельность и репрессию транскрипции, а также клеточную, тканевую и временную специфичность транскрипции. Они разнообразны по строению, положению и функциям.
5. К их числу относятся энхансеры (от англ. еnhаnсе - усиливать) и сайленсеры (от англ. silence - заглушать) - это последовательности ДНК, расположенные в тысячах пар нуклеотидов от промотора эукариотического гена и оказывающие дистанционное влияние на его транскрипцию.
6. включены последовательности ДНК, которые влияют на пространственную конфигурацию гена в хроматине, последовательности, которые регулируют его топологию.
На рисунке (рис.3) показана схема строения эукариотического гена, отвечающего за кодирование синтеза белка.

Рис. 3. Структура эукариотического гена, кодирующего белок.
+1 - точка инициализации транскрипции; 5" - НТР и 3" - НТР:
5" и 3" - нетранслируемые последовательности.

Вопрос 4. Приведите примеры взаимодействия генов.
Примером взаимодействия генов может служить пигментация (окраска) шерсти у кролика. Формирование определенной окраски регулируется двумя генами. Один из них (назовем его А) отвечает за наличие пигмента, и в случае, если работа данного гена нарушена (рецессивный аллель), шерсть кролика будет белого цвета (генотип аа). Второй ген (назовем его В) отвечает за неравномерность окрашивания шерсти. В случае нормального функционирования этого гена (доминантный аллель), синтезируемый пигмент скапливается у основания волоса, и кролик имеет серую окраску (генотипы АаВb, ААВb, АаВВ, ААВВ). Если же второй ген представлен только рецессивными аллелями, то синтезируемый пигмент распределяется равномерно. У таких кроликов шерсть черного цвета (генотипы Ааbb, ААbb).

Ген - фрагмент молекулы ДНК, содержащий наследственную информацию о первичной структуре одного белка (полипептида, фермента) или о последовательности нуклеотидов одной т-РНК или р-РНК

· Является единицей функционирования наследственного материала, определяющей развитие какого-либо признака (возможно группы признаков) или свойства организма (элементарная структурная и функциональная единица хромосомы)

· первичным продуктом функции гена является и-РНК и далее белок-фермент (полипептид) или р-РНК и т-РНК

Современное состояние теори гена (свойства гена)

1. Выступает как кодирующая система

2. Обладает способностьюк ауторепродукции (репликации)

3. Обладает способностью к мутациям (элементарная единица мутации гена - мутон )

4. Обладает способностью к рекомбинации (элементарная единица рекомбинации гена - рекон )

5. Обладает дискретностью действия

6. Существуют структурные, функциональные, регуляторные и модуляторные гены

7. Занимает определённый участок хромосомы – локус

Строение гена

· Генетический материал внутри гена сложно организован и имеет линейный порядок

· Ген состоит из многих мутационных мест (сайтов ) , разделяемых при рекомбинации

Цистрон - наименьший сегмент ДНК (800 -1200 пар оснований) , мутация которого сопровождается возникновением мутантного фенотипа - элементарная функциональная единица гена (определяет синтез одного полипептида)

· Ген у эукариот состоит из нескольких обязательных элементов:

n регуляторная зона - регулирует активность гена в той или иной ткани на определённой стадии онтогенеза

n промотор - последовательность ДНК до 80 -100 пар нуклеотидов, ответственная за связывание РНК-полимеразы, осуществляющей транскрипцию данного гена

n структурная зона - часть гена, содержащая информацию о первичной структуре соответствующего белка-фермента (существенно короче регуляторной зоны, но несколько тысяч пар нуклеотидов)

n терминатор - последовательноть нуклеотидов в конце гена, прекращающая транскрипцию

· структурная часть гена состоит из нуклеотидных последовательностей двух типов:

1. Экзоны - участки ДНК, несущие информацию о строении белка (входят в состав зрелой и-РНК)

2. Интроны - участки ДНК не кодирующие структуру белка (транскрибируются, но в состав зрелой и-РНК не входят, т. к. «вырезаются » в процессе сплайсинга )

Сплайсинг - ферментативный процесс вырезания интронов из молекулы РНК и сращивания экзонов при образовании зрелой и-РНК



Классификация генов

1. Структурные гены - гены, кодирующие развитие конкретных признаков (продуктом первичной активности гена является либо и-РНК и далее полипептид, либо р-РНК и т-РНК)

2. Гены - модуляторы - гены, смещающие развитие признака в ту или иную сторону (например, частоту мутирования структурных генов) ; могут быть ингибиторами или супрессорами, подавляющими активность или интенсификаторами - повышающими активность генов

3. Гены - регуляторы - гены, регулирующие активность структурных генов (время включения различных локусов в онтогенезе)

Генотип - совокупность всех аллелей (генов) организма, полученных от родителей (вся совокупность наследственной информации организма) ; совокупность генов диплоидного набора хромосом клетки

n генотип будучи дискретным (состоящим из отдельных генов) функционирует как единое целое

Геном - совокупность генов, содержащихся в гаплоидном наборе хромосом клетки

Фенотип - совокупность всех внутренних и внешних признаков и свойств особи, сформировавшаяся на основе генотипа в процессе её онтогенеза, т. е. реализованная часть генотипа

· развивается при взаимодействии генотипа со средой обитания может относительно сильно варьировать у одной особи) и

Понятие аллели

· Большинство генов существует в популяции в виде двух или большего числа альтернативных вариантов - аллелей

Аллель - различные формы одного и того же гена(признака) , расположенные в одинаковых участках (локусах ) гомологичных хромосом (определяют альтернативные варианты развития одного и того же признака

· Все аллели данного признака (гена) локализуютсяв одной и той же хромосоме в определённом её участке - локусе (в соответствующем локусе хромосомы может находиться лишь один из всех возможных аллелей конкретного гена)

Локус - сегмент (участок) хромосомы, в котором локализован ген



· Новые аллели возникают путём мутаций в одном и том же локусе хромосомы (создаётся т. н. серия множественных аллелей, рассеяных в популяции данного вида - множественный аллелизм

Множественный аллелизм - явление существования в популяции более двух альтернативных аллельных генов, имеющих различное проявление в фенотипе (например, признак цвета глаз у человека имеет в популяции множество аллельных генов, локализованных в одном локусе определённой хромосомы)

· Аллели отличаются друг от друга содержанием наследственой информации о признаке, развитие которого контролирует ген

· Каждый признак организма представлен в его кариотипе парой аллелей в силу наличия гомологичных хромосом (одна из них всегда отцовская, другая - материнская) ; в одной гамете может находиться только один аллель

Гомозигота (по данному признаку) - организм, содержащий одинаковые гены данной аллельной пары, образующий один сорт гамет по данному признаку и не расщепляющийся по фенотипу при скрещивании с себе подобными - АА или аа

Гетерозигота (по данному признаку) - организм, содержащий разные гены данной аллельной пары, образующий несколько сортов гамет, отличающихся аллелями и расщепляющийся на разные фенотипы при дальнейшем размножении -Аа

Доминантный аллель(ген, признак) аллель (ген, признак) « сильный», подавляющий, всегда проявляющийся в фенотипе

· Его проявление не зависит от наличия в организме другого аллеля данной серии (всегда реализуется фенотипически т. к. кодирует более устойчивую форму фермента ) ; обозначается заглавной буквой алфавита - А

Рецессивный аллель(ген, признак) аллель (ген, признак) « слабый », подавляемый, обеспечивающий развитие признака лишь в отсутствии других аллелей данного гена

· обозначается прописной буквой алфавита - а (проявляет своё действие только в гомозоготном состоянии - аа и не проявляющийся у гетерозигот - Аа )

Кодоминантные аллели - аллели в одинаковой мере функционально активные в случае их совместного присутствия в генотипе

Взаимодействие аллелей

1. Полное доминирование - явление подавления фенотипического проявления признака доминантным аллелем (геном) действия альтернативного аллеля в гетерозиготе

2. Неполное доминирование - взаимодействие двух аллелей, дающее в гетерозиготе промежуточный фенотип

3. Кодоминантность - независимое друг от друга проявление аллелей в гетерозиготе

Моногибридное скрещивание

Моногибридное скрещивание - скрещивание родителей, отличающихся по проявлению одного признака (одной альтернативной парой аллелей)

· Мендель проводил опыты с горохом (очень удачный объект для генетического исследования т. к. горох имеет множество сортов, отличающихся только одним, двумя или несколькими признаками способен к само- и перекрёстному опылению, просто разводятся, имеют короткий период развития)

· Для скрещивания использовались экземпляры, относящиеся к чистым линиям , т. е. растениям, при самоопылении которых в ряду поколений не наблюдалось расщепления по изучаемому признаку

· Для записи проведённого скрещивания и его анализа Мендель ввёл буквенную символику

Ген - это участок молекулы ДНК (или РНК), кодирующий последовательность аминокислот в полипептидной цепи или последовательность нуклеотидов в молекулах транспортной РНК (тРНК) и рибосомной РНК (рРНК). 1) дискретный наследственный фактор, определяющий проявления данного признака;

2) участок ДНК, кодирующий одну молекулу РНК.

Аллельные гены - это гены, расположенные в одинаковых локусах гомологичных хромосом и контролирующие развитие вариаций одного признака (например, цвет глаз у человека, который может быть голубой, зеленый, карий, детерминируется парой аллельных генов).

Аллели - разновидности одного и того же гена, расположенные в идентичных локусах гомологичных хромосом.

Неаллельные гены - это гены, расположенные в разных локусах хромосом и контролирующие развитие разных признаков или вариаций одного признака. (Например, неаллельными являются гены, определяющие цвет и поверхность семян гороха, или различные вариации цвета кожных покровов у человека).

Генотип - это совокупность всех генов организма.

Фенотип - это совокупность всех признаков организма, которые формируются в результате реализации генотипа в определенных условиях внешней среды.

Гомозиготный организм - имеет 2 одинаковых аллельных гена и продуцирует 1 тип гамет.

Гетерозиготный это организм который имеет 2 разных аллельных гена и продуцирует 2 типа гамет. Гемизиготный - это организм у которого в диплоидном наборе присутствует лишь 1 ген из аллельной пары и этот ген всегда проявляется у гемизигот.

Наследственность - свойство живых организмов сохранять в ряду поколений сходство структурно функциональной организации.

Изменчивость - свойство живых организмов получать новые признаки под влиянием условий окружающей среды.

Геном человека -- совокупность наследственного материала, заключенного в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две пары аутосом, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований.

Геном человека. Термин «геном» впервые был введен немецким ботаником Гансом Винклером в 1920 г., который охарактеризовал его как совокупность генов, характерных для гаплоидного набора хромосом данного вида организма. В отличие от генотипа, геном является характеристикой вида, а не отдельной особи. Каждая гамета диплоидного организма, несущая гаплоидный набор хромосом, по сути, содержит геном, характерный для данного вида. Вспомните наследование признаков у гороха. Гены окраски семени, формы семени, окраски цветка есть у каждого растения, они являются обязательными для его существования и входят в геном данного вида. Но у любого растения гороха, как у всех диплоидных организмов, существует два аллеля каждого гена, расположенные в гомологичных хромосомах. У одного растения это могут быть одинаковые аллели, отвечающие за желтую окраску горошин, у другого - разные, обусловливающие желтую и зеленую, у третьего - оба аллеля будут определять развитие зеленой окраски семян, и так по всем признакам. Эти индивидуальные отличия являются характеристикой генотипа конкретной особи, а не генома. Итак, геном - это «список» генов, необходимых для нормального функционирования организма. Расшифровка полной последовательности нуклеотидов в ДНК человека позволила оценить общее число генов, составляющих геном. Оказалось, что их всего около 30-40 тыс., хотя точное число пока не известно. Раньше предполагали, что количество генов у человека раза в 3-4 больше - около 100 тыс., поэтому данные результаты стали своего рода сенсацией. У каждого из нас генов всего в 5 раз больше, чем у дрожжей, и всего в 2 раза больше, чем у дрозофилы. По сравнению с другими организмами, мы имеем не так уж много генов.

Строение гена эукариот. В среднем на один ген в хромосоме человека приходится около 50 тыс. нуклеотидов. Существуют очень короткие гены. Например белок энкефалин, который синтезируется в нейронах головного мозга и влияет на формирование наших положительных эмоций, состоит всего из 5 аминокислот. Следовательно, ген, отвечающий за его синтез, содержит всего около двух десятков нуклеотидов. А самый длинный ген, кодирующий один из мышечных белков, состоит из 2,5 млн нуклеотидов. В геноме человека, так же как и у других млекопитающих, участки ДНК, кодирующие белки, составляют менее 5 % от всей длины хромосом. Остальную, большую часть ДНК раньше называли избыточной, но теперь стало ясно, что она выполняет очень важные регуляторные функции, определяя, в каких клетках и когда должны функционировать те или иные гены. У более просто организованных прокариотических организмов, геном которых представлен одной кольцевой молекулой ДНК, на кодирующую часть приходится до 90 % от всего генома. Все десятки тысяч генов не работают одновременно в каждой клетке многоклеточного организма, этого не требуется. Существующая специализация между клетками определяется избирательным функционированием определенных генов. Мышечной клетке не надо синтезировать кератин, а нервной - мышечные белки. Хотя надо отметить, что существует довольно большая группа генов, которые работают практически постоянно во всех клетках. Это гены, в которых закодирована информация о белках, необходимых для осуществления жизненно важных функций клетки, таких, как редупликация, транскрипция, синтез АТФ и многие другие. В соответствии с современными научными представлениями, ген эукариотических клеток, кодирующий определенный белок, всегда состоит из нескольких обязательных элементов. Как правило, в начале и в конце гена располагаются специальные регуляторные участки; они определяют, когда, при каких обстоятельствах и в каких тканях будет работать этот ген. Подобные регуляторные участки дополнительно могут находиться и вне гена, располагаясь достаточно далеко, но, тем не менее, активно участвуя в его управлении. Кроме регуляторных зон существует структурная часть гена, которая собственно и содержит информацию о первичной структуре соответствующего белка. У большинства генов эукариот она существенно короче регуляторной зоны.

  • 10. Клинические варианты нарушений чувствительности в зависимости от очага поражения.
  • 11. Понятие о рефлексе и рефлекторной дуге. Обратная афферентация. Схема простого и сложного рефлекса. Характеристика врожденных рефлексов.
  • 12. Современные представления о двигательном анализаторе. Движения и их расстройства. Мышечный тонус и его изменения. Методика обследования.
  • 13. Симптомы периферического и центрального параличей.
  • 14. Симптомы поражения пирамидного анализатора в зависимости от локализации патологического процесса.
  • 15. Альтернирующие синдромы, возникающие при поражении в области ствола в зависимости уровней.
  • 16. Бульбарные и псевдобульбарные параличи. Рефлексы орального автоматизма.
  • 17. Симптомы поражения корешков, сплетений, периферических нервов.
  • 19. Анатомофизиологические особенности мозжечка. Восходящие и нисходящие проводящие пути. Симптомы и синдромы поражения мозжечка. Методика обследования.
  • 20. Классификация черепно-мозговых нервов, строение ромбовидной ямки. 1 пара, строение, функция, симптомы поражения, методика обследования.
  • 21. 2 Пара черепно-мозговых нервов, строение, функция, симптомы поражения, методика обследования.
  • 22. 3 Пара черепно-мозговых нервов, строение, функции, методика обследования.
  • 23. 4 И 6 пары черепно-мозговых нервов, строение, функции, симптомы поражения, методика обследования. Иннервация взора. Клинические проявления поражения медиального продольного пучка.
  • 24. Клинические проявления поражения медиального продольного пучка.
  • 25. 5 Пара черепно-мозговых нервов, строение, функции, симптомы поражения, методика обследования.
  • 26. 7 Пара черепных нервов, строение, функции, симптомы поражения, методика обследования.
  • 27. 8 Пара черепных нервов, строение, функции, симптомы поражения, методика обследования.
  • 28. 9 И 10 пары черепных нервов, строение, функции, симптомы поражения, методика обследования.
  • 29. 11 И 12 пары черепных нервов строение, функции, симптомы поражения. Методика обследования.
  • 31. Методика обследования вегетативных функций, основные рефлексы и пробы.
  • 32. Архитектоника коры мозга. Проекционные и ассоциативные поля коры. Понятие о доминантности полушарий. Представление о системной локализации функций в коре больших полушарий.
  • 33. Симптомы и синдромы поражения ассоциативных полей коры (апраксия, астереогноз, алексия, аграфия, акалькулия и др.)
  • 34. Формирование и расстройства речевых функций (афазия, дизартрия).
  • 35. Внутричерепная гипертензия, менингеальный синдром.
  • 36. Давление и состав ликвора в норме при патологии. Ликвородинамические пробы.
  • 37. Методы функциональной диагностики: электроэнцефалография, реоэнцефалография, электромиография, эхоэнцефалография.
  • 38. Рентгенологические методы обследования. Компьютерная томография, магнитно-резонансная томография, пэт.
  • 39. Классификация сосудистых заболеваний нервной системы.
  • 40. Начальные проявления недостаточности кровоснабжения мозга, диагностика, лечение.
  • 41. Преходящие нарушения мозгового кровообращения, клиника, лечение.
  • 42. Ишемический инсульт: патогенез, клинические проявления в зависимости от очага поражения.
  • 43. Геморрагический инсульт - этиологии; патогенез, клиника. Субарахноидальное кровоизлияние.
  • 44. Дифференциально-диагностические признаки различных форм инсульта.
  • 45. Недифференцированное и дифференцированное лечение в острой стадии инсульта.
  • 46. Нарушение кровообращение в спинном мозге: этиология, клиника, лечение.
  • 47. Первичные и вторичные гнойные менингиты: клинические проявления, лечение.
  • 48. Серозные менингиты: лимфоцитарный, энтеровирусный, паротитный. Туберкулезный менингит. Клиника, лечение.
  • 49. Арахноидиты: классификация, клиника, лечение.
  • 50. Эпидемический энцефалит Экономо: этиология, патогенез, клиника, лечение.
  • 51. Клещевой энцефалит: этиология, патогенез, клиника, лечение.
  • 52. Особенности течения, клиника полисезонных, поствакцинальных энцефалитов. Ревматический энцефалит: клиника, лечение.
  • 53. Миелиты: клиника, диагностика, лечение. Профилактика осложнений.
  • 54. Острый полиомиелит: клиника и формы заболевания, лечение и профилактика.
  • 55. Ранние и поздние формы нейросифилиса: клиника, диагностика, лечение.
  • 56. Опоясывающий герпес: этиология, патогенез, клинические формы, лечение.
  • 57. Боковой амиотрофический склероз: этиология, патогенез, клиника, лечение.
  • 58. Рассеянный склероз: этиология, клиника, лечение, прогноз.
  • 59. Острый рассеянный энцефаломиелит и болезнь Шильдера: клиника, лечение.
  • 60. Строение позвоночного столба, позвоночного сегмента. Этиология, патогенез развития корешковых и спинальных синдромов при остеохондрозе.
  • 61. Неврологические проявления остеохондрозов на различных уровнях. Лечение остеохондроза в зависимости от уровня локализации процесса и ведущих клинических проявлений.
  • 62. Туннельные синдромы верхних и нижних конечностей.
  • 63. Невриты локтевого, лучевого, срединного нервов. Этиология, клиника, лечение.
  • 64. Невриты седалищного, большеберцового, малоберцового нервов. Этиология, клиника, лечение.
  • 65. Неврит тройничного нерва. Этиология, клиника, лечение.
  • 66. Невриты и невропатии лицевого нерва. Этиология, клиника, лечение.
  • 67. Полирадикулоневропатия Гийена-Барре. Клиника, лечение. Восходящий паралич Ландри.
  • 68. Токсические и метаболические полирадикулоневропатии; дифтерийные, диабетические, алкогольные. Клиника, лечение.
  • 69. Гистогенетическая классификация опухолей мозга. Этиология и патогенез, характеристика роста. Общемозговые симптомы, выявляемые при опухолях головного мозга.
  • 70. Дополнительные методы обследования в диагностике опухолей головного и спинного мозга.
  • 71. Клинические проявления субтенториальных опухолей мозга.
  • 72. Опухоли гипофизарно-гипоталамической области. Клиника, основные стадии развития.
  • 73. Опухоли больших полушарий. Симптомы и синдромы поражений.
  • 74. Экстра- и интрамедуллярные опухоли спинного мозга.
  • 75. Клинические особенности опухолей спинного мозга в зависимости от уровня локализации.
  • 76. Метастатические опухоли головного и спинного мозга: клинические особен¬ности проявления, диагностика, лечение.
  • 77. Абсцесс головного мозга. Этиология, клиника, диагностика, лечение, профи-лактика
  • 78. Паразитарные заболевания мозга эхинококкоз, цистециркоз, токсоплазмоз. Клиника, диагностика, лечение, профилактика.
  • 79. Закрытая черепно-мозговая травма; сотрясение; клиника, диагностика, лечение.
  • 80. Ушиб, сдавление головного мозга: клиника, диагностика, лечение.
  • 81. Клинические особенности открытых черепно-мозговых травм, травм позвоночника и спинного мозга.
  • 82. Сирингомиелия: этиология, патогенез, клиника, лечение, прогноз.
  • 83. Миастения. Этиология, клиника, лечение.
  • 84. Болезнь Паркинсона, этиология, клиника, лечение.
  • 85. Гепато-церебральная дистрофия. Этиология, клиника, лечение.
  • 86. Этиология и патогенез эпилепсии. Классификация эпилептических приступов. Клиника эпилептических приступов.
  • 87. Эпилептический статус, клиника, лечение. Диагностика и лечение эпилепсии.
  • 88. Мигрень: патогенез, формы, лечение.
  • 90. Токсические поражения нервной системы, отравление окисью углерода, метиловым спиртом.
  • 91. Ботулизм: этиология, клиника, лечение, профилактика.
  • Типичные признаки ботулизма
  • Диагностика ботулизма
  • Ботулизм лечение
  • Специфическое лечение ботулизма
  • Профилактика ботулизма
  • Прогноз
  • 92. Поражение нервной системы, обусловленное вибрационным воздействием.
  • 93. Радиационное поражение нервной системы. Этиология, клиника, лечение.
  • 94. Неврозы: этиология, патогенез, классификация, клиника, профилактика.
  • 95. Поражение нервной системы при спиДе.
  • 96. Современные представления о молекулярной организации генома. Понятие о гене как о структурно-функциональной единице наследственности. Мутации. Виды мутаций. Их биологическое значение.
  • 97. Варианты и типы наследования признаков (ад, ар, хр, хд, материнское, полигенное). Критерии наследования. Примеры заболеваний.
  • 98. Клинико-генеалогический метод. Особенности обследования больных с наследственной патологией. Понятие о микро-, макроаномалиях развития (примеры).
  • 99. Методы диагностики наследственных болезней обмена. Массовый и селективный скрининг.
  • 101. Характеристика и частота врожденной и наследственной патологии. Популяционно-статистический метод, значимость для практического здравоохранения.
  • 103. Наследственная моногенная патология, частота, принципы классификации. Пмд Дюшенна/Беккера.
  • 104. Общая характеристика хромосомных болезней. Особенности клинической картины, диагностика, прогноз и профилактика.
  • 105. Мультифакториальные заболевания. Этиологическая роль генетических и средовых факторов. Современные достижения генетики.
  • 106. Понятие, этиология макро- и микроаномалий развития, тератогенные периоды. Тактика профилактики и предупреждения (пренатальная диагностика, периконцепционная профилактика).
  • 107 Предупреждение наследственной патологии. Виды пренатальной диагностики, сроки и методики проведения.
  • Мукополисахаридоз
  • Мукополисахаридоз типа ih
  • Мукополисахаридоз типа I-s
  • Мукополисахаридоз типа II
  • Мукополисахаридоз типа III
  • Мукополисахаридоз типа IV
  • Другие типы мукополисахаридоза
  • Диагностика и лечение мукополисахаридоза
  • 110. Спинальные мышечные атрофии. Этиология, патогенез, клиника, диагностика, лечение и профилактика.
  • 111. Нейрофиброматоз. Этиология, патогенез, клиника, диагностика, лечение и профилактика.
  • 96. Современные представления о молекулярной организации генома. Понятие о гене как о структурно-функциональной единице наследственности. Мутации. Виды мутаций. Их биологическое значение.

    Ген - это структурная, функционально неделимая единица наследственной информации, участок молекулы ДНК, кодирующий синтез какой-либо макромолекулы (и-РНК, р-РНК, т-РНК, белок, гликоген, гликопептид и т.д.). Согласно экзонно-интронной модели организации генетического

    материала, ген представляет собой определенный участок ДНК, имеющий слева 5~ - конец (начало гена) и справа 3~- конец (конец гена), между которыми расположены экзоны и интроны.

    СХЕМА: тонкая структура гена.

    При исследовании ДНК перед транскрибируемыми участками были обнаружены нетранскрибируемые, которые были названы "промоторы", т.е. инициаторы транскрипции (связывают РНК-полимеразу). Установлено, что мутации в области промоторов могут резко снизить способность гена к экспрессии. Кроме того, выделены генные последовательности, усиливающие (энхансеры) и замедляющие (силансеры) ход транскрипции. В конце гена расположены последовательности – участок терминации транскрипции («стоп»-сигнал)

    В конце 70-х гг. установлено, что внутри гена имеются чередующиеся кодирующие или смысловые (экзоны) и некодирующие (интроны) последовательности.

    Имеются данные о том, что мутации в интронах, вплоть до их полной делеции, могут никак не сказываться на функции гена. Наряду с этим, известно, что интроны могут выполнять особую функциональную роль: они могут содержать специальные гены. Таким образом, роль интронных последовательностей еще предстоит изучить. Пример:

    ген VIII фактора свертываемости крови человека (187 тыс. п.н.), дефекты в котором приводят к гемофилии "А". В самом большом интроне гена (39 т.п.н.) присутствуют последовательн в интрон гена. Транскрипция идет с ДНК оппозитной той, что несет интрон.

    Самый короткий ген - ген бетта-глобина - 1100 п.н., 3 экзона (90, 222, 126 п.н.) и 2 интрона (116, 646 п.н.). Ген фермента фенилаланин-4-гидроксилазы, мутации в котором приводят к развитию фенилкетонурии, относится к средним генам - 90 - 125 тыс. п.н., 13 экзонов и 12 интронов, причем доля интронов достигает 90%. Один из самых протяженных генов - ген дистрофина: 2 млн. 300 тыс. п.н., около 85 экзонов.

    Для систематизации информации о генах созданы компьютерные банки: Genebank, база данных MIM.

    Кроме ядерной ДНК у человека имеется митохондриальная, содержащая 2 гена, кодирующих р-РНК, 22 гена – т-РНК и 13 белок-кодирующих генов, несущих информацию о некоторых субъединицах тканевого окисления. Протяженность ДНК митохондрий около 16,5 тыс.пар нуклеотидов.

    Гены, имеющие сходную структуру и функции, были объединены в генные семейства. Существуют миозиновые, тубулиновые, миелиновые и другие семейства генов (более 100), а некоторые включают десятки групп родственных генов (суперсемейство цитохромов).

    При изучении генных семейств в них были выявлены так называемые «молчащие» гены, т.е. гены, для которых не были обнаружены продукты их экспрессии, что объясняется различными изменениями структуры таких генов (нонсенс-мутации, изменения на границе экзонов и интронов, отсутствие промоторных областей и др.). Они были названы псевдогенами. Вопросы об их назначении и происхождении остаются открытыми, однако при некоторых наследственных заболеваниях выявлены мутации в псевдогенах.

    Рассмотрим этапы генной экспрессии:

    1 этап: транскрипция, т.е. переписывание информации с ДНК на матричную или информационную РНК;

    2 этап: процессинг, включающий в свою очередь:

    Сплайсинг, т.е. процесс вырезания интронов рестриктазами и сшивание кодирующих последовательностей (экзонов);

    Кээпирование и полиаденирование терминирующих последовательностей модифицированных м-РНК, по-видимому, с целью защиты их от неблагоприятного воздействия субстратов при прохождении через ядерную мембрану и при функционировании в цитоплазме;

    3 этап: трансляция, т.е. перевод полинуклеотидной последовательности РНК в первичную полипептидную цепочку. Этот процесс происходит на рибосомах при участии р-РНК и т-РНК, а также полимераз и др. ферментов;

    4 этап: посттрансляционные модификации, когда окончательно формируется биологически активный субстрат.

    Вся эта последовательность превращений от ДНК до конечного продукта называется экспрессией гена, и на всех этапах могут возникать "дефекты метаболизма", что приводит к патологии (болезни нарушения экспрессии гена).

    На современном этапе установлено, что подавляющая часть геномной ДНК принадлежит некодирующим последовательностям, а гены занимают вряд ли более 10% всей нуклеиновой последовательности.

    Рассмотрим некоторые свойства генов:

    1) Дискретность действия, т.е. развитие различных признаков контролируется различными генами, локализация которых в хромосомах различна.

    2) Стабильность, т.е. при отсутствии мутаций ген передается в ряду поколений в неизменном виде.

    3) Специфичность действия, т.е. ген обуславливает развитие определенного признака или группы.

    4) Дозированность действия, т.е. ген обуславливает развитие признака до определенного количественного предела.

    5) Аллельное состояние, т.е. большинство генов существуют в виде 2-х и более альтернативных вариантов аллелей, которые локализованы в определенном локусе хромосомы. Если аллели идентичны по своему содержанию, то говорят о гомозиготном состоянии, если различны – о гетерозиготном.

    Стойкое, скачкообразное изменение в наследственном аппарате клетки, не связанное с обычной рекомбинацией генетического материала, называется мутацией.

    Виды мутаций:

    1) генные - изменение структуры или последовательности расположения в ДНК отдельных генов. Фенотипически при этом изменяется состав аминокислот в белках, кодируемых геном;

    2) хромосомные - изменение структуры хромосом (утрата или удлинение их участков). Фенотипически проявляются тоже через изменение состава белка;

    3) геномные - изменение числа хромосом (недостаток или избыток) в наборе, не сопровождаемое изменениями их структуры.

    По характеру изменения генетического материала (гена или хромосомы) выделяют следующие мутации: а) делеции - выпадение какого-либо участка гена или хромосомы; б) транслокации - перемещение участка; в) инверсии - поворот участка на 180° (хромосома перекручивается, гены располагаются в обратном порядке; г) дупликация - вставляется лишний ген.

    По причинному характеру выделяют спонтанные (самопроизвольные) мутации и индуцированные. Последние развиваются под влиянием мутагенных факторов, среди которых различают экзогенные и эндогенные.

    К экзогенным относятся:

    1. Физические мутагены: а) ионизирующее излучение (оказывает прямое воздействие на ДНК, изменяя последовательность нуклеиновых кислот); б) ультрафиолетовые лучи (в большой дозе вызывают метилирование ДНК); в) температура (мутагенным свойством обладает только перегревание).

    2. Химические мутагены: а) высокоактивные вещества; б) свободные радикалы; в) цитостатики и др.

    Все химические мутагены должны легко проникать в клетку и достигать ядра.

    3. Биологические факторы. Обычно это вирусы. Есть два пути их мутагенного воздействия: а) вирус непосредственно проникает в ДНК; б) в результате жизнедеятельности вирусов образуются продукты распада, которые являются мутагенными.

    Эндогенные химические мутагены образуются на путях обмена веществ в организме - перекись водорода и липидные перекиси, а также свободные кислородные радикалы.

    Мутации могут происходить как в соматических, так и в половых клетках (гаметические мутации). В первом случае последствия связаны только с судьбой данного организма, а во втором - последствия сказываются на судьбе потомства.

    И, наконец, нужно помнить, что мутация не всегда влечет за собой изменения в организме, так как:

    1) не каждая замена азотистого основания в молекуле ДНК приводит к ошибке при ее редупликации;

    2) не всякое аминокислотное замещение в молекуле белков приводит к нарушению ее конформации;

    3) только 5 % генов функционирует, а остальные находятся в репрессированном состоянии и не транскрибируются.

  • В 1988 г. в США по инициативе лауреата Нобелевской премии Джеймса Уотсона и в 1989 г. в России под руководством академика Александра Александровича Баева были начаты работы по реализации грандиозного мирового проекта «Геном человека». По масштабам финансирования этот проект сравним с космическими проектами. Целью первого этапа работы было определение полной последовательности нуклеотидов в ДНК человека. Сотни ученых многих стран мира в течение 10 лет трудились над решением этой задачи. Все хромосомы были «поделены» между научными коллективами стран-участниц проекта. России для исследования достались третья, тринадцатая и девятнадцатая хромосомы.

    Весной 2000 г. в канадском городе Ванкувере подвели итоги первого этапа. Было официально объявлено, что нуклеотидная последовательность всех хромосом человека расшифрована. Трудно переоценить значение этой работы, так как знание структуры генов человеческого организма позволяет понять механизмы их функционирования и, следовательно, определить влияние наследственности на формирование признаков и свойств организма, на здоровье и продолжительность жизни. В ходе исследований было обнаружено множество новых генов, чью роль в формировании организма в дальнейшем предстоит изучить более подробно. Изучение генов ведет к созданию принципиально новых средств диагностики и способов лечения наследственных заболеваний. Расшифровка последовательности ДНК человека имеет огромное практическое значение для определения генетической совместимости при 1 пересадке органов, для генетической дактилоскопии и генотипирования.

    Но не только для биологии и медицины оказались важны полученные сведения. На основе знаний структуры генома человека можно реконструировать историю человеческого общества и эволюцию человека как биологического вида. Сравнение геномов разных видов организмов позволяет изучать происхождение и эволюцию жизни на Земле.

    Что же представляет собой геном человека?

    Геном человека . Вам уже известны понятия «ген» и «генотип». Термин «геном » впервые был введен немецким ботаником Гансом Винклером в 1920 г., который охарактеризовал его как совокупность генов, характерных для гаплоидного набора хромосом данного вида организма. В отличие от генотипа, геном является характеристикой вида, а не отдельной | особи. Каждая гамета диплоидного организма, несущая гаплоидный набор хромосом, по сути, содержит геном, характерный для данного вида. Вспомните наследование признаков у гороха. Гены окраски семени, формы семени, окраски цветка есть у каждого растения, они являются обязательными для его существования и входят в геном данного вида. Но у любого растения гороха, как у всех диплоидных организмов, существует два аллеля каждого гена, расположенные в гомологичных хромосомах. У одного растения это могут быть одинаковые аллели, отвечающие за желтую окраску горошин, у другого - разные, обусловливающие желтую и зеленую, у третьего - оба аллеля будут определять развитие зеленой окраски семян, и так по всем признакам. Эти индивидуальные отличия являются характеристикой генотипа конкретной особи, а не генома. Итак, геном - это «список» генов, необходимых для нормального функционирования организма.



    Расшифровка полной последовательности нуклеотидов в ДНК человека позволила оценить общее число генов, составляющих геном. Оказалось, что их всего около 30-40 тыс., хотя точное число пока не известно. Раньше предполагали, что количество генов у человека раза в 3-4 больше около 100 тыс, поэтому данные результаты стали своего рода сенсацией. У каждого из нас генов всего в 5 раз больше, чем у дрожжей, и всего в 2 раза больше, чем у дрозофилы. По сравнению с другими организмами, мы имеем не так уж много генов. Может быть, существуют какие-то особенности в строении и функционировании нашего генома, которые позволяют человеку быть сложноорганизованным существом?

    Строение гена эукариот. В среднем на один ген в хромосоме человека приходится около 50 тыс. нуклеотидов. Существуют очень короткие гены. Например, белок энкефалин, который синтезируется в нейронах головного мозга и влияет на формирование наших положительных эмоций, состоит всего из 5 аминокислот. Следовательно, ген, отвечающий за его синтез, содержит всего около двух десятков нуклеотидов. А самый длинный ген, кодирующий один из мышечных белков, состоит из 2,5 млн нуклеотидов.

    В геноме человека, так же как и у других млекопитающих, участки ДНК, кодирующие белки, составляют менее 5% от всей длины хромосом. Остальную, большую часть ДНК раньше называли избыточной, но теперь стало ясно, что она выполняет очень важные регуляторные функции, определяя, в каких клетках и когда должны функционировать те или иные гены. У более просто организованных прокариотических организмов, геном которых представлен одной кольцевой молекулой ДНК, на кодирующую часть приходится до 90% от всего генома.

    Все десятки тысяч генов не работают одновременно в каждой клетке многоклеточного организма, этого не требуется. Существующая специализация между клетками определяется избирательным функционированием определенных генов. Мышечной клетке не надо синтезировать кератин, а нервной - мышечные белки. Хотя надо отметить, что существует довольно большая группа генов, которые работают практически постоянно во всех клетках. Это гены, в которых закодирована информация о белках, необходимых для осуществления жизненно важных функций клетки, таких как редупликация, транскрипция, синтез АТФ и многие другие.

    В соответствии с современными научными представлениями, ген эукариотических клеток, кодирующий определенный белок, всегда состоит из нескольких обязательных элементов. Как правило, в начале и в конце гена располагаются специальные регуляторные участки; они определяют, когда, при каких обстоятельствах и в каких тканях будет работать этот ген. Подобные регуляторные участки дополнительно могут находиться и вне гена, располагаясь достаточно далеко, но, тем не менее, активно участвуя в его управлении.

    Кроме регуляторных зон существует структурная часть гена, которая собственно и содержит информацию о первичной структуре соответствующего белка. У большинства генов эукариот она существенно короче регуляторной зоны.

    Взаимодействие генов . Необходимо отчетливо представлять себе, что работа одного гена не может осуществляться изолированно от всех остальных. Взаимовлияние генов многообразно, и в формировании большинства признаков организма обычно принимает участие не один и не два, а десятки разных генов, каждый из которых вносит свой определенный вклад в этот процесс.

    По данным проекта «Геном человека», для нормального развития клетки гладкой мышечной ткани необходима слаженная работа 127 генов, а в формировании поперечно-полосатого мышечного волокна участвуют продукты 735 генов.

    В качестве примера взаимодействия генов рассмотрим, как наследуется окраска цветка у некоторых растений. В клетках венчика душистого горошка синтезируется некое вещество, так называемый пропигмент, который под действием специального фермента может превратиться в антоциановый пигмент, вызывающий пурпурную окраску цветка. Значит, наличие окраски зависит от нормального функционирования по крайней мере двух генов, один из которых отвечает за синтез пропигмента, а другой - за синтез фермента. Нарушение в работе любого из этих генов приведет к нарушению синтеза пигмента и, как следствие, к отсутствию окраски; при этом венчик цветков будет белый.

    Иногда встречается и противоположная ситуация, когда один ген влияет на развитие нескольких признаков и свойств организма. Такое явление называют плейотропией или множественным действием гена. Как правило, такое действие вызывают гены, функционирование которых очень важно на ранних стадиях онтогенеза. У человека подобным примером может служить ген, участвующий в формировании соединительной ткани. Нарушение в его работе приводит к развитию сразу нескольких симптомов: длинные «паучьи» пальцы, очень высокий рост из-за сильного удлинения конечностей, высокая подвижность суставов, нарушение структуры хрусталика и аневризма (выпячивание стенки) аорты.

    Взаимодействие неаллельных генов. Известно несколько видов взаимодействия неаллельных генов.

    Комплементарное взаимодействие. Явление взаимодействия нескольких неаллельных генов, приводящее к развитию нового проявления признака, отсутствующего у родителей, называют комплементарным взаимодействием. Пример наследования окраски цветка у душистого горошка, приведенный в §-3.14, относится как раз к этому типу взаимодействия генов. Доминантные аллели двух генов (А и В) каждый в отдельности не могут обеспечить синтез пигмента. Антоциановый пигмент, вызывающий пурпурную окраску цветка, начинает синтезироваться только в том случае, когда в генотипе присутствуют доминантные аллели обоих генов (А - В -).

    Известным примером комплементарного взаимодействия является наследование формы гребня у кур. Существует четыре формы гребня, формирование которых определяется взаимодействием двух неаллельных генов - А и В. При наличии в генотипе доминантных аллелей только гена А (A_bb) образуется розовидный гребень, наличие доминантных аллелей второго гена В (ааВ_) обусловливает образование гороховидного гребня. Если в генотипе присутствуют доминантные аллели обоих генов (А_В_), образуется ореховидный гребень, а при отсутствии доминантных аллелей (aabb) развивается простой гребень.

    Эпистаз . Взаимодействие неаллельных генов, при котором ген одной аллельной пары подавляет проявление гена другой аллельной пары, называют эпистазом. Гены, которые подавляют действие других генов, называют ингибиторами или супрессорами. Гены-ингибиторы могут быть как доминантными (I), так и рецессивными (i), поэтому различают доминантный и рецессивный эпистазы.

    При доминантном эпистазе один доминантный ген (I) подавляет проявление другого неаллельного доминантного гена.

    Возможны два варианта расщепления по фенотипу при доминантном эпистазе.

    1.Гомозиготы по рецессивным аллелям (аа/7) фенотипически не отличаются от организмов, имеющих в своем генотипе доминантные аллели гена-ингибитора.

    У тыквы окраска плода может быть желтой (А) и зеленой (а). Проявление этой окраски может быть подавлено доминантным геном-ингибитором (I), в результате чего сформируются белые плоды (А_I_; ааI_).

    белая зеленая

    F 2: 9/16 A_I_; 3/16 A_ii; 3/16 aaii

    белые (12) желтые (3) зеленые (1)

    В описанном и аналогичных случаях при расщеплении в F 2 по генотипу 9:3:3:1 расщепление по фенотипу соответствует 12:3:1.

    2. Гомозиготы по рецессивным аллелям (aaii) не отличаются по фенотипу от организмов с генотипами А_I_ и ааI_.

    У кукурузы структурный ген А определяет окраску зерна: пурпурная (А) или белая (а). При наличии доминантного аллеля гена-ингибитора (I) пигмент не синтезируется.

    Р: AAII х aaii

    белая белая

    F 2:9/16 A_I_; 3/16 aaI_; 1/16 aaii 3/16A_ii

    белые (13) пурпурные (3)

    В F 2 у 9/16 растений (A_I_) пигмент не синтезируется, потому что в генотипе присутствует доминантный аллель гена-ингибитора (I). У 3/16 растений (ааI_) окраска зерна белая, так как в их генотипе нет доминантного аллеля А, отвечающего за синтез пигмента, и кроме того присутствует доминантный аллель гена-ингибитора. У 1/16 растений (ааii) зерна тоже белые, потому что в их генотипе нет доминантного аллеля А, отвечающего за синтез пурпурного пигмента. Только у 3/16 растений, имеющих генотип A_ii, формируются окрашенные (пурпурные) зерна, так как при наличии доминантного аллеля А в их генотипе отсутствует доминантный аллель гена-ингибитора.

    В этом и других аналогичных примерах расщепление по фенотипу в F 2 13:3. (Обратите внимание, что по генотипу расщепление все равно остается прежним - 9:3:3:1, соответствующим расщеплению в дигибридном скрещивании.)

    При рецессивном эпистазе рецессивный аллель гена-ингибитора в гомозиготном состоянии подавляет проявление неаллельного доминантного гена.

    У льна ген В определяет пигментацию венчика: аллель В - голубой венчик, аллель b - розовый. Окраска развивается только при наличии в генотипе доманантного аллеля другого неаллельного гена – I. Присутствие в генотипе двух рецессивных аллелей ii приводит к формированию неокрашенного (белого) венчика.

    розовый белый

    F 2: 9/16 B_I_; 3/16 bbI_; 3/16B_ii; 1/16bbii

    Голубые (9) розовые (3) белые (4)

    При рецессивном эпистазе в этом и других аналогичных случаях в F 2 наблюдается расщепление по фенотипу 9:3:4.

    Полимерное действие генов (полимерия). Ещё одним вариантом взаимодействия неаллельных генов является полимерия. При таком взаимодействии степень выраженности признака зависит от числа доминантных аллелей этих генов в генотипе: чем больше в сумме доминантных аллелей, тем сильнее выражен признак. Примером такого полимерного взаимодействия является наследование окраски зёрен у пшеницы. Растения с генотипом А 1 А 1 А 2 А 2 имеют тёмно-красные зёрна, растения а 1 а 1 а 2 а 2 - белые зёрна, а растения с одним, двумя или тремя доминантными аллелями – разную степень окраски: от розовой до красной. Такую полимерию называют накопительной или кумулятивной .

    Однако существуют варианты и некумулятивной полимерии. Например, наследование формы стручка у пастушьей сумки определяется двумя неаллельными генами – А 1 и А 2 . При наличии в генотипе хотя бы одного доминантного аллеля формируется треугольная форма стручка, при отсутствии доминантных аллелей (а 1 а 1 а 2 а 2) стручок имеет овальную форму. В этом случае расщепление во втором поколении по фенотипу будет 15:1.

    Р:а 1 а 1 а 2 а 2 х а 1 а 1 а 2 а 2

    треугол. форма овал.форма

    F 1:А 1 а 1 А 2 а 2

    треугол. форма

    F 2:9/16А 1 _А 2 _; 3/16А 1 _а 2 а 2 ; 3/16а 1 а 1 А 2 _; 1/16а 1 а 1 а 2 а 2

    треугол. треугол. треуголовал.

    форма (9) форма (3) форма (3) форма (1)

    треугол. овал

    форма (15/16) форма (1/16)

    Последние материалы раздела:

    Чудеса Космоса: интересные факты о планетах Солнечной системы
    Чудеса Космоса: интересные факты о планетах Солнечной системы

    ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

    Реферат: Школьный тур олимпиады по литературе Задания
    Реферат: Школьный тур олимпиады по литературе Задания

    Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

    Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
    Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

    Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....