Статистическое изучение вариационных рядов и расчет средних величин. Средние величины, их сущность и их виды

В прошлом уроке, и поняли, что она знает многое, кто не понял, забыл или прошел мимо, может перейти по ссылке и освежить свои знания)). Но в теории статистики есть еще одно очень интересное изречение. В мире есть три вида лжи – ложь, наглая ложь и… СТАТИСТИКА!!!

Совершенно противоречивое утверждение другое – статистика знает все . Но отчасти в нем есть доля правды. Все дело в данных, которые были собраны для обработки.

Но об этом поговорим позже…

Однако вернемся к статистическим категориям. Категории или основные статистические термины важная часть науки. И дело здесь в том, что эти термины регулярно употребляются в процессе обработки и анализа данных. Именно в этом кроется их такая важность для статистической науки.

Статистическая совокупность – это группа социально-экономических объектов или явлений общественной жизни объединенных общей связью, но отличающихся друг от друга отдельными признаками. Это наиболее часто встречающее определение совокупности. Включает в себя ее особенности, и что очень важно и другие статистические категории. Попытаемся упростить или понять, что же такое совокупность на примере.
Совокупность это некоторое объединение элементов или явлений или людей и т.п. Мало того что в совокупности как правило много частей или элементом (всегда больше одного), так еще все они в чем-то похожи. Так вот эта похожесть и есть признак, по которому объединили эти элементы. Общее у элементов одно, и масса других характеристик отличающихся.



Вот небольшой такой пример. На картинке у нас изображены условно люди. Это совокупность людей – по этому признаку их и объединили в совокупность. Однако все мы разные и у нас масса признаков, которые отличают нас друг от друга – пол, возраст, образование, семейное положение, уровень доходов, место жительства и так далее.
Вообще в совокупность можно объединить разные элементы, лишь бы было что изучать:
— совокупность школьников – общее учатся в школе, а различия пол, возраст, класс, место учебы и многое другое;
— совокупность деревьев в лесу – общее это деревья, различия возраст, разновидность дерева, высота и т.п.;
— совокупность предприятий – общее предприятия, различия, отрасль, число работников, объем выпуска, объем прибыли и др.
И таких примеров можно привести огромное количество.

Задание. Предположим на картинке представлена совокупность студентов. Опишите ее, почему она является совокупностью, какие есть признаки у студентов. Нет ли на картинке лишних элементов, не относящихся к данной совокупности?

И последний очень важный термин вариация!
Вариация – это колебания признака статистической совокупности. В статистике говорят – признак колеблется или ВАРЬИРУЕТСЯ.
Вариация признака это основа статистической науке. Не было бы вариации, не было бы статистики. Именно потому что признаки изменяются и происходит их изучении. Если не было бы изменений и отличий и все было одинаковым, то изучать было бы нечего и статистики не было.

А дальше мы перейдем к . Но прежде домашние задания.

Контрольное задание. Приведите примеры двух трех совокупностей, выделите в них единицы совокупности и охарактеризуйте их признаками. Приведите пример статистических показателей и вариации признака.

Доклад – Органы государственной статистики в РФ – функции, задачи, структура. – Федеральная служба государственной статистики — http://www.gks.ru/

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную (итоговую) характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака. Для выяснения сущности средней величины необходимо рассмотреть особенности формирования значений признаков тех явлений, по данным которых исчисляют среднюю величину.

Известно, что единицы каждого массового явления обладают многочисленными признаками. Какой бы из этих признаков мы ни взяли, его значения у отдельных единиц будут различными, они изменяются, или, как говорят в статистике , варьируют от одной единицы к другой. Так, например, заработная плата работника определяется его квалификацией, характером труда, стажем работы и целым рядом других факторов, поэтому изменяется в весьма широких пределах. Совокупное влияние всех факторов определяет размер заработка каждого работника, тем не менее можно говорить о среднемесячной заработной плате работников разных отраслей экономики . Здесь мы оперируем типичным, характерным значением варьирующего признака, отнесенным к единице многочисленной совокупности.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень (или размер) любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Они действуют в обратном направлении, обусловливают различия между количественными признаками отдельных единиц совокупности, стремясь изменить постоянную величину изучаемых признаков. Действие индивидуальных признаков погашается в средней величине. В совокупном влиянии типичных и индивидуальных факторов, которое уравновешивается и взаимно погашается в обобщающих характеристиках, проявляется в общем виде известный из математической статистики фундаментальный закон больших чисел.

В совокупности индивидуальные значения признаков сливаются в общую массу и как бы растворяются. Отсюда и средняя величина выступает как «обезличенная», которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Однако для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться не для любых совокупностей, а только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений. Следовательно, средняя величина - это обобщающий показатель, характеризующий типичный уровень варьирующего признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.

Определяя, таким образом, сущность средних величин, необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

  • качественная однородность совокупности, по которой вычислена средняя величина. Это означает, что исчисление средних величин должно основываться на методе группировок, обеспечивающем выделение однородных, однотипных явлений;
  • исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов. Это достигается в том случае, когда вычисление средней основывается на достаточно массовом материале, в котором проявляется действие закона больших чисел, и все случайности взаимно погашаются;
  • при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показа-телъ (свойство), на который она должна быть ориентирована.

Определяющий показатель может выступать в виде суммы значений осредняемого признака, суммы его обратных значений, произведения его значений и т. п. Связь между определяющим показателем и средней величиной выражается в следующем: если все значения осредняемого признака заменить средним значением, то их сумма или произведение в этом случае не изменит определяющего показателя. На основе этой связи определяющего показателя со средней величиной строят исходное количественное отношение для непосредственного расчета средней величины. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины, основными из которых являются средняя арифметическая, средняя гармоническая и средняя геометрическая.

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

  • степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);
  • структурные средние (мода, медиана).

Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения, поэтому их называют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней величины - средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй - 7, третий - 4, четвертый - 10, пятый- 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего равна

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек , возраст которых варьируется от 18 до 22 лет, где xi - варианты осредняемого признака, fi - частота, которая показывает, сколько раз встречается i-е значение в совокупности (табл. 5.1).

Таблица 5.1

Средний возраст студентов

Применяя формулу средней арифметической взвешенной, получаем:


Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум показателям, для одного из которых надо вычислить

среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя неизвестны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитывать-ся по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины - средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Например, пусть известно, что автомобиль прошел первые 210 км со скоростью 70 км/ч, а оставшиеся 150 км со скоростью 75 км/ч. Определить среднюю скорость автомобиля на протяжении всего пути в 360 км, используя формулу средней арифметической, нельзя. Так как вариантами являются скорости на отдельных участках xj = 70 км/ч и Х2 = 75 км/ч, а весами (fi) считаются соответствующие отрезки пути, то произведения вариантов на веса не будут иметь ни физического, ни экономического смысла. В данном случае смысл приобретают частные от деления отрезков пути на соответствующие скорости (варианты xi), т. е. затраты времени на прохождение отдельных участков пути (fi/ xi). Если отрезки пути обозначить через fi, то весь путь выразиться как Σfi, а время, затраченное на весь путь, - как Σ fi/ xi , Тогда средняя скорость может быть найдена как частное от деления всего пути на общие затраты времени:

В нашем примере получим:

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где xi - отдельные варианты; n - число вариантов осредняемого признака. В примере со скоростью простую среднюю гармоническую можно было бы применить, если бы были равны отрезки пути, пройденные с разной скоростью.

Любая средняя величина должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной (средней скоростью) не должно измениться общее расстояние.

Форма (формула) средней величины определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым, поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической в статистике используются и другие виды (формы) средней величины. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения

их окажутся одинаковыми, здесь действует правило мажо-рантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина. Наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в табл. 5.2.

Таблица 5.2


Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая - при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где - средняя величина; - индивидуальное значение; n - число единиц изучаемой совокупности; k - показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние - мода (Мо) и медиана (Ме).

Мода - величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле

где х0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; fm_ 1 - частота предшествующего интервала; fm+ 1 - частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой - больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (п +1) / 2 с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле

где X0 - нижняя граница интервала; h - величина интервала; fm - частота интервала; f - число членов ряда;

∫m-1 - сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на 4 равные части, а децили - на 10 равных частей. Квартилей насчитывается три, а децилей - девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти, не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Показатели вариации

Целью статистического исследования является выявление основных свойств и закономерностей изучаемой статистической совокупности. В процессе сводной обработки данных статистического наблюдения строят ряды распределения. Различают два типа рядов распределения - атрибутивные и вариационные, в зависимости от того, является ли признак, взятый за основу группировки, качественным или количественным.

Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности не постоянны, более или менее различаются между собой. Такое различие в величине признака носит название вариации. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Наличие вариации у отдельных единиц совокупности обусловлено влиянием большого числа факторов на формирование уровня признака. Изучение характера и степени вариации признаков у отдельных единиц совокупности является важнейшим вопросом всякого статистического исследования. Для описания меры изменчивости признаков используют показатели вариации.

Другой важной задачей статистического исследования является определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. Для решения такой задачи в статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. В практике исследователь сталкивается с достаточно большим количеством вариантов значений признака, что не дает представления о распределении единиц по величине признака в совокупности. Для этого проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. Ранжированный ряд сразу дает общее представление о значениях, которые принимает признак в совокупности.

Недостаточность средней величины для исчерпывающей характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Использование этих показателей вариации дает возможность сделать статистический анализ более полным и содержательным и тем самым глубже понять сущность изучаемых общественных явлений.

Самыми простыми признаками вариации являются минимум и максимум - это наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения. Обозначим частоту повторения значения признака fi, сумма частот, равная объему изучаемой совокупности будет:

где k - число вариантов значений признака. Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты - может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Формально имеем:

Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся среднее линейное отклонение, размах вариации, дисперсия, среднее квадратическое отклонение.

Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности: R = Xmax - Xmin. Этот показатель дает лишь самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Он совершенно не связан с частотами в вариационном ряду, т. е. с характером распределения, а его зависимость может придавать ему неустойчивый, случайный характер только от крайних значений признака. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних величин. Область применения этого показателя ограничена достаточно однородными совокупностями, точнее, характеризует вариацию признака показатель, основанный на учете изменчивости всех значений признака.

Для характеристики вариации признака нужно обобщить отклонения всех значений от какой-либо типичной для изучаемой совокупности величины. Такие показатели

вариации, как среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.

Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:


Абсолютное значение (модуль) отклонения варианта от средней арифметической; f- частота.

Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами.

Существует и другой способ усреднения отклонений вариантов от средней арифметической. Этот очень распространенный в статистике способ сводится к расчету квадратов отклонений вариантов от средней величины с их последующим усреднением. При этом мы получаем новый показатель вариации - дисперсию.

Дисперсия (σ 2) - средняя из квадратов отклонений вариантов значений признака от их средней величины:

Вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).

В экономико-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения. Среднее квадратическое отклонение (σ) представляет собой корень квадратный из дисперсии:

Среднее линейное и среднее квадратическое отклонения показывают, на сколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражаются в тех же единицах измерения, что и варианты.

В статистической практике часто возникает необходимость сравнения вариации различных признаков. Например, большой интерес представляет сравнение вариаций возраста персонала и его квалификации, стажа работы и размера заработной платы и т. д. Для подобных сопоставлений показатели абсолютной колеблемости признаков - среднее линейное и среднее квадртическое отклонение - не пригодны. Нельзя, в самом деле, сравнивать колеблемость стажа работы, выражаемую в годах, с колеблемостью заработной платы, выражаемой в рублях и копейках.

При сравнении изменчивости различных признаков в совокупности удобно применять относительные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:


Наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному.

В процессе обработки и обобщения статистических данных существует необходимость определения средних величин. Каждая однородная статистическая совокупность состоит из достаточно большого числа единиц, которые отличаются размерами количественных признаков. Вместе с тем, каждая единица совокупности по определению несет черты, свойственные всей совокупности. Расчёт средних величин позволяет выявить типичный уровень признаков и черт изучаемой совокупности.

Средними величинами называются обобщающие показатели, характеризующие типичный уровень варьирующего признака в расчёте на единицу совокупности в конкретных условиях места и времени.

Правильное понимание сущности средней величины определяет её особую значимость в условиях рыночной экономики, когда среднее через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития. В условиях реальной экономической, в том числе коммерческой, деятельности постоянные причины (факторы) действуют одинаково на каждое изучаемое явление и именно они делают эти явления похожими друг на друга и создают общие для всех закономерности. Результатом учения об общих и индивидуальных причинах явлений стало выделение средних величин в качестве основного приёма статистического анализа, базирующегося на утверждении, что статистические средние величины представляют собой не просто меру математического измерения, а категорию объективной действительности. В статистической теории типическая реально существующая средняя величина отожествляется с истинной для данной совокупности величиной, отклонения от которой могут быть только случайными.

Например, выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, воспитания, здоровья и т.д. А средняя выработка (продажа) на одного продавца отражает общее типичное свойство всей совокупности продавцов. Способность средних величин сохранять свойства статистических совокупностей называют определяющим свойством.

Таким образом, средние величины – обобщающие показатели, в которых находит выражение действие общих условий, закономерность изучаемого явления.

В практике статистической обработки данных возникают различные задачи, имеются особенности изучаемых явлений, и поэтому для их решения требуются различные средние.

По уровню обобществления данных изучаемой совокупности средние могут быть общими и групповыми. Средняя, рассчитанная по совокупности в целом, называется общей средней, а средние, исчисленные для каждой группы, - групповыми средними.

Различают степенные и структурные средние.

Степенные средние выводятся из общей формулы вида:



С изменением показателя степени приходим к определенному виду средней:

при - средняя гармоническая ;

при - средняя геометрическая ;

при - средняя арифметическая ;

при - средняя квадратическая .

Вопрос о том, какой вид средней необходимо применять в отдельном случае, решается путём конкретного анализа изучаемой совокупности, материальным содержанием изучаемого явления, осмыслением результатов осреднения. Только тогда средняя величина применена правильно, когда в результате осреднения получают величины, имеющие реальный смысл.

Вводятся следующие обозначения:

– количественный признак, по которому находится средняя, называется осредняемым признаком;

среднее значение признака (с чертой сверху), представляющее результат осреднения;

Индивидуальные значения признака у единиц совокупности называемые вариантами;

общее число единиц совокупности;

- частота или повторяемость индивидуального значения признака (его вес);

Усредняющий признак (индекс).

В зависимости от наличия исходных данных средние можно рассчитать различным образом. В случае, если индивидуальные значения осредняемого признака (варианты) не повторяются при конкретных значениях усредняющего признака применяются формулы простых степенных средних. Однако, когда в практических исследованиях отдельные значения изучаемого признака встречаются несколько раз у единиц исследуемой совокупности, тогда частота повторения индивидуальных значений признака (- вес признака) присутствует в формулах степенных средних. В этом случае они называются формулами взвешенных степенных средних. В формулах взвешенных средних вместо частот может содержаться частость

определяемая как отношение частоты признака к сумме частот.

В табл.9 приведены формулы расчёта различных видов степенных простых и взвешенных средних величин.

Табл.9. Формулы расчёта степенных средних величин

Значение Название средней Формула средней
простая взвешенная
- 1 Средняя гармоническая
Средняя геометрическая
Средняя арифметическая
Средняя квадратическая

Средняя арифметическая – наиболее распространённый вид средней. Она исчисляется в случаях, когда объём осредняемого признака образуется как сумма его значений у отдельных единиц совокупности. Например, требуется вычислить средний стаж десяти работников предприятия, причём дан ряд одиночных значений признака 6, 5, 4, 3, 3, 4, 5, 4, 5, 4. Тогда объём осредняемого признака

а среднее значение вычисляется по формуле простой средней

Если те же данные сгруппированы по величине признака, то среднее значение вычисляется по формуле взвешенной средней

Средняя гармоническая величина чаще всего вычисляется, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а имеются данные по объёмам осредняемого признака, относящимся к отдельным вариантам совокупности. Например, необходимо вычислить среднюю цену единицы товара, причём даны объёмы реализации по каждому виду товара в виде ряда 600, 1000, 850 (тыс. руб.) и соответствующие цены по каждому виду товара в виде ряда 20, 40, 50 (тыс. руб./шт.). Тогда средняя цена вычисляется по формуле средней гармонической взвешенной

Можно видеть, что средняя гармоническая является превращённой (обратной) формой средней арифметической. Вместо средней гармонической всегда можно рассчитать среднюю арифметическую, но для этого сначала нужно определить веса отдельных значений признака.

При использовании формулы средней геометрической индивидуальные значения признака, как правило, представляют собой относительные величины динамики, построенные в виде цепных величин (как отношения последующих уровней показателя к предыдущим уровням в ряду динамики), причём временные отрезки ряда динамики одинаковы (сутки, месяц, год). Средняя геометрическая величина характеризует, таким образом, средний коэффициент роста. Например, для данных ряда динамики, представленных в табл.10,

Табл.10. Ряд динамики роста доходов населения

средний темп роста доходов населения вычисляется по формуле средней геометрической простой

Формула средней квадратической величины используется для измерения средней степени колеблемости значений признака около среднего арифметического значения в рядах распределения. Так, например, при расчёте такого показателя вариации, как дисперсия, среднюю вычисляют из квадратов отклонений индивидуальных значений признака от средней арифметической величины (см. в главе 6).

Степенные средние разных видов, исчисленные по одной и той же совокупности, имеют различные количественные значения, причём чем больше показатель степени тем больше и величина соответствующей средней

Это свойство степенных средних называется мажорантностью средних.

Для характеристики структуры совокупности применяются особые показатели, которые называют структурными средними. К таким показателям относятся мода и медиана.

Модой называется наиболее часто встречающееся значение признака у единиц данной совокупности. Она соответствует определенному значению признака.

Например, выборочное обследование 8 пунктов обмена валюты позволило зафиксировать различные цены за доллар (табл.11). В этом случае модальной ценой за доллар является величина поскольку в обследованной совокупности пунктов обмена валюты она встречается наиболее часто (3 раза).

№ пункта
Цена за 1 $

Медиана – это величина признака, которая делит численность упорядоченного вариационного ряда на две равные части.

Для примера возьмём данные табл.10 и расположим индивидуальные значения признака в возрастающем порядке.

2150 2155 2155 2155 2160 21652165 2175

Порядковый номер медианы определяется по формуле

а) В случае чётного числа номер медианы имеет не целое значение (в нашем случае 4,5). Медиана будет равна средней арифметической из соседних значении и

б) В случае нечётного числа индивидуальных признаков (допустим, )

Следовательно, в этом случае

В рассмотренном примере нахождение таких средних, как мода и медиана, было целесообразно, поскольку исследователь не располагал объёмом продаж по каждому пункту и не мог поэтому с хорошей точностью провести расчёт средней арифметической цены за доллар. Также рассмотренный пример иллюстрирует положение о том, что выбор вида соответствующей средней всегда зависит от имеющихся в наличии данных.

4.3. Свойства и методы расчёта средних величин

Наиболее часто используемая в экономико-статистической практике средняя арифметическая величина обладает рядом математических свойств, которые иногда упрощают её расчёт. Эти свойства следующие:

1. Если варианты уменьшить или увеличить на некоторое постоянное число, то

средняя арифметическая величина соответственно уменьшится или увеличится на это

2. Если варианты изменить в постоянное число раз то средняя тоже изменится во

столько же раз

3. Если частоты разделить или умножить на некоторое постоянное число, то средняя не изменится

4. Произведение средней арифметической на сумму частот равно сумме произведений вариантов на частоты

5. Алгебраическая сумма отклонения вариантов от средней величины равна нулю

Все перечисленные свойства следуют из определения средней арифметической взвешенной (см.раздел 4.2).

Иногда расчёт средней арифметической величины удобно упростить, используя её математические свойства. Для этого нужно из всех вариант вычесть произвольную постоянную величину, полученную разность разделить на общий множитель, а затем исчисленную среднюю величину умножить на общий множитель и прибавить произвольную постоянную. В результате формула средней арифметической взвешенной получит следующий вид.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Задача 1

В некотором регионе в текущем году было совершено 12 390 преступлений, а в предыдущем году - 11 800 преступлений. Вычислите (в %) темп роста и темп прироста количества преступлений, зарегистрированных в текущем году по отношению к предыдущему. Рассчитайте также коэффициенты преступности за каждый год, если численность населения региона в конце предыдущего года составляла 1 475 000, а в конце текущего года - 1 770 000 чел. Сделайте выводы о динамике преступности в регионе.

Решение: Для получения точной картины преступности огромное значение имеет такой показатель преступности, как динамика, то есть изменение во времени. Динамика преступности характеризуется понятиями абсолютный рост (или снижение) и темпы роста и прироста преступности, для определения которых производится вычисление этих характеристик согласно определенным формулам.

Темпы роста преступности рассчитываются на основе базисных показателей динамики, что предполагает сопоставление данных за ряд лет (а иногда десятилетий, если нужен широкий охват материала) с постоянным базисом, под которым понимается уровень преступности в начальном для анализа периоде. Такой расчет позволяет криминологам в значительной мере гарантировать сопоставимость относительных показателей, вычисляемых в процентах, которые показывают, каким образом соотносится преступность последующих периодов с предыдущим.

В расчете за 100 % принимаются данные исходного года; показатели, полученные за последующие годы, отражают только процент прироста, что делает расчет точным, а картину более объективной; при оперировании относительными данными удается исключить влияние на снижение или рост преступности увеличения или снижения численности жителей, достигших возраста уголовной ответственности.

Темп прироста преступности вычисляется в процентах. Темп прироста преступности показывает, насколько увеличился или уменьшился последующий уровень преступности по сравнению с предыдущим периодом. Принято условное обозначение вектора темпа прироста: если процентное соотношение возрастает, ставится знак "плюс", если снижается - ставится знак "минус".

Применительно к условиям нашей задаче следует применить соответствующие формулы и вычислить рост и прирост преступности.

1) Темп роста преступности исчисляется по формуле^

Тр=U/U2 * 100 %,

где U - показатель уровня преступности, а U2 - показатель уровня преступности предшествующего периода. Так темп роста преступности по условиям задачи составит - 12390/11800*100 %=1,05 %.

2) Темп прироста преступности рассчитывается по следующей формуле:

Тпр=Тр-100 %.

Так темп прироста по условиям задачи составит 1,05 %-100 %= 98,95 %.

Коэффициент преступности - это конкретный обобщающий показатель общего количества учтенных преступлений, соотнесенного с численностью населения. Он расшифровывается как число преступлений на 100 тыс., 10 тыс. или 1 тыс. населения и является объективным измерителем преступности, позволяющим сопоставлять ее уровни в разных регионах и в разные годы.

Коэффициент преступности помогает более адекватно оценить и динамику уровня преступности, рассчитанного на душу населения.

Коэффициент преступности рассчитывается по формуле:

КП = (П х 100000): Н,

где П - абсолютное число учтенных преступлений; а Н - абсолютная численность всего населения.

Оба показателя берутся в одном и том же территориальном и временном объеме. Число преступлений обычно рассчитывается на 100 тыс. населения. Но при малых числах преступлений и населения (в городе, районе, на предприятии) коэффициент преступности может рассчитываться на 10 тыс. или на 1 тыс. жителей. в любом случае эти числа означают размерность рассматриваемого коэффициента, которая обязательно указывается: число преступлений на 100 тыс. или 10 тыс. населения.

Рассчитаем коэффициент преступности применительно к условиям нашей задачи:

1) КП= (12390*100000): 1 770 000 чел. = 700 (в текущем году).

2) КП= (11800*100000): 1 475 000 = 800 (в предыдущем году).

Преступность в регионе снижается, поскольку, анализируя коэффициент преступности, можно сделать вывод, что при увеличении населения в регионе (на 16,6 %), и незначительном увеличении количества преступлений на 1,05 %, в целом прирост преступности снижается (-98,95 %).

Задача 2

Возраст 11 молодых специалистов учреждения, принятых на службу, в текущем году составил соответственно 19,25,21,23,23,23,25,20,18,20,21 лет. Произведите сводку и группировку данных в виде статистической таблицы частот. Для наглядности постройте полигон частот, а также найдите модальное, медианное и среднее значение возраста принятых сотрудников.

Решение: Группировка - это разбиение совокупности на группы, однородные по какому-либо признаку. С точки зрения отдельных единиц совокупности группировка - это объединение отдельных единиц совокупности в группы, однородные по каким-либо признакам.

Метод группировки основывается на следующих категориях - это группировочный признак, интервал группировки и число групп.

Группировочный признак - это признак, по которому происходит объединение отдельных единиц совокупности в однородные группы.

Интервал очерчивает количественные границы групп. Как правило, он представляет собой промежуток между максимальными и минимальными значениями признака в группе.

Определение числа групп .

Число групп приближенно определяется по формуле Стэрджесса:

n = 1 + 3,2log n = 1 + 3,2log(11) = 4.

Ширина интервала составит:

Xmax - максимальное значение группировочного признака в совокупности. Xmin - минимальное значение группировочного признака. Определим границы группы.

Номер группы

Нижняя граница

Верхняя граница

Одно и тоже значение признака служит верхней и нижней границами двух смежных (предыдущей и последующей) групп.

Для каждого значения ряда подсчитаем, какое количество раз оно попадает в тот или иной интервал. Для этого сортируем ряд по возрастанию.

№ совокупности

Частота fi

Полигон частоты - это график плотности и вероятности случайной величины, представляет собой ломанную соединяющую точки, соответствующие срединным значениям интервалов группировки частотам этих интервалов.

Среднее значение :

Мода льное значение. Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

где x 0 - начало модального интервала; h - величина интервала; f 2 - частота, соответствующая модальному интервалу; f 1 - предмодальная частота; f 3 - послемодальная частота.

Выбираем в качестве начала интервала 19.75, так как именно на этот интервал приходится наибольшее количество.

Наиболее часто встречающееся значение ряда - 20.92.

Медиана . Медиана делит выборку на две части: половина вариант меньше медианы, половина - больше.

В интервальном ряду распределения сразу можно указать только интервал, в котором будут находиться мода или медиана. Медиана соответствует варианту, стоящему в середине ранжированного ряда. Медианным является интервал 19.75-21.5, т.к. в этом интервале накопленная частота S, больше медианного номера (медианным называется первый интервал, накопленная частота S которого превышает половину общей суммы частот).

Таким образом, 50 % единиц совокупности будут меньше по величине 21.28.

Задача 3

Определите требуемый объем выборки для исследования среднего возраста аттестованных сотрудников ФСИН России при условии, что среднее квадратическое отклонение составляет 10 лет, а максимально допустимая ошибка выборки не должна превышать 5 %.

Решение ищем по формуле определения численности выборки для повторного отбора.

Ф(t) = г/2 = 0.95/2 = 0.475 и этому значению по таблице Лапласа соответствует t=1.96.

Оценка среднеквадратического отклонения s = 10; ошибка выборки е = 5.

Задача 4

В следующей таблице даны официальные ведомственные статистические сведения о распределении осужденных по срокам заключения (наказания) за 2002-2011 годы, размещенные на официальном сайте ФСИН России: www.fsin.su. Найдите размах и коэффициент вариации количества осужденных за каждый календарный год и сделайте выводы об однородности структуры данного статистического признака.

Основным показателем, характеризующим однородность данных, является коэффициент вариации. В статистике принято считать, что, если значение коэффициента менее 33 %, то совокупность данных является однородной, если более 33 %, то - неоднородной.

Коэффициент вариации

Поскольку v ? 30 %, то совокупность однородна, а вариация слабая. Полученным результатам можно доверять.

Срок наказания

От 1 до 3 лет

От 3 до 5 лет

От 5 до 10 лет

От 10 до 15 лет

Свыше 15 лет

Максимальное значение (функция МАКС)

Минимальное значение (функция МИН)

Размах вариации

Среднее значение (функция СРЗНАЧ)

Среднее квадратическое отклонение (функция СТАНДАР ЛОНА)

Коэффициент вариации

Простая средняя :

Мода льное значение

Медиана

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 70580. Следовательно, медиана Me = 70580.

Показатели вариации . .

R = X max - X min .

R = 295916-2250 = 293666.

Среднее линейное отклонение

Каждое значение ряда отличается от другого в среднем на 90895.71.

Дисперсия

(средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 103008 в среднем на 107169.83.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>

или

Коэффициент осцилляции

Простая средняя :

Мода

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 76186. Следовательно, медиана Me = 76186.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min

R = 291112-3101 = 288011.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 83422.69.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 97334.29 в среднем на 100750.25.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя :

Мода льное значение. Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 71093. Следовательно, медиана Me = 71093.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min

R = 243852-3856 = 239996.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 68998.08.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 85765.57 в среднем на 82541.55.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

:

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 74588. Следовательно, медиана Me = 74588.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min ,

R = 242984-5304 = 237680.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 73148.73.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 92104.14 в среднем на 82873.1.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 76678. Следовательно, медиана Me = 76678

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min .

R = 249346-6536 = 242810.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 79680.53.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 99551.71 в среднем на 87389.04.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 76461. Следовательно, медиана Me = 76461.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min .

R = 254722-6704 = 248018.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 82302.82.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 102346.71 в среднем на 89787.88.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 78959. Следовательно, медиана Me = 78959.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min .

R = 261334-7635 = 253699.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 83791.55.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 104898.86 в среднем на 91616.15.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 75916. Следовательно, медиана Me = 75916.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min .

R = 263863-8145 = 255718.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 82767.96.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 103440.71 в среднем на 91207.92.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 78019. Следовательно, медиана Me = 78019.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min

R = 260094-7798 = 252296.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 77827.76.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 99212.29 в среднем на 88081.39.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Простая средняя арифметическая :

Мода . Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

Мода отсутствует (все значения ряда индивидуальные).

Медиана . Медиана - значение признака, которое делит единицы ранжированного ряда на две части. Медиана соответствует варианту, стоящему в середине ранжированного ряда.

Находим середину ранжированного ряда: h = (n+1) / 2 = (7+1) / 2 = 4. Этому номеру соответствует значение ряда 72248. Следовательно, медиана Me = 72248.

Показатели вариации . Абсолютные показатели вариации .

Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.

R = X max - X min .

R = 242137-7173 = 234964.

Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.

Каждое значение ряда отличается от другого в среднем на 70459.02.

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Среднее квадратическое отклонение (средняя ошибка выборки).

Каждое значение ряда отличается от среднего значения 91375.14 в среднем на 80674.43.

Относительные показатели вариации . К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.

Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v>70 %, то совокупность приближается к грани неоднородности, а вариация сильная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична. В таком случае при практических исследованиях различными статистическими приемами приводят совокупность к однородному виду.

Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Коэффициент осцилляции - отражает относительную колеблемость крайних значений признака вокруг средней.

Задача 5

В условиях предыдущей задачи произведите перегруппировку заданных интервалов сроков наказания с целью улучшения относительных показателей вариации признака в 2010 году. Постройте гистограммы распределения осужденных по срокам заключения (наказания) за 2010 год до и после произведенной группировки данных и сделайте выводы об однородности структуры исследуемого статистического признака.

Решение:

Поскольку v>30 %, но v<70 %, то вариация умеренная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична.

Совершим перегруппировку данных следующим образом:

В группу 1) входит группы: до года, год, от 1-3 лет соответственно 156978.

В группу 2) входит от группы свыше 3 до 5 лет полностью и 1\5 от группы свыше 5 до 10 лет получаем 1\5*260094+168651=220669,8.

В группу 3) входит 3\5 группы от 5 до 10 т.е. 3\5*260094=156056,4.

Группа 4) (1\5*260094)+(1\5*78019)=67622,6.

Группа 5) 3\5*78019=46811,4.

Группа 6 30744+(1\5*78019)=46347,8.

Гистограмма. Для получения вывода о однородности исследуемого статистического признака Вычислим коэффициент вариации:

Поскольку v>30 %, но v<70 %, то вариация умеренная.

Коэффициент вариации значительно больше 33 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточна типична.

Задача 6

Изложить в краткой форме (тезисно, на 1-2 страницах) содержание и результаты недавнего официального статистического исследования в социально-правовой сфере (тематика - на Ваш выбор, ссылки на Интернет-ресурсы - обязательны), сделать выводы и выдвинуть соответствующие статистические гипотезы на краткосрочную перспективу.

В качестве официального статистического исследования было взято исследование о просроченной задолженности по заработной плате на 1 декабря 2015 года.

На 1 декабря 2015 г., по сведениям организаций (не относящихся к субъектам малого предпринимательства), суммарная задолженность по заработной плате по кругу наблюдаемых видов экономической деятельности составила3900 млн. рубл ей и по сравнению с 1 ноября 2015 г. увеличилась на 395 млн. рублей (на 11,3 %).

Просроченная задолженность по заработной плате из-за отсутствия у организаций собственных средств на 1 декабря 2015г. составила3818 млн. рубл ей , или 97,9 % общей суммы просроченной задолженности. По сравнению с 1 ноября 2015г. она увеличилась на 389 млн. рублей (на 11,3 %). Задолженность из-за несвоевременного получения денежных средств из бюджетов всех уровней составила82 млн. рубл ей и увеличилась по сравнению с 1 ноября 2015г. на 6 млн. рублей (на 7,7 %), в том числе задолженность из федерального бюджета составила 62 млн. рублей и снизилась по сравнению с 1 ноября 2015г. на 6 млн. рублей (на 8,6 %),бюджетов субъектов Российской Федерации составила 1,1 млн. рублей (увеличение на 0,2 млн. рублей или на 20,7 %), местных бюджетов - 19 млн. рублей (увеличение на 12 млн. рублей, или в 2,5 раза).

В добыче полезных ископаемых, обрабатывающих производствах, здравоохранении и предоставлении социальных услуг, рыболовстве и рыбоводстве 100 % просроченной задолженности по заработной плате образовано из-за нехватки у организаций собственных средств.

В общем объеме просроченной задолженности по заработной плате 37 % приходится на обрабатывающие производства, 29 % - на строительство, 9 % - на производство и распределение электроэнергии, газа и воды, 7 % - на транспорт, 6 % - на добычу полезных ископаемых, 5 % - на сельское хозяйство, охоту и предоставление услуг в этих областях, лесозаготовки.

Объем просроченной задолженности по заработной плате на 1 декабря 2015г. составил менее 1 % месячного фонда заработной платы работников наблюдаемых видов экономической деятельности.

Задолженность по заработной плате за последний месяц , за который производились начисления, в общем объеме просроченной задолженности составила в среднем 29 %: производстве и распределении электроэнергии, газа и воды - 75 %, деятельности в области образования - 37 %, здравоохранения и предоставления социальных услуг - 35 %, научных исследований и разработок - 32 %, строительства - 29 %, транспорта - 23 %, обрабатывающих производствах - 22 %.

Из общей суммы невыплаченной заработной платы на долги, образовавшиеся в 2014г.,приходится 457 млн. рублей (11,7 %), в 2013г. и ранее - 657 млн. рублей (16,8 %).

В целом наблюдая картину задолженности по заработной плате в динамике (http://www.gks.ru/bgd/free/B04_03/IssWWW.exe/Stg/d06/Image 5258.gif), можно сделать вывод что значительный спад придется на январь, февраль 2016 года.

Основной процент задолженности приходится на обрабатывающие производства - 37 %, 29 % - на строительство скорее всего это происходит в связи со снижением потребительского спроса на продукцию, соответственно уменьшается прибыль.

Выдвинем гипотезу. С января 2016 года процент задолженности будет сокращаться, в связи с распределением годового бюджета на будущий год с учетом частичного погашения задолженности по заработной плате, и составит 2700 млн. динамика преступность вариация медианное

Для проверки гипотезы (За основу берем данный таблицы http://www.gks.ru/bgd/free/B04_03/IssWWW.exe/Stg/d06/Image5258.gif).

Построим дискретный вариационный ряд. Для этого отсортируем ряд по возрастанию и подсчитаем количество повторения для каждого элемента ряда.

Вычислим среднюю:

Вычислим дисперсию. Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

Используя односторонний критерий с б = 0,05, проверить эту гипотезу, если в выборке из n =24 месяца средний показатель оказался равным 2741,25, а дисперсия известна и равна у =193469,27

Решение . Среднеквадратическое отклонение:

Выдвигается нулевая гипотеза H 0 о том, что значение математического ожидания генеральной совокупности равно числу м 0: = 2700.

Альтернативная гипотеза:

H 1: м? 2700, критическая область - двусторонняя.

Для проверки нулевой гипотезы используется случайная величина:

где x - выборочное среднее; S - среднеквадратическое отклонение генеральной совокупности.

Если нулевая гипотеза верна, то случайная величина T имеет стандартное нормальное распределение. Критическое значение статистики T определяется исходя из вида альтернативной гипотезы:

P(|T|

Найдем экспериментальное значение статистики T:

Поскольку объем выборки достаточно большой (n>30), то вместо истинного значения среднеквадратического отклонения можно использовать его оценку S=439.851.

Ф(t кр)=(1-б)/2 = (1-0.05)/2 = 0.475.

По таблице функции Лапласа найдем, при каком t kp значение Ф(t kp) = 0.475.

Экспериментальное значение критерия T не попало в критическую область T ? t kp , поэтому нулевую гипотезу следует принять. Значение математического ожидания генеральной совокупности можно принять равным 2700

Список используемой литературы

1. Казанцев С.Я. Правовая статистика: Учебник / Под ред. С.Я. Казанцева, С.Я. Лебедева - М.: ЮНИТИ-ДАНА: Закон и право, 2009 г.

2. Курыс?в К.Н. Основы правовой статистики: учеб. пособие / К.Н. Курыс?в; ВЮИ ФСИН России. - Владимир, 2005. - 44 с.

3. Макарова Н.В. Статистика в Exсel: учеб. пособие / Н.В. Макарова, В.Я. Трофимец. - М.: Финансы и статистика.

4. Кондратюк Л.В., Овчинский В.С. Криминологическое измерение /под ред. К.К. Горяинова. - М.: Норма, 2008.

5. Яковлев В.Б. Статистика. Расчеты в Microsoft Excel: учеб. Пособие для вузов / В.Б. Яковлев. - М.: Колосc, 2005. - 352 c.

Размещено на Allbest.ru

...

Подобные документы

    Исследование преступности несовершеннолетних с позиций объекта криминологического исследования. Взаимосвязь подросткового алкоголизма, токсикомании, наркомании и преступности. Причины и условия и пути профилактики преступности несовершеннолетних.

    курсовая работа , добавлен 08.04.2011

    Методика конкретного криминологического исследования. Криминологическая характеристика насильственной преступности и ее предупреждение. Общественная опасность и тяжесть причиняемых последствий насильственных преступлений. Статистика преступности.

    контрольная работа , добавлен 15.01.2011

    Формула расчета коэффициента преступности. Расчет среднегодовой нагрузки на одного судью, среднего срока расследования уголовных дел, среднегодовых темпов роста преступности. Расчет показателей моды, медианы, вариации и среднеквадратического отклонения.

    контрольная работа , добавлен 20.04.2011

    Изучение основ корыстной преступности: понятие, элементы, объекты и субъективные стороны. Описание социального и специально-криминологического предупреждения преступности из корыстных побуждений. Разработка комплекса мер по предупреждению преступлений.

    дипломная работа , добавлен 09.11.2012

    Понятие и предмет криминологического прогнозирования. Установление возможных изменений в состоянии, уровне, структуре и динамике преступности в будущем. Оценка развития преступности в перспективе. Планирование борьбы с преступностью, ее предупреждение.

    курсовая работа , добавлен 29.05.2015

    Исследование видов криминологического прогнозирования и проектирования в сфере преступности. Особенности прогнозирования преступности несовершеннолетних в Республике Казахстан. Разработка программ борьбы с преступностью на общегосударственном уровне.

    дипломная работа , добавлен 25.10.2015

    Преступность несовершеннолетних как объект криминологического исследования. Основные, криминологические характеристики преступности несовершеннолетних. Состояние преступности. Особенности личностной характеристики несовершеннолетних.

    реферат , добавлен 01.04.2003

    Тенденции криминального поведения современных женщин: рост и устойчивый удельный вес тяжких и рецидивных преступлений, омоложение преступниц и увеличение количества женщин пожилого возраста среди осужденных. Общие меры предупреждения женской преступности.

    реферат , добавлен 01.03.2014

    Расчет относительных показателей структуры и координации категорий осужденных по степени тяжести совершенных преступлений. Коэффициенты преступности и судимости по федеральным округам и в целом по России. Расчет показателей динамики с помощью MS Excel.

    контрольная работа , добавлен 31.07.2011

    Понятие, виды, значения, детерминанты латентной преступности, причины ее возникновения, предупреждение и способы сокращения. Определение уровня и анализ структуры преступности. Системный подход в изучении латентной преступности как социального явления.

Информатика и математика - Теоретические материалы для первого коллоквиума

1. Предмет математической статистики, её основные разделы. Понятие о статистическом распределении. Нормальное распределение. В каких условиях случайная величина распределена нормально?

Статистика – наука, узучающая совокупн. масс. явл-я с целью выявления закономерн. и изуч-я их с помощью обобщенных показателей.

Все методы математической статистики можно отнести к двум основным ее разделам: теории статистического оценивания параметров и теории проверки статистических гипотез .

Разделы :

1. дескриптивная статистика

2. выборочный метод, доверительные интервалы

3. корреляционный анализ

4. регрессионный анализ

5. анализ качественных признаков

6. многомерный статистический анализ:

а) кластерный

б) факторный

7. анализ временных рядов

8. дифференциальные уравнения

9. математическое моделирование исторических процессов

Распределение:

Теоретическое (бесконечно много объектов и они ведут себя идеально)

Эмпирическое (реальные данные, которые можно выстроить в гистограмму)

Нормальное распределение – когда характер распределения влияют много факторов, и ни один из них не является определяющим. Особенно часто используется на практике.


2. Нормальное распределение можно изобразить графически в виде симметричной одновершинной кривой, напоминающей по форме колокол. Высота (ордината) каждой точки этой кривой показывает, как часто встречается соответствующее значение. Дескриптивная статистика. Средние значения - среднее арифметическое, медиана, мода. В каких ситуациях эти три меры дают близкие значения, а в каких они сильно различаются?

Дескриптивная статистика - Это описательная статистика.

среднее арифметическое, медиана, мода – меры среднего – коэф-ты, которые могут охарактеризовать совокупность объектов

· среднее (арифметическое) значение ‑ сумма всех значений, отнесенная к общему числу наблюдений (принятые обозначения: Mean или ), т.е. средним арифметическим значением признака называется величина

где - значение признака у i -го объекта, n - число объектов в совокупности.

· мода – наиболее часто встречающееся значение переменной (M)

· медиана – среднее по порядку значение (принятые обозначения: Median, m). Медиана - это "серединное" значение признака в том смысле, что у половины объектов совокупности значения этого признака меньше, а у другой половины - больше медианы. Приближенно вычислить медиану можно, упорядочив все значения признака по возрастанию (убыванию) и найдя число в этом вариационном ряду, которое либо имеет номер (n +1)/2 - в случае нечетного n , либо находится посередине между числами с номерами n /2 и (n +1)/2 - в случае четного n .

Не все из перечисленных характеристик можно вычислять для качественных признаков. Если признак качественный и номинальный, то для него можно найти только моду (ее значением будет название наиболее часто встречающейся категории номинального признака). Если признак ранговый, то кроме моды для него можно найти еще и медиану. Среднее арифметическое значение можно вычислять только для количественных признаков.

В случае количественных данных все характеристики среднего уровня измеряются в тех же единицах, что и сам исходный признак.

Значения коэф-тов совпадают, если график распределения симметричен.


3. Показатели неоднородности - дисперсия, среднее квадратическое (стандартное) отклонение, коэффициент вариации. В каких единицах они измеряются? Зачем вводится понятие коэффициента вариации?

· среднее квадратическое или стандартное отклонение ‑ мера разброса значений признака около среднего арифметического значения (принятые обозначения: Std.Dev. (standard deviation ), s или s). Величина этого отклонения вычисляется по формуле

.

· дисперсия признака (s 2 или s 2 )

· коэффициент вариации ‑ отношение стандартного отклонения к среднему арифметическому, выраженное в процентах (обозначается в статистике буквой V ). Коэффициент вычисляется по формуле: .

Все эти меры можно вычислять только для количественных признаков. Все они показывают, насколько сильно варьируют значения признака (а точнее - их отклонения от среднего) в данной совокупности. Чем меньше значение меры разброса, тем ближе значения признака у всех объектов к своему среднему значению, а значит, и друг к другу. Если величина меры разброса равна нулю, значения признака у всех объектов одинаковы.

Наиболее часто используется среднее квадратическое (или стандартное) отклонение s. Оно измеряется, как и среднее арифметическое, в тех же единицах, что и сам исходный признак. При изменении всех значений признака в несколько раз, точно так же изменится и стандартное отклонение, однако если все значения признака увеличить (уменьшить) на некоторую величину, его стандартное отклонение не изменится . Наряду со стандартным отклонением часто пользуются дисперсией (=его квадрату), однако на практике она является менее удобной мерой, т.к. единицы измерения дисперсии не соответствуют единицам измерения.

Смысл коэффициента вариации состоит в том, что он, в отличие от s, измеряет не абсолютную, а относительную меру разброса значений признака в статистической совокупности.

Чем больше V , тем совокупность менее однородна.

Однородная Переходная Неоднородная

V =0 – 30% V =30 – 50% V =50 – 100%

Может быть »100% (слишком неоднородная совокупность).


4. Понятие о выборочном методе. Репрезентативная выборка, методы её формированияю Два вида ошибок выборки. Доверительная вероятность.

Выборка:

Репрезентативная

Случайная

Механическая выборка – сходна со случайной выборкой (кажд. 10й, 20й и т.п.).

Естественная(то, что осталось от ГС с течением времени) выборки.

Репрезентативная выборка – точно отражает свойства генеральной совокупности.

Чтобы выборка правильно отражала основные свойства, присущие генеральной совокупности, она должна быть случайной , т.е. все объекты генеральной совокупности должны иметь равные шансы попасть в выборку

Выборки формируются с помощью спец. методик. Наиболее простым является случайный отбор, например, при помощи обычной жеребьевки (для небольших совокупностей) или с использованием таблиц случайных чисел. Для более обширных, но достаточно однородных совокупностей используется механический отбор (применявшийся еще в земской статистике). Для неоднородных совокупностей с определенной структурой чаще применяется типический отбор. Существуют и другие методы, в том числе - комбинации разных способов отбора на нескольких этапах построения выборочной совокупности.

В выборочных результатах всегда присутствуют ошибки. Эти ошибки можно разделить на два класса: случайные и систематические. К первым относятся случайные отклонения выборочных характеристик от генеральных, обусловленные самой природой выборочного метода. Величина случайной ошибки поддается вычислению (оценке). Систематические ошибки, наоборот, не носят случайного характера; они связаны с отклонением структуры выборки от реальной структуры генеральной совокупности. Систематические ошибки появляются тогда, когда нарушается основное правило случайного отбора - обеспечение для всех объектов равных шансов поапсть в выборку. Ошибки этого рода статистика не умеет оценивать.

Основными источниками систематических ошибок являются: а) неадекватность сформированной выборки задачам исследования; б) незнание характера распределения в генеральной совокупности и, как следствие, нарушение в выборке структуры генеральной совокупности; в) сознательный отбор наиболее удобных и выигрышных элементов генеральной совокупности.

Доверительная вероятность –


5. Доверительная вероятность. Средняя (стандартная) и предельная ошибки выборки. Доверительный интервал для оценки среднего значения в генеральной совокупности. Проверка гипотезы о статистической значимости различия двух выборочных средних.

Доверительный интервал - тот значений рассчитываемого коэф-та, в к-й, мы считаем,должно попасть это значение для ген. Совокуп-ти.

Доверительная вероятность – вероятность того, что значение рассчитываемого коэф-та для ген. Совокупности попадет в доверительный интервал. Чеи больше ДВ, тем больше ДИ.

Неизбежный разброс выборочных средних вокруг генеральной средней (т.е. стандартное отклонение выборочных средних) называется стандартной ошибкой выборки m , которая выражается формулой (s - среднее квадратическое отклонение, n - объем выборки). стандартная ошибка выборки тем меньше, чем меньше величина s (которая характеризует разброс значений признака) и чем больше объем выборки n .

Если выборочный метод используется для работы с неколичественными данными, то роль среднего арифметического значения в совокупности играет доля или частота q признака. Доля вычисляется как отношение числа объектов, обладающих данным признаком (), к числу объектов во всей совокупности: . Роль меры разброса играет величина .

В этом случае стандарная ошибка выборки m вычисляется по формуле:

Точность и надежность оценки параметров генеральной совокупности по выборке находятся в обратной зависимости: чем больше точность (т.е. чем меньше предельная ошибка и чем уже доверительный интервал), тем меньше надежность такой оценки (степень уверенности). И наоборот - чем ниже точность оценки, тем выше ее надежность. Часто доверительный интервал строят для надежности 95%, соответственно предельная ошибка выборки обычно равна удвоенной средней ошибке m ..

Доверительный интервал для оценки среднего значения в генеральной совокупности:

X (г.с.) = x (выб.) +-Δ = x (выб.) +- = X (выб.) +- σ(г.с.)/√ n

Критерий для разности средних значений

Часто возникает задача сравнения двух выборочных средних с целью проверки гипотезы о том, что эти выборки получены из одной и той же генеральной совокупности, а реальные расхождения в значениях выборочных средних объясняются случайностями выборок.

Испытуемую гипотезу можно сформулировать следующим образом: различие между выборочными средними случайно, т.е. генеральные средние в обоих случаях равны. В качестве статистической характеристики снова используется величина t , предсталяющая собой разность выборочных средних, деленную на усредненную стандартную ошибку среднего по обеим выборкам.

Фактическое значение статистической характеристики сравнивается с критическим значением, соответсвующим выбранному уровню значимости. Если фактическое значение больше, чем критическое, испытуемая гипотеза отклоняется, т.е. различие между средними считается значимым (существенным).


7. Корреляционная связь. Линейный коэффициент корреляции, его формула, пределы его значений. Коэффициент детерминации, его содержательный смысл. Понятие о статистической значимости коеффициента корреляции.

Коэффициент корреляции показывает, насколько тесно две переменных связаны между собой .

Коэффициент корреляции r принимает значения в диапазоне от -1 до +1. Если r = 1, то между двумя переменными существует функциональная положительная линейная связь, т.е. на диаграмме рассеяния соответствующие точки лежат на одной прямой с положительным наклоном. Если r = -1, то между двумя переменными существует функциональная отрицательная зависимость. Если r = 0, то рассматриваемые переменные линейно независимы , т.е. на диаграмме рассеяния облако точек "вытянуто по горизонтали".

Уравнение регрессии и коэффициент корреляции целесообразно вычислять лишь в том случае, когда зависимость между переменными может хотя бы приближенно считаться линейной. В противном случае результаты могут быть совершенно неверными, в частности коэффициент корреляции может оказаться близким к нулю при наличии сильной взаимосвязи. В особенности это характерно для случаев, когда зависимость имеет явно нелинейный характер (например, зависимость между переменными приблизительно описывается синусоидой или параболой). Во многих случаях эту проблему можно обойти, преобразовав исходные переменные. Однако, чтобы догадаться о необходимости подобного преобразования, т.е. для того чтобы узнать, что данные могут содержать сложные формы зависимости, их желательно “увидеть”. Именно поэтому исследование взаимосвязей между количественными переменными обычно должно включать просмотр диаграмм рассеяния.

Коэффициенты корреляции можно вычислять и без предварительного построения линии регрессии. В этом случае вопрос о интерпретации признаков как результативных и факторных, т.е. зависимых и независимых, не ставится, а корреляции понимается как согласованность или синхронность одновременного изменения значений признаков при переходе от объекта к объекту.

Если объекты характеризуются целым набором количественных признаков, можно сразу построить т.н. матрицу корреляции, т.е. квадратную таблицу, число строк и столбцов которой равно числу признаков, а на пересечении каждых строки и столбца стоит коэффициент корреляции соответствующей пары признаков.

Коэффициент корреляции не имеет содержательной интерпретации. Однако его квадрат, называемый коэффициентом детерминации (R 2 ), имеет.

коэффициентом детерминации (R 2) – это показатель того, насколько изменения зависимого признака объясняются изменениями независимого. Более точно, это доля дисперсии независимого признака, объясняемая влиянием зависимого .

Если две переменные функционально линейно зависимы (точки на диаграмме рассеяния лежат на одной прямой), то можно сказать, что изменение переменной y полностью объясняется изменением переменной x, а это как раз тот случай, когда коэффициент детерминации равен единице (при этом коэффициент корреляции может быть равен как 1, так и -1). Если две переменные линейно независимы (метод наименьших квадратов дает горизонтальную прямую), то переменная y своими вариациями никоим образом "не обязана" переменной x – в этом случае коэффициент детерминации равен нулю. В промежуточных случаях коэффициент детерминации указывает, какая часть изменений переменной y объясняется изменением переменной x (иногда удобно представлять эту величину в процентах).


8. Парная и множественная линейная регрессия. Коэффициент множественной корреляции. Содержательный смысл коэффициента регрессии, его значимость, понятие о t -статистике. Содержательный смысл коэффициента детерминации R 2.

Регрессионный анализ - Статистический метод, позволяющий строить объясняющие модели на основе взаимодействия признаков.

Самым простым случаем взаимосвязи является парная взаимосвязь , т.е. связь между двумя признаками. При этом предполагается, что взаимосвязь двух переменных носит, как правило, причинный характер т.е. одна из них зависит от другой. Первая (зависимая) называется в регрессионном анализе результирующей, вторая (независимая) - факторной . Следует заметить, что не всегда можно однозначно определить, какая из двух переменных является независимой, а какая - зависимой. Часто связь может рассматриваться как двунаправленная.

Уравнение парной регрессии : y = kx + b .

Чаще всего на зависимую переменную действуют сразу несколько факторов, среди которых трудно выделить единственный или главный Так, к примеру, доход предприятия зависит одновременно от двух факторов производства - числа рабочих и энерговооруженности. Причем оба этих фактора сами не являются независимыми друг от друга.

Уравнение множественной регрессии : y = k 1 · x 1 + k 2 · x 2 + … + b,

где x 1 , x 2 , . . . – независимые переменные, от которых в той или иной степени зависит исследуемая (результирующая) переменная y;

k 1 , k 2 . . . – коэффициенты при соответствующих переменных (коэффициенты регрессии ), показывающие, насколько изменится значение результирующей переменной при изменении отдельной независимой переменной на единицу.

Уравнение множественной регрессии задает регрессионную модель , объясняющую поведение зависимой переменной. Никакая регрессионная модель не в состоянии указать, какая переменная является зависимой (следствием), а какие – независимыми (причинами).

R – множественный коэф. корреляции, измеряет совокупность воздействия независимых признаков, тесноту связи результирующего признака со всей совокупностью независимых признаков, выраженных в %.

Показывает какова доля учтенных признаков в отделении результата, т.е. на сколько % вариация признака у объясняется вариациями учтенных признаков Х1, Х2, Х3.

T -статистика показывает уровень стат. значимости кажд. ккоэф-та регресии, т.е. его устойчивость по отношению к выборке.

T = b / Δb

Статистически значимыми явл-ся t >2. Чем больше коэф-т, тем лучше.

через R ² мы делаем заключение о том, на сколько % учтенные признаки объясняют результат.


9.Методы многомерного статистического анализа. Кластер-анализ. Понятие об иерархическом методе и о методе К-средних. Многомерная классификация с использованием нечетких множеств.

МСА :

Кластерный анализ

Факторный анализ

Многомерное шкалирование

Кластерный анализ – объединение объектов в группу с единой целью (признаков много).

Способы кластерного анализа:

1. иерархический (дерево иерархического анализа):

основная идея иерархического метода заключается в последовательном объединении группируемых объектов - сначала самых близких, а затем все более удаленных друг от друга. Процедура построения классификации состоит из последовательных шагов, на каждом из которых производится объединение двух ближайших групп объектов (кластеров ).

2. метод К-средних .

Требует заранее заданных классов (кластеров). Подчеркивает внутриклассовую дисперсию. основан на гипотезе о наиболее вероятном количестве классов. Задачей метода является построение заданного числа кластеров, которые должны максимально отличаться друг от друга.

Процедура классификации начинается с построения заданного числа кластеров, полученных путем случайной группировки объектов. Каждый кластер должен состоять из максимально "похожих" объектов, причем сами кластеры должны быть максимально "непохожими" друг на друга.

Результаты этого метода позволяют получить центры всех классов (а также и другие параметры дескриптивной статистики) по каждому из исходных признаков, а также увидеть графическое представление о том, насколько и по каким параметрам различаются полученные классы.

Если рез-ты классификаций, полученные разными методами совпадают, то это подтверждает реальн. Сущ-е групп (надежность, достоверность).


10. Методы многомерного статистического анализа. Факторный анализ, цели его использования. Понятие о факторных весах, пределы их значений; доля суммарной дисперсии, объясняемой факторами.

Многомерный статистический анализ. Его цель: построение упрощенного укрупненного ряда объектов.

МСА :

Кластерный анализ

Факторный анализ

Многомерное шкалирование

В основе факторного анализа лежит идея о том, что за сложными взаимосвязями явно заданных признаков стоит относительно более простая структура, отражающая наиболее существенные черты изучаемого явления, а "внешние" признаки являются функциями скрытых общих факторов, определяющих эту структуру.

Цель: переход от большего числа признаков к небольшому числу факторов.

в факторном анализе все величины, входящие в факторную модель, стандартизированы, т.е. являются безразмерными величинами со средним арифметическим значением 0 и средним квадратическим отклонением 1.

Коэффициент взаимосвязи между некоторым признаком и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой данного признака по данному общему фактору . Это число в интервале от -1 до 1. Чем дальше от 0, тем более сильная связь. Значение факторной нагрузки по некоторому фактору, близкое к нулю, говорит о том, что этот фактор практически на данный признак не влияет.

Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору. Факторные веса позволяют ранжировать, упорядочить объекты по каждому фактору. Чем больше факторный вес некоторого объекта, тем больше в нем проявляется та сторона явления или та закономерность, которая отражается данным фактором. Факторы являются стандартизованными величинами, не могут быть = нулю. Факторные веса, близкие к нулю, говорят о средней степени проявления фактора, положительные – о том, что эта степень выше средней, отрицательные – о том. что она ниже средней.

Таблица факторных весов имеет n строк по числу объектов и k столбцов по числу общих факторов. Положение объектов на оси каждого фактора показывает, с одной стороны, тот порядок, в котором они ранжированы по этому фактору, а с другой стороны, равномерность или же неравномерность в их расположении, наличие скоплений точек, изображающих объекты, что дает возможность визуально выделять более или менее однородные группы.


11. Виды качественных признаков. Номинальные признаки, примеры из исторических источников. Таблица сопряженности. Коэффициент связи номинальных признаков, пределы его значений.

Номинальные данные представлены категориями, для которых порядок абсолютно не важен. Для них не определен никакой другой способ сравнения, кроме как на буквальное совпадение/несовпадение.

Примеры номинальных переменных:

· Национальность: англичанин, белорус, немец, русский, японец и пр.

· Род занятий: служащий, врач, военный, учитель и т.д.

· Профиль образования: гуманитарное, техническое, медицинское, юридическое и т.д.

Если в случае с уровнем образования мы еще могли сравнивать людей в терминах "лучше-хуже" или "выше-ниже", то теперь мы лишены даже этой возможности; единственный корректный способ сравнения ‑ это говорить, что данные персоналии "все являются историками", или "все не являются юристами".

Таблицы сопряженности

Таблицей сопряженности называется прямоугольная таблица, по строкам которой указываются категории одного признака (например, разные социальные группы), а по столбцам - категории другого (например, партийная принадлежность). Каждый объект совокупности попадает в какую-либо из клеток этой таблицы в соответствии с тем, в какую категорию он попадает по каждому из двух признаков. Таким образом, в клетках таблицы стоят числа, представляющие собой частоты совместной встречаемости категорий двух признаков (число людей, принадлежащих конкретной социальной группе и входящих в определенную партию). В зависимости от характера распределения этих частот внутри таблицы можно судить о том, существует ли связь между признаками. Что означает связь между социальным статусом и партийной принадлежностью? В данном случае о наличии связи свидетельствовало бы наличии определенных политических пристрастий у членов разных социальных групп. Формально говоря, эта связь понимается как более частая (или наоборот, редкая) совместная встречаемость отдельных комбинаций категорий по сравнению с ожидаемой встречаемостью - ситуацией чисто случайного попадания объектов туда (например, более высокая доля крестьян в партии трудовиков, а дворян - в партии кадетов, чем доли этих социальных групп во всей совокупности депутатов Думы).


12. Виды качественных признаков. Ранговые признаки, примеры из исторических источников. В каких пределах находятся значения коэффициента ранговой корреляции? Какие коэффициенты следует использовать для оценки связи рангового и номинального признаков?

качественные (или категориальные) данные делятся на два типа: ранговые и номинальные.

Ранговые данные представлены категориями, для которых можно указать порядок, т.е. категории сравнимы по принципу "больше-меньше" или "лучше-хуже".

Примеры ранговых переменных:

· Оценки на экзаменах имеют явно выраженную ранговую природу и выражаются категориями типа: "отлично", "хорошо", "удовлетворительно" и т.д.

· Уровень образования может быть представлен как набор категорий: "высшее", "среднее" и т.п.

Несомненно, мы можем ввести ранговую шкалу и с ее помощью упорядочить всех людей, для которых мы знаем их уровень образования или балл на экзамене. Однако, верно ли, что оценка "хорошо" на столько же хуже, чем "отлично", насколько оценка "удовлетворительно" хуже, чем "хорошо"? Несмотря на то, что формально, в случае с оценками, можно получить разницу в баллах, вряд ли корректно измерять расстояние от "отличника" до "хорошиста" пользуясь теми же правилами, что для расстояния от Москвы до Петербурга. В случае с уровнем образования особенно отчетливо видно, что простые вычисления невозможны, поскольку не существует единого правила вычитания "среднего" уровня образования из "высшего", даже, если мы присвоим высшему образованию код "3", а среднему – код "2".

Своеобразие качественных данных не означает, что их нельзя анализировать с помощью математических и статистических методов.

Ряд объектов, упорядоченных в соответствии со степенью проявления некоторого свойства, называют ранжированным, каждому числу такого ряда присваивается ранг .

Меры взаимосвязи между парой признаков, каждый из которых ранжирует изучаемую совокупность объектов, называются в статистике коэффициентами ранговой корреляции .

Эти коэффициенты строятся на основе следующих трех свойств:

· если ранжированные ряды по обоим признакам полностью совпадают (т.е. каждый объект занимает одно и то же место в обоих рядах), то коэффициент ранговой корреляции должен быть равен +1, что означает полную положительную корреляцию:

· если объекты в одном ряду расположены в обратном порядке по сравнению со вторым, коэффициент равен -1, что означает полную отрицательную корреляцию;

· в остальных ситуациях значения коэффициента заключены в интервале [-1, +1]; возрастание модуля коэффициента от 0 до 1 характеризует увеличение соответствия между двумя ранжированными рядами.

Указанными свойствами обладают коэффициенты ранговой корреляции Спирмена r и Кедалла t .

Коэффициент Кедалла дает более осторожную оценку корреляции, чем коэффициент Спирмена (числовое значение t всегда меньше, чем r ).

Коэффициенты взаимосвязи качественных признаков

Для оценки связи качественных признаков необходим коэффициент, к-й имел бы определенный максимум в случае максимальной связи и позволял бы сравнивать между собой разные таблицы по силе связи между признаками. В данном случае нам подходит коэффициент Крамера V .

Базируясь на значении критерия хи-квадрат, коэффициент Крамера позволяет измерять силу связи между двумя категоризованными переменными - измерить ее числом, принимающим значения от 0 до 1, т.е. от полного отсутствия связи до максимальной сильной связи. Коэффициент позволяет сравнить зависимости разных признаков, с тем, чтобы выявить более и менее сильные связи.


13. Математическое моделирование исторических процессов и явлений. Определение понятия «модель». Три типа моделей, примеры их использования в исторических исследованиях.

14. Дифференциальные уравнения как основной инструмент построения математических моделей теоретического типа. Их особенности в сравнении с моделями иммитационного и статистического типа. Пример такой модели.

Последние материалы раздела:

Английский с носителем языка по skype Занятия английским по скайпу с носителем
Английский с носителем языка по skype Занятия английским по скайпу с носителем

Вы могли слышать о таком замечательном сайте для языкового обмена, как SharedTalk. К сожалению, он закрылся, но его создатель возродил проект в...

Исследовательская работа
Исследовательская работа " Кристаллы" Что называется кристаллом

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ Кристаллом (от греч. krystallos - "прозрачный лед") вначале называли прозрачный кварц (горный хрусталь),...

«Морские» идиомы на английском языке
«Морские» идиомы на английском языке

“Попридержи коней!” – редкий случай, когда английская идиома переводится на русский слово в слово. Английские идиомы – это интересная,...