Каковы условия протекания реакций в растворах электролитов. Реакции в растворах электролитов

Обычно электролитами называют вещества, проводящие в водном растворе электрический ток (многие соли, кислоты, основания), в противоположность неэлектролитам, не проводящим в растворе электрического тока (большинство органических соединений: сахар, спирты, глюкоза и др.).

Для объяснения свойств водных растворов электролитов Аррениус (1887 г.) предложил теорию, сущность которой сводится к следующим основным положениям:

1. Молекулы всех веществ, проводящих в водном растворе электрический ток, при растворении в воде в той или иной степени диссоциируют на ионы. Например:

2. Образующиеся при электролитической диссоциации ионы в отличие от нейтральных атомов и молекул имеют электрический заряд и поэтому обладают совершенно иными свойствами. Так, например, атомарный водород является энергичным восстановителем, в то время как ион водорода обладает окислительными свойствами. Поваренная соль, содержащая ион хлора, употребляется в пищу, тогда как свободный хлор (0,01% и выше) отравляет организм человека.

3. При пропускании электрического тока через раствор электролита положительно заряженные ионы направляются к отрицательному электроду (катоду), отрицательные ионы - к положительному электроду (аноду). Ионы, передвигающиеся к катоду, получили название катионов; ионы, передвигающиеся к аноду - анионов.

Положительно заряженные ионы получают электроны от катода, а отрицательно заряженные ионы отдают свои электроны аноду.

Теория Аррениуса не учитывала взаимодействие растворенного вещества с растворителем. На основе синтеза представлений Аррениуса и гидратной теории Д. И. Менделеева И. А. Каблуков (1891 г.) создал более точную теорию, согласно которой электролитическая диссоциация веществ на ионы сопровождается сольватацией ионов, т. е. взаимодействием последних с молекулами среды. Если средой является вода, то этот процесс называют гидратацией. Так, например, ион водорода в водном растворе соединяется с молекулой воды, образуя сложный ион гидроксония:

Катион бериллия образует тетрагидрат , ион - гексагидрат .

Количественной характеристикой равновесного состояния водного раствора электролита является степень диссоциации (а), т. е. отношение количества молекул, распавшихся на ионы, к общему количеству растворенных молекул. Так, для электролита, у которого половина всех молекул в растворе распалась на ионы, а=0,5. Эту величину часто умножают на 100 и таким образом выражают диссоциированную часть молекул в процентах от их общего числа. Так, например, если из каждых 100 молекул, растворенных в воде, 80 диссоциировано на ионы, то степень диссоциации равна , или же .

Таким образом, показывает, какая часть растворенных молекул распалась на ионы. Степень электролитической диссоциации зависит от природы растворенного вещества, растворителя, концентрации и температуры раствора.

При разбавлении раствора степень электролитической диссоциации увеличивается.

По величине степени диссоциации электролиты делятся на сильные, средние и слабые.

Таблица 1. Степень электролитической диссоциации (а) в 0,1 н. растворах

При смешении растворов сильных электролитов их ионы вступают в реакцию. В результате различных на первый взгляд реакций нередко образуются одни и те же вещества. Возьмем, например, реакции:

Во всех этих реакциях происходит образование белого, практически нерастворимого в воде осадка хлористого серебра .

С точки зрения теории электролитической диссоциации в водных растворах протекают реакции не между самими электролитами, а между образованными ими ионами. Так, в приведенных выше реакциях растворы солей серебра, наряду с другими ионами, содержали ионы серебра , а растворы хлоридов - ионы хлора . Ионы серебра и хлора, взаимодействуя между собой, во всех случаях дают осадок хлористого серебра. На основе этой реакции можно при помощи ионов серебра открыть присутствие в растворе ионов хлора, и, наоборот, при помощи ионов хлора открыть ионы серебра. Если же хлор входит в состав других ионов или недиссоциированных молекул, то с помощью ионов серебра открыть его присутствие невозможно. Например, в реакции между нитратом серебра и бертолетовой солью осадка хлорида серебра не образуется. Объясняется это тем, что бертолетова соль в растворе не образует ионов хлора, а диссоциирует следующим образом:

При реакциях между ионами в растворах электролитов возможны следующие случаи: 1) образующиеся вещества - сильные электролиты, хорошо растворимые в воде и полностью диссоциирующие на ионы; 2) одно из образующихся веществ - газ, осадок, слабый электролит (растворимый в воде) или комплексный ион.

Рассмотрим конкретные примеры.

1. Реакция между растворами нитрата калия и хлорида натрия (сильные электролиты) в молекулярной форме выразится уравнением:

Так как все участвующие в этой реакции соли являются сильными электролитами, то в ионном виде уравнение данной реакции можно записать так:

Как показывает это уравнение, в растворе до и после смешения солей находятся только ионы:

При сливании растворов и не образуется ни нерастворимых соединений, ни слабодиссоциирующих веществ, ни газов. Следовательно, в данном случае не происходит и реакции.

2. Образующиеся в результате реакции газ, осадок, слабый электролит или комплексный ион уходят из сферы реакции. Например, при взаимодействии кристаллического и концентрированной практически можно (при нагревании) сдвинуть равновесие вправо, так как хлороводород - газообразное вещество, которое улетучивается из сферы реакции:

Из сферы реакции

сульфат бария удаляется в виде осадка. Здесь равновесие практически сдвинуто вправо ввиду малой растворимости . В ионномолекулярном виде уравнение этой реакции записывается следующим образом:

Концентрации ионов водорода и хлора в процессе реакции остаются неизменными, поэтому из уравнения реакции их можно исключить. Тогда уравнение примет следующий вид:

Это последнее и представляет собой ионное уравнение образования осадка.

В качестве примера реакции с образованием слабо диссоциирующего вещества можно привести нейтрализацию сильной кислоты сильным основанием:

Реакцией с образованием комплексного иона, например, является получение гексациано- феррата калия (желтой кровяной соли)

В обменных реакциях приходится встречаться и с такими процессами, при которых труднорастворимые находятся как среди исходных, так и конечных продуктов реакции:

В подобных реакциях равновесие смещается в сторону образования того вещества, которое менее растворимо. В первой реакции равновесие смещено справа налево, так как растворимость намного меньше, чем (см. приложение 4 в конце книги).

Во второй реакции, наоборот, равновесие смещено слева направо, ибо более растворим, чем .

При написании уравнений реакций, протекающих между ионами в растворах электролитов, руководствуются правилом:

Реакции между ионами в растворах электролитов идут практически до конца в сторону образования газов, осадков, слабых электролитов или комплексных ионов - вообще в сторону образования продуктов, уходящих из сферы реакции.

Иными словами, равновесие реакции смещается в сторону образования веществ с меньшей концентрацией ионов в растворе.

Реакции, которые протекают одновременно в противоположных направлениях, называются обратимыми.

Такие реакции обозначаются противоположно направленными стрелками.

Реакцию, протекающую слева направо, называют прямой, а противоположную - обратной.

Такое состояние системы, при котором скорости прямой и обратной реакций равны, называется химическим равновесием.

Химическое равновесие является динамическим равновесием и обусловливается не тем, что процесс прекращается, а равенством скоростей двух противоположных процессов; число образующихся в единицу времени молекул при этом равно числу распадающихся. По достижении химического равновесия состав системы не изменяется.

Обратимая реакция, протекающая в растворе электролита, может быть выражена общим уравнением:

где А и В - исходные вещества, С и D - образующиеся вещества.

Обозначим молярные концентрации вещества А, В, С и D через ; скорость прямой реакции через , скорость обратной реакции - через . Тогда скорость прямой реакции будет пропорциональна произведению концентраций реагирующих веществ: , где К - коэффициент пропорциональности, или так называемая константа скорости реакции, зависящая от природы взаимодействующих веществ и от условий реакции (температуры, давления и катализатора). Скорость обратной реакции взаимодействия с образованием выразится уравнением: , где - также коэффициент пропорциональности.

Скорость реакции пропорциональна произведению концентрации реагирующих веществ. Поскольку концентрации вещества в начале реакции максимальны, максимальна и скорость прямой реакции . По мере взаимодействия между А и В (и образования веществ С и D) концентрации вещества А и В постепенно уменьшаются, а вместе с тем уменьшается и скорость прямой реакции.

Напротив, скорость обратной реакции вначале равна нулю и увеличивается с возрастанием концентраций веществ С и D, получающихся в результате реакции между А и В. Таким образом, в обратимом химическом процессе скорость прямой реакции постепенно уменьшается, а обратной - возрастает.

Уменьшение скорости прямой реакции и увеличение обратной приводят к установлению в системе динамического равновесия. При равновесии скорости обеих реакций равны, т. е. , а следовательно,

Так как и - постоянные величины, то их отношение является также величиной постоянной. Обозначив ее буквой К , получим

Это уравнение в математической форме выражает закон действия масс, который в наиболее общей форме можно формулировать следующим образом.

При обратимых реакциях равновесие наступает тогда, когда отношение произведения равновесных концентраций образующихся веществ к произведению концентраций веществ, вступающих в реакцию, становится равным некоторой постоянной для данной химической реакции величине КУ называемой константой химического равновесия.

Величина К меняется с температурой и давлением, а от концентрации реагирующих веществ не зависит.

Сущность константы химического равновесия состоит в том, что если изменить концентрацию одного из компонентов, участвующих в равновесии, то, в свою очередь, концентрации всех других компонентов изменятся таким образом, что К останется постоянной, т. е. сохранит свое прежнее значение.

Для обратимой реакции, в которой вещества участвуют в количестве не одной, а нескольких грамм-молекул, например , где число грамм-молекул веществ А, В, С и D, участвующих в реакции, уравнение равновесия принимает вид:

Закон действия масс имеет важное значение в химии. Однако он строго соблюдается только для неэлектролитов и слабых электролитов в разбавленных растворах. Сильные электролиты и слабые электролиты в концентрированных растворах закону действия масс не подчиняются.

Величина константы электролитической диссоциации сильных электролитов не остается постоянной для разных концентраций. Так, например, для 3,2, 0,1 и 0,01 н. растворов хлористого калия (при ) константы электролитической диссоциации соответственно равны 4,31; 3,52; 2,34; 0,536; 0,152.

Напротив, константы электролитической диссоциации слабых электролитов, в пределах погрешностей опыта, постоянны, т. е. не зависят от концентрации раствора. Например, константа диссоциации уксусной кислоты для 1, 0,1, 0,01 н. растворов равна . Следовательно, относительные количества компонентов в равновесной системе сильного электролита меняются в зависимости от концентрации раствора не так, как это должно было бы быть по закону действия масс.

В настоящее время считают, что все сильные электролиты, независимо от концентрации их растворов, диссоциированы практически нацело. Кажущимся противоречием этому положению является то, что степень электропроводности растворов сильных электролитов на практике оказывается меньше той, которая должна быть в случае полной электролитической диссоциации данного электролита. Это, однако, объясняется тем, что в растворах сильных электролитов, несмотря на их почти полную диссоциацию, с увеличением концентрации раствора расстояние между ионами уменьшается, а потому электростатическое притяжение между разноименно заряженными ионами возрастает. Вследствие этого с увеличением концентрации подвижность ионов, а следовательно, и электропроводность сильных электролитов уменьшается. В силу электростатического притяжения между заряженными ионами вокруг каждого из них группируются ионы с противоположным знаком, образуя так называемую ионную атмосферу, или ионное облако. Так, например, в растворе хлористого натрия вокруг ионов натрия создается ионная атмосфера из ионов хлора, а вокруг хлора группируются ионы натрия. Чем больше концентрация вещества в растворе, тем плотнее ионная атмосфера и тем медленнее движение ионов. Наоборот, в разбавленных растворах расстояния между противоположно заряженными ионами настолько велики и притяжение между ними так мало, что практически сводятся к нулю; поэтому электропроводность сильных электролитов при разбавлении растворов повышается.

Таким образом, чем электролит меньше диссоциирован и раствор больше разбавлен, тем меньше межионное электрическое влияние, а следовательно, и меньше отклонений от закона действия масс; наоборот, чем более раствор концентрирован, тем сильнее межионное влияние и тем больше отклонений от закона действия масс.

Действующая, активная концентрация, или, как ее обыкновенно именуют, активность, как правило, не равна- обычной концентрации, представляющей собой простое отношение количества взятого вещества к объему, в котором оно находится. Хотя это расхождение в большинстве случаев и не очень значительно, однако в строгих и точных количественных расчетах принято пользоваться не концентрациями, а активностями. Их подробное рассмотрение см. в курсе физической химии. Здесь мы ограничимся лишь общим фундаментальным соотношением, относящимся к данной области химии, согласно которому активность (а) равна молярной концентрации (с), умноженной на коэффициент активности :

Коэффициент активности показывает, насколько поведение ионов в растворе при данной концентрации отклоняется от их поведения при бесконечном разбавлении.

Коэффициент активности меньше единицы, но при бесконечном разбавлении раствора, когда силы притяжения между ионами приближаются к нулю, концентрация и активность равиы друг другу: а=с. В этом случае коэффициент активности равен единице.

Коэффициент активности может быть определен различными методами (из измерений электродвижущих сил, температур кипения и замерзания растворов, понижения упругости пара и др.). Его величина зависит от концентрации раствора, его общего состава, температуры, давления и т. д.

Величину коэффициентов активности отдельных ионов нельзя определить, так как получаются результаты для вещества в целом. Однако для очень разбавленных растворов значения коэффициентов активности отдельных ионов можно вычислить теоретически по приближенному уравнению (Дебая и Гюккеля):

где Z - заряд иона, - ионная сила раствора.

Из отдельных значений коэффициентов активности получить средний коэффициент активности сильного электролита типа можно при помощи уравнения

где М и А означают соответственно катион и анион, х и у - число катионов и анионов, образующихся при диссоциации одной молекулы.

Понятие ионной силы введено для характеристики зависимости активности иона от концентрации всех находящихся в растворе электролитов.

Формула для вычисления ионной силы имеет вид:

где - ионная сила, Z - заряд иона и с - концентрация ионов, .

В качестве примера рассмотрим, чему равна ионная сила 0,03 М раствора

С увеличением концентрации раствора при полной диссоциации молекул число ионов растет, а следовательно, увеличивается ионная сила раствора и. уменьшается активность ионов. . Наоборот, при увеличении концентрации (числитель) для сохранения постоянства К должен увеличиться знаменатель, и в результате реакция пойдет справа налево. Вследствие уменьшения концентрации интенсивно красный цвет раствора будет бледнеть или совершенно исчезнет. Таким образом, для смещения равновесия любой обратимой реакции слева направо надо увеличить концентрацию одного или нескольких веществ, стоящих слева от знака обратимости, или уменьшить концентрацию одного из веществ правой части уравнения.

Общую формулировку влияния температуры, давления и концентрации на равновесную систему дает принцип Ле Шателье:

Если на равновесную систему оказывать какое-либо воздействие извне, то внутри системы возникают процессы, которые противодействуют внешнему воздействию.

Из уравнения

видно, что соединение водорода с азотом сопровождается выделением, а распад аммиака на водород и азот - поглощением тепла. В этом случае сообщение тепла извне сдвигает равновесие влево, т. е. благоприятствует эндотермической реакции. Наоборот, охлаждение системы способствует более полному образованию аммиака, т. е. экзотермической реакции.

Для всякой равновесной системы при нагревании равновесие смещается в сторону эндотермической реакции, при охлаждении - в сторону экзотермической.

В рассматриваемой системе взаимодействуют (левая часть уравнения) 4 объема газа, образуется же только (правая часть уравнения) 2 объема газа. При увеличении давления равновесие сместится в сторону образования аммиака, при уменьшении давления - в сторону его распада.

При увеличении концентрации одного из участвующих в равновесной системе веществ равновесие смещается в сторону реакции, ведущей к уменьшению концентрации того же вещества. Напротив, уменьшение концентрации одного из участвующих в равновесии веществ вызывает смещение равновесия в сторону образования этого вещества. Так, например, в реакции

при увеличении концентрации равновесие смещается вправо - в сторону образования СО и , вследствие чего общая концентрация понизится; при уменьшении же концентрации равновесие сдвигается влево, в сторону образования .

Если химическое равновесие обратимой реакции сильно смещается в одну сторону, то она при данных условиях представляется нам необратимой, т. е. протекающей в одном направлении.

Вообще же при общем рассмотрении этого вопроса следует иметь в виду, что подавляющее большинство химических реакций являются обратимыми, но их равновесие часто настолько сильно сдвинуто в одну сторону, что практически мы их обратимость не замечаем до тех пор, пока не изменим условия. Однако имеются и необратимые реакции, идущие до конца, когда из образовавшихся продуктов невозможно при возвращении к прежним условиям получить исходное вещество, невозможно заставить реакцию идти в обратном направлении. Примером необратимой реакции является реакция разложения при нагревании бертолетовой соли:

Из и вновь получить нельзя.

Реакции обмена – это реакции, которые идут без изменения степени окисления элементов. Цель любого химического процесса получить новое вещество , которое можно выделить из реакционной системы. В растворах электролитов химические реакции протекают между ионами. Если в реакции участвует слабый электролит, основная масса которого находится в молекулярной форме, то при протекании реакции происходит смещение диссоциации слабого электролита в сторону ионной формы.

Любое взаимодействие между электролитами – это взаимодействие между противоположно заряженными ионами. Такие реакции называются ионными реакциями, а уравнения этих реакций записываются в виде молекулярных, полных ионных и сокращенных (кратких) ионных уравнений. В ионных уравнениях слабые электролиты (осадок, газ и малодиссоциирующие (слабые) соединения) всегда записывают в молекулярнойформе.

Реакции обмена в растворах электролитов протекают в направлении образования слабого или более слабого электролита. Количественной оценкой «слабости» электролита являются константа диссоциации - К дис, растворимость (Р) или произведение растворимости (ПР) труднорастворимых электролитов, константа нестойкости (диссоциации) комплексного иона и др константы, о которых еще будет сказано ниже. Необратимые реакции обмена в растворах электролитов можно разделить на три типа:

1. сильный электролит + сильный электролит = сильный электролит + слабый электролит ,

ионная форма ионная форма ионная форма молекулярная форма

2. сильный электролит + слабый электролит = сильный электролит + слабый электролит ,

ионная форма молекулярная форма ионная форма молекулярная форма

3. слабый электролит + слабый электролит = сильный электролит + слабый электролит .

молекулярная форма молекулярная форма ионная форма молекулярная форма

Приведем пример составления уравнений реакций обмена (1 тип):

NaC1 + АgNО 3 ↔ АgСl+ NаNО 3 - молекулярное уравнение

соль (Р) соль (Р) соль (Н) соль (Р)

электролитсильный сильный слабый сильный

состояние в растворе ионное ионное молек-ное ионное

Na + + C1 - + Аg + + NО 3 - ↔ АgСl+ Nа + NО 3 - полное ионно - молекулярное

Аg + + С1‾ ↔ АgСl сокращенное ионное

Сокращенное ионное уравнение отражает суть химических превращений в растворе. Для приведенного примера, сокращенное уравнение показывает, что в реакции только ионы Аg + и С1‾ изменили свое состояние – из ионного состояния в исходном растворе (АgNО 3 , NaC1)перешли в молекулярное (АgСl). Кроме того, сокращенное уравнение говорит, что при взаимодействии любого сильного электролита, содержащего катион Аg + с сильным электролитом, содержащим анион CI - (КCI, CaCI 2 , AICI 3 и др.) обязательно выпадет белый творожистый осадок труднорастворимой соли АgCI↓.

Пример 1 Составьте молекулярные и ионные уравнения реакций обмена между а). карбонатом натрия и сернистой кислотой; б) уксусной кислотой и гидроксидом аммония. Укажите причину необратимости реакции.

Решение: а) Na 2 CO 3 + H 2 SO 3 ↔ Na 2 SO 3 + H 2 CO 3 молекулярное

сильный слабый сильный слабый

2Na + + CO 3 2- + H 2 SO 3 ↔ 2Na + + SO 3 2- + H 2 CO 3 полное ионно - молекулярное

CO 3 2- + H 2 SO 3 = SO 3 2- + H 2 CO 3 сокращенное ионно – молекулярное.

Реакция необратима, так как Кдис (H 2 CO 3) < Кдис (H 2 SO 3).

б). CH 3 COOH + NH 4 OH ↔ CH 3 COONa + H 2 O

слабый слабый сильный слабый

Кдис =10 -5 К дис =10 -5 К дис =10 -16

CH 3 COOH + NH 4 OH ↔ CH 3 COO - + NH 4 + + H 2 O сокращенное ионно – молекулярное.

Реакция необратима, так как Кдис (CH 3 COOH) > Кдис (H 2 O) и Кдис (NH 4 OH) > Кдис (H 2 O).

Реакции ионного обмена в растворах электролитов.

Условия их прохождения.

Ионные уравнения.

Цель:

    выяснить, в чем сущность реакций ионного обмена; условия необратимости реакций ионного обмена;

    сформировать умение предсказывать обратимость химических реакций;

    научиться составлять полные и сокращенные ионные уравнения;

    формировать у учащихся умения адекватно анализировать свою деятельность в соответствии с достижениями цели урока составлять алгоритм своих действий и использовать его для решения проблемы,

    формировать умения общаться высказывать свою точку зрения, кратко излагать ее, учиться слушать товарищей, выражать свое мнение.

Оборудование:

Структура урока:

30 минут.

1.Постановка проблемы перед учащимися.

2. Краткое решение проблемного вопроса, установка темы и целей урока.

3. Актуализация опорных знаний. Работа с терминами.

4. Самостоятельная работа по карточкам, проверка знаний учащихся.

5. Сообщение учащихся по теме: «Новости в сфере электролитов».

30 минут.

6. Изучение нового материала, решение ионных уравнений на доске, демонстрация обратимых реакций.

7. Тренажер.

30 минут.

8.Закрепление материала, выполнение лабораторной работы по дифференцированным заданиям.

9. Обобщение и систематизация материала.

10.Рефлексия.

11. Домашнее задание.

12.Подведение итогов урока.

Ход урока:

30 минут.

1 .Наш сегодняшний урок мы начнем не совсем обычно. Я не буду говорить тему и цели урока, а просто столкну вас с небольшой проблемой, решить которую нам с вами предстоит. А вы уже сами постараетесь определить тему, цели и задачи нашего урока.

Напомню только, что мы с вами изучаем электролитическую диссоциацию и электролиты. Как же реагируют электролиты между собой, вступают ли они в химические реакции?

Демонстрация : осуществим три реакции:

Опыт 1. Смешивание растворов CuSO 4 и NaOH.

Опыт 2. Смешивание растворов Na 2 CO 3 и HCl.

Опыт 3. К раствору NaOH добавляют фенолфталеин и приливают раствор HCl.

Что мы наблюдаем в результате каждой из реакций? Осадок, газ, реакция нейтрализации, в результате которой получается вода (слабодиссоциирующее вещество)

Есть ли признаки реакции?

К какому типу реакций относятся реакции, проведенные в опыте?

Какие частицы находятся в растворах электролитов?

Что же является предметом разговора сегодня на уроке? Как же мы сформулируем тему урока?

Какие цели ставит перед собой наш урок?

Формулируем тему и цель урока, пишем тему в тетради.

3. Актуализация опорных знаний, работа по терминам.

Термины: электролиты, неэлектролиты, ЭЛД, кислоты, основания, соли с точки зрения ЭЛД, сильные и слабые электролиты, степень диссоциации, ионы, катионы, анионы.

4. Самостоятельная работа по карточкам, задания дифференцированы по вариантам.

Вариант 1. 4-6 баллов.

Составьте уравнения электролитической диссоциации предложенных веществ:

NaOH= KOH=

CaCl2= K2SO4=

Вариант 2. 7 – 9 баллов.

Составьте формулы солей, образованных следующими металлами и кислотами, и напишите уравнения их диссоциации:

А. Алюминий и сульфатная кислота.

Б. Барий и нитратная кислота.

В. Магний и хлоридная кислота.

Г.Натрий и сульфитная кислота.

Д. Ферум (2) и нитратная кислота.

Е. Литий и фосфатная кислота.

Вариант 3. 10- 12 баллов.

В растворе обнаружены ионы Na +, Ca 2+, H +, CL -, SO 4 2-, OH -. При растворении каких веществ могли образоваться такие ионы. Напишите формулы этих веществ, укажите класс, к которому они относятся, и составьте уравнения их ЭЛД.

Краткий анализ самостоятельной работы, самоанализ учащихся их самостоятельное оценивание своей работы.

5. Сообщение учащихся по теме: «Новости в сфере электролитов».

30 минут.

6. Изучение нового материала.

Итак, тема и цель урока нам известны. Попытаемся же выяснить, что такое реакции ионного обмена.

Реакции ионного обмена – это реакции между ионами в растворах электролитов.

Мы уже выяснили, что эти реакции проходят при условии выпадения осадка, выделения газа или образования малодиссоциирующего вещества – воды. В таком случае они проходят только в одном направлении и являются необратимыми.

Рассмотрим более подробно механизм прохождения таких реакций.

Работа у доски: составим уравнение между купрум сульфатом и натрий гидроксидом в молекулярном виде . А теперь распишем вещества в виде ионов, в котором они присутствуют в растворе. Это полное ионное уравнение. Внимание – купрум (2) гидроксид не растворим, выпадает в осадок и на ионы не диссоциирует. Обратите внимание, какие ионы остались без изменения в растворе? Их можно сократить. Перепишем то, что осталось. У нас получилось сокращенное ионное уравнение.

Сокращенное ионное уравнение показывает истинную суть химической реакции, то есть, какие именно ионы реально реагируют между собой.

Почему это реакция необратимая? Потому что, ряд ионов уходит из реакционной среды (осадок), и реакция проходит только в одном, прямом направлении.

Таким же образом учащиеся разбирают уравнения взаимодействия натрий карбоната и хлоридной кислоты и реакцию нейтрализации натрий гидроксида и хлоридной кислоты. Отмечают условия прохождения этих реакций, выделение газа и образование воды. Вода на ионы не диссоциирует, газ выводится из реакционной среды, реакция проходит в одном направлении. Составляются полные и сокращенные ионные уравнения. Разбирается суть этих химических реакций. Можно обратить внимание на то, что какая бы кислота и основание не брались для реакции нейтрализации, сокращенное ионное уравнение будет одно и тоже, а значит и суть реакции нейтрализации одинакова.

Демонстрация. Смешаем два раствора – калий нитрата и натрий сульфата. Наблюдаем ли мы признаки химической реакции? Можно ли утверждать, что проходит химическая реакция?

Составим молекулярное, полное и сокращенное ионное уравнение этой реакции. Мы видим, что все ионы остаются в растворе без изменения. То есть фактически, мы получаем раствор, содержащий набор ионов, которые не реагируют друг с другом, и такая реакция может протекать, как в прямом, так и в обратном направлении, то есть является обратимой.

7. Тренажер.

Работа с учебником: № 94, (а, б), страница 61. Даны сокращенные ионные уравнения. По этим схемам подобрать необходимые вещества и составить молекулярные и полные ионные уравнения.

30 минут.

8. Закрепление и отработка материала, выполнение лабораторной работы по группам, с дифференцированными заданиями.

Лабораторный опыт № 2, 3, 4, : «Реакции ионного обмена, которые сопровождаются выпадением осадка, выделением газа и образованием воды».

Оформление Л.р. в тетради, указать тему и цель работы, оборудование.

Вариант 1. 4-7 баллов.

Осуществите практически такие реакции, укажите условия их прохождение, напишите молекулярные, полные и сокращенные ионные уравнения.

Вариант 2. 7 – 9 баллов.

Какие из предложенных реакций практически осуществимы? Проведите их на практике, укажите условия их прохождение, напишите молекулярные, полные и сокращенные ионные уравнения.

Na2SO4 + CuCL2 =

Na2 CO3 + H2SO4 =

Ba(NO3)2 + KCL =

Вариант 3 . 10 – 12 баллов.

Осуществите практически реакции, которые отвечают данным сокращенным инонным уравнениям, укажите условия их прохождение, напишите молекулярные, полные и сокращенные ионные уравнения.

Самоанализ лабораторной работы, выборочно заслушать выводы по работе и уроку.

9. Обобщение и систематизация материала.

Какова была тема и цель урока?

Достигли ли мы поставленной цели?

Что нового вы узнали на уроке? Чему научились?

Что такое реакции ионного обмена?

При каких условиях они протекают до конца?

Что такое полные и сокращенные ионные уравнения?

В чем суть сокращенного ионного уравнения?

Что такое необратимые реакции?

Что такое обратимые реакции?

– В чем суть обратимых реакций?

10.Рефлексия.

11. Домашнее задание. П.9, 10. 3№ 93(а, б) – 4-6 баллов, № 95 , - 7-9 балов, № 98 – 10 – 12 баллов.

12.Подведение итогов урока.

Министерство образования Автономной Республики Крым.

Урок для 9 классов


1. Записывают формулы веществ, вступивших в реакцию, ставят знак «равно» и записывают формулы образовавшихся веществ. Расставляют коэффициенты.

2. Пользуясь таблицей растворимости, записывают в ионном виде формулы веществ (солей, кислот, оснований), обозначенных в таблице растворимости буквой «Р» (хорошо растворимые в воде), исключение – гидроксид кальция, который, хотя и обозначен буквой «М», все же в водном растворе хорошо диссоциирует на ионы.

3. Нужно помнить, что на ионы не разлагаются металлы, оксиды металлов и неметаллов, вода, газообразные вещества, нерастворимые в воде соединения, обозначенные в таблице растворимости буквой «Н». Формулы этих веществ записывают в молекулярном виде. Получают полное ионное уравнение.

4. Сокращают одинаковые ионы до знака «равно» и после него в уравнении. Получают сокращенное ионное уравнение.

5. Помните!

Р - растворимое вещество;

М - малорастворимое вещество;

ТР - таблица растворимости.

Алгоритм составления реакций ионного обмена (РИО)

в молекулярном, полном и кратком ионном виде


Примеры составления реакций ионного обмена

1. Если в результате реакции выделяется малодиссоциирующее (мд) вещество – вода.

В данном случае полное ионное уравнение совпадает с сокращенным ионным уравнением.

2. Если в результате реакции выделяется нерастворимое в воде вещество.


В данном случае полное ионное уравнение реакции совпадает с сокращенным. Эта реакция протекает до конца, о чем свидетельствуют сразу два факта: образование вещества, нерастворимого в воде, и выделение воды.

3. Если в результате реакции выделяется газообразное вещество.




ВЫПОЛНИТЕ ЗАДАНИЯ ПО ТЕМЕ "РЕАКЦИИ ИОННОГО ОБМЕНА"

Задание №1.
Определите, может ли осуществляться взаимодействие между растворами следующих веществ, записать реакциив молекулярном,полном, кратком ионном виде:
гидроксид калия и хлорид аммония.

Решение

Составляем химические формулы веществ по их названиям, используя валентности и записываем РИО в молекулярном виде (проверяем растворимость веществ по ТР):

KOH + NH4 Cl = KCl + NH4 OH

так как NH4 OH неустойчивое вещество и разлагается на воду и газ NH3 уравнение РИО примет окончательный вид

KOH (p) + NH4 Cl (p) = KCl (p) + NH3 + H2 O

Cоставляем полное ионное уравнение РИО, используя ТР (не забывайте в правом верхнем углу записывать заряд иона):

K+ + OH- + NH4 + + Cl- = K+ + Cl- + NH3 + H2 O

Cоставляем краткое ионное уравнение РИО, вычёркивая одинаковые ионы до и после реакции:

OH - + NH4 + = NH3 + H2 O

Делаем вывод:
Взаимодействие между растворами следующих веществ может осуществляться, так как продуктами данной РИО являются газ (NH3 ) и малодиссоциирующее вещество вода (H2 O).

Задание №2

Дана схема:

2H + + CO3 2- = H 2 O + CO 2

Подберите вещества, взаимодействие между которыми в водных растворах выражается следующими сокращёнными уравнениями. Составьте соответствующие молекулярное и полное ионное уравнения.

Используя ТР подбираем реагенты - растворимые в воде вещества, содержащие ионы 2H + и CO 3 2- .

Например, кислота - H 3 PO 4 (p) и соль -K 2 CO 3 (p).

Составляем молекулярное уравнение РИО:

2H 3 PO 4 (p) +3 K 2 CO 3 (p) -> 2K 3 PO 4 (p) + 3H 2 CO 3 (p)

так как угольная кислота – неустойчивое вещества, она разлагается на углекислый газ CO 2 и воду H 2 O, уравнение примет окончательный вид:

2H 3 PO 4 (p) +3 K 2 CO 3 (p) -> 2K 3 PO 4 (p) + 3CO 2 + 3H 2 O

Составляем полное ионное уравнение РИО:

6H + +2PO 4 3- + 6K + + 3CO 3 2- -> 6K + + 2PO 4 3- + 3CO 2 + 3H 2 O

Составляем краткое ионное уравнение РИО:

6H + +3CO 3 2- = 3CO 2 + 3H 2 O

2H + +CO 3 2- = CO 2 + H 2 O

Делаем вывод:

В конечном итоге мы получили искомое сокращённое ионное уравнение, следовательно, задание выполнено верно.

Задание №3

Запишите реакцию обмена между оксидом натрия и фосфорной кислотой в молекулярном, полном и кратком ионном виде.

1. Составляем молекулярное уравнение, при составлении формул учитываем валентности (см. ТР)

3Na 2 O (нэ) + 2H 3 PO 4 (р) -> 2Na 3 PO 4 (р) + 3H 2 O (мд)

где нэ - неэлектролит, на ионы не диссоциирует,
мд - малодиссоциирующее вещество, на ионы не раскладываем, вода - признак необратимости реакции

2. Составляем полное ионное уравнение:

3Na 2 O + 6H + + 2PO 4 3- -> 6Na + + 2PO4 3- + 3H 2 O

3. Сокращаем одинаковые ионы и получаем краткое ионное уравнение:

3Na 2 O + 6H + -> 6Na + + 3H 2 O
Сокращаем коэффициенты на три и получаем:
Na
2 O + 2H + -> 2Na + + H 2 O

Данная реакция необратима, т.е. идёт до конца, так как в продуктах образуется малодиссоциирующее вещество вода.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание №1

Взаимодействие карбоната натрия и серной кислоты

Составьте уравнение реакции ионного обмена карбоната натрия с серной кислотой в молекулярном, полном и кратком ионном виде.

Задание №2

ZnF 2 + Ca(OH) 2 ->
K
2 S + H 3 PO 4 ->

Задание №3

Посмотрите следующий эксперимент

Осаждение сульфата бария

Составьте уравнение реакции ионного обмена хлорида бария с сульфатом магния в молекулярном, полном и кратком ионном виде.

Задание №4

Закончите уравнения реакций в молекулярном, полном и кратком ионном виде:

Hg(NO 3 ) 2 + Na 2 S ->
K
2 SO 3 + HCl ->

При выполнении задания используйте таблицу растворимости веществ в воде. Помните об исключениях!

Ионно-молекулярные уравнения химических реакций

Как вы уже изучали в 8 классе, реакции обмена между солями, кислотами и основаниями в растворах происходят при условии, если в результате реакции:

Образуется вода;

Выпадает осадок (нерастворимое в воде вещество);

Выделяется газ.

Рассмотрим, как проходят реакции обмена между растворами электролитов с позиций теории электролитической диссоциации. Для этого составляют ионно-молекулярные уравнения: в молекулярном уравнении реакции формулы сильных электролитов заменяют формулами ионов, на которые диссоциируют эти электролиты, а другие вещества (осадки, газы, слабые электролиты, оксиды и т. п.) оставляют в молекулярной форме.

Составим ионно-молекулярное уравнение реакции нейтрализации хлоридной кислоты натрий гидроксидом. Сначала записываем молекулярное уравнение этой реакции:

Реагенты и один из продуктов реакции — это сильные электролиты. В водном растворе они находятся исключительно в виде ионов, а вода на ионы почти не распадается. Учитывая это, заменяем формулы сильных электролитов формулами ионов:

Такую запись называют полным ионно-молекулярным уравнением реакции. В нем записаны все частицы, реально присутствующие в растворе. Из этого уравнения видно, что ионы Cl - и Na+ не принимают участия в реакции — они записаны и в левой, и в правой частях уравнения, поэтому их можно удалить (сократить):

Мы получили сокращенное ионно-молекулярное уравнение реакции. Оно показывает химическую суть этой реакции: если в растворе одновременно присутствуют ионы H+ и OH - , то они взаимодействуют друг с другом, образуя слабый электролит — воду.

Таким способом можно составить ионно-молекулярное уравнение для любой реакции в растворе. Такие уравнения отражают реальный процесс, протекающий в растворе, поскольку часть ионов не принимает участия в реакции.

Реакции обмена с образованием воды

Составим ионно-молекулярное уравнение реакции серной кислоты с калий гидроксидом. Обратите внимание, что необходимо учитывать стехиометрические коэффициенты:

Как видно, полное ионно-молекулярное уравнение этой реакции отличается от уравнения, составленного в предыдущем разделе. Но сокращенное ионно-молекулярное уравнение такое же, как и для реакции хлоридной кислоты с натрий гидроксидом. Обе эти реакции являются реакциями нейтрализации. Значит, химическая суть реакций нейтрализации заключается в соединении ионов H+ и OH - в молекулу слабого электролита — воды.


Рассмотрим еще примеры взаимодействия гидроксидов с кислотами.

Реакция между сульфатной кислотой и нерастворимым купрум(П) гидроксидом:


Взаимодействие между слабой сульфидной кислотой и калий гидроксидом:

Обратите внимание, что в этих уравнениях формулы слабых электролитов (Cu(OH) 2 и H 2 S) мы оставили в молекулярной форме, поскольку они почти не диссоциируют на ионы в растворе.

Реакции обмена с образованием осадка

Рассмотрим реакцию обмена между растворимыми солями:

Оба реагента и натрий хлорид — сильные электролиты, при растворении в воде они полностью диссоциируют, а барий сульфат нерастворим:

Сокращенное ионно-молекулярное уравнения получаем после сокращения одинаковых ионов в левой и правой частях:

Таким образом, суть процесса заключается во взаимодействии ионов Бария и сульфат-ионов с образованием осадка барий сульфата. Если при смешивании растворов двух растворимых солей осадка не образуется, то реакция не происходит. Например, при сливании растворов калий хлорида и магний сульфата никаких видимых изменений не наблюдается. Запишем уравнение этой реакции обмена:

Все вещества — сильные электролиты:

Видим, что левая и правая части уравнения одинаковы, т. е. образовавшийся раствор содержит все ионы, которые были в растворах реагентов. Очевидно, что в этом случае никакие ионы друг с другом не соединяются, изменений в растворе не происходит. Это означает, что реакция невозможна:

Реакции обмена с выделением газа

Газообразные вещества, выделяющиеся в реакциях обмена, обычно неэлектролиты или слабые электролиты. Поэтому при составлении ионно-молекулярных уравнений их формулы оставляют в молекулярной форме.

Рассмотрим реакцию натрий сульфида с хлоридной кислотой:

Гидроген сульфид хотя и является кислотой, но очень слабой. К тому же гидроген сульфид плохо растворяется в воде, поэтому при образовании выделяется из раствора в виде газа, о чем свидетельствует появление специфического запаха гидроген сульфида — запаха тухлых яиц. Ионно-молекулярное уравнение этой реакции:

Реакции обмена могут протекать даже при участии нерастворимых в воде солей, если они образованы слабыми кислотами: карбонатов, сульфитов и некоторых сульфидов. Это возможно потому, что сильная кислота вытесняет слабую из ее соли, даже из осадка.

Составим уравнение взаимодействия кальций карбоната с хло-ридной кислотой:

Во всех рассмотренных случаях в результате реакции обмена некоторые ионы соединяются между собой, при этом образуются неэлектролиты (газы) и слабые электролиты (вода или нерастворимые вещества).

Реакции ионного обмена в растворах происходят, если в результате реакции образуется слабый электролит или неэлектролит.

Восстановление молекулярных уравнений по сокращенному ионно-молекулярному уравнению

Нередки случаи, когда известно только сокращенное ионно-молекулярное уравнение, а необходимо определить реагенты и составить уравнение реакции в молекулярной форме.

Например, нам необходимо провести химическую реакцию, которой соответствует следующее сокращенное ионно-молекулярное уравнение:

Для воспроизведения молекулярного уравнения необходимо определить вещества, при диссоциации которых образуются ионы из приведенного сокращенного уравнения. Сульфид-ионы S 2- образуются при диссоциации растворимых сульфидов: Na 2 S, K 2 S и BaS.

Второй реагент должен диссоциировать с образованием ионов H+. Этому условию соответствует любая сильная кислота. Таким образом, одним из вариантов молекулярного уравнения является:

Конечно, это не единственный возможный вариант. Поэтому одному сокращенному ионно-молекулярному уравнению может соответствовать несколько молекулярных. Такое умение определять реагенты пригодится вам при проведении лабораторных экспериментов.

Реакции ионного обмена в растворах протекают до конца в сторону соединения ионов, если один из продуктов реакции выводится из реакционной среды. Рассмотрим реакцию между растворами натрий хлорида и сульфатной кислоты:

Поскольку все реагенты и продукты реакции хорошо растворимы и являются сильными электролитами, то в разбавленных растворах эта реакция происходить не будет. Но если реакцию проводить в условиях недостатка растворителя, т. е. натрий хлорид взять не в виде раствора, а в сухом виде, и сульфатную кислоту взять в виде концентрированного раствора, то реакция возможна. Гидроген хлорид, хотя и хорошо растворяется в воде, но ограниченно:

ЛАБОРАТОРНЫЕ ОПЫТЫ № 4-6

Оборудование: штатив с пробирками, пипетки, шпатель. Реактивы: растворы CaCl 2 , Ca(NO 3) 2 , Na 2 CO 3 , NaCl, KNO 3 , NaOH, фенолфталеин, HCl, порошок CaCO 3 .

Правила безопасности:

Остерегайтесь попадания реактивов на кожу, в глаза; при попадании едкого вещества смойте его большим количеством воды.

Реакции обмена между электролитами в водных растворах, сопровождающиеся выпадением осадка

1. В первую пробирку налейте раствор кальций хлорида объемом 1 мл, во вторую — такое же количество раствора кальций нитрата. В обе пробирки добавьте по 1 мл раствора натрий карбоната. Что вы наблюдаете?

2. К раствору натрий хлорида объемом 1 мл прилейте такое же количество раствора калий нитрата. Наблюдаете ли вы какие-либо изменения? Почему в этом случае реакция невозможна? Как это можно доказать при помощи полного ионно-молекулярного уравнения реакции? Какие ионы присутствуют в образованном растворе?

Реакции обмена между электролитами в водных растворах, сопровождающиеся выделением газа

В первую пробирку налейте раствор натрий карбоната объемом 1 мл, во вторую пробирку насыпьте небольшое количество кальций карбоната (на кончике шпателя). К обеим пробиркам осторожно прилейте хлоридную кислоту объемом 1 мл. Что происходит?

Составьте молекулярные и ионно-молекулярные уравнения реакций. Можно ли утверждать, что в обоих случаях протекает одна и та же реакция?

Реакции обмена между электролитами в водных растворах, сопровождающиеся образованием воды

Налейте в пробирку 1 мл раствора натрий гидроксида, добавьте несколько капель фенолфталеина. Какова окраска раствора? Добавляйте хлоридную кислоту по капле до полного исчезновения окраски раствора. Составьте молекулярное и ионно-молекулярное уравнения реакции.

Ключевая идея

Реакции обмена между растворами электролитов происходят, если в результате реакции образуется слабый электролит (вода или нерастворимое вещество) или неэлектролит (газ).

Контрольные вопросы

146. При каких условиях происходят реакции ионного обмена в растворе? Приведите по одному примеру для каждого случая.

147. Какие реакции называют реакциями нейтрализации?

Задания для усвоения материала

148. Составьте молекулярные и ионно-молекулярные уравнения для схем:

149. Приведите по два молекулярных уравнения реакций, соответствующих следующим сокращенным ионно-молекулярным уравнениям:

150. Приведите по одному уравнению реакции, соответствующему каждой схеме превращений. Составьте молекулярные и ионно-молекулярные уравнения.

151. Приведите пример растворимой в воде соли, при взаимодействии которой как с сульфатом калия, так и с аргентумО) нитратом образуется осадок. Составьте уравнения этих реакций в молекулярной и ионномолекулярной формах.

152. Назовите две растворимые в воде соли разных кислот, при взаимодействии которых с сильной кислотой выделяются газообразные продукты.

153. Дополните уравнения, составьте ионно-молекулярные уравнения:

154. Из перечня веществ выпишите те, с которыми взаимодействует калий гидроксид в водном растворе. Составьте молекулярные и ионно-молекулярные уравнения реакций. HCl, NaNO 3 , Ca(OH) 2 , MgCl 2 .

155. Из приведенного перечня выпишите формулы солей, которые взаимодействуют с хлоридной кислотой. Составьте молекулярные и ионномолекулярные уравнения реакций.

K8r, AgNO 3 , CaCO 3 , MgSO 4 .

156. К раствору аргентумО) нитрата массой 200 г с массовой долей соли 0,85 % добавляли хлоридную кислоту до прекращения выделения осадка. Вычислите массу образовавшегося осадка.

157. К раствору, содержащему смесь калий сульфита и натрий хлорида, вначале добавили раствор хлоридной кислоты до прекращения выделения газа, а потом — раствор аргентумО) нитрата. Какие ионы остались в растворе? Ответ подтвердите уравнениями реакций.

158. К хлоридной кислоте добавляли кальций карбонат до прекращения выделения газа. В результате образовался раствор кальций хлорида массой 500 г с массовой долей соли 0,333 %. Вычислите массу гидроген хлорида в начальном растворе.


ПРАКТИЧЕСКАЯ РАБОТА № 1

Реакции ионного обмена между электролитами в водных растворах

Оборудование: штатив с пробирками, пипетки.

Реактивы: HCl, растворы Na 2 CO 3 , KCl, CaCl 2 , BaCl 2 , MgCl 2 , KBr, KI, K 3 PO 4 , Na 2 SO 4 , Na 2 SO 3 , AgNO 3 , H 2 SO 4 , NaOH, лакмус или метиловый оранжевый.

Правила безопасности:

Для опытов используйте небольшие количества реактивов;

Остерегайтесь попадания реактивов на кожу, в глаза;

Для определения запаха веществ не подносите пробирку к лицу, а направляйте воздух движениями руки к себе.

Опыт 1. В две пробирки налейте по 1 мл раствора натрий карбоната. В первую пробирку прилейте несколько капель хлоридной кислоты, а во вторую — 1 мл раствора хлорида кальция. Какие изменения наблюдаете? Эти реакции являются обратимыми или необратимыми? Составьте уравнения реакций в молекулярной, полной и сокращенной ионно-молекулярной формах. Будут ли проходить реакции, если вместо раствора натрий карбоната использовать нерастворимую соль, например магний карбонат?

Опыт 2. В две пробирки налейте по 1 мл раствора барий хлорида. В первую пробирку прилейте 1 мл раствора натрий сульфата, во вторую — несколько капель раствора аргентум(!) нитрата. Какие

изменения наблюдаете? Отличаются ли осадки в обеих пробирках по виду и по составу? Составьте уравнения реакций в молекулярной, полной и сокращенной ионно-молекулярной формах.

Опыт 3. В четыре пробирки налейте по 1 мл растворов калий хлорида, калий бромида, калий йодида и калий ортофосфата. В каждую пробирку прилейте по 1 мл раствора аргентумф нитрата. Какие изменения наблюдаете? Отличаются ли осадки во всех пробирках по виду и составу? Составьте уравнения реакций в молекулярной, полной и сокращенной ионно-молекулярной формах.

Опыт 4. В четыре пробирки налейте по 1 мл раствора сульфатной кислоты и добавьте по нескольку капель раствора индикатора (лакмуса или метилоранжа). В первую пробирку по капле добавляйте раствор щелочи до нейтрализации раствора. Во вторую пробирку прилейте 1 мл раствора барий хлорида. Происходит ли реакция? Как изменяется кислотность среды в пробирке? В третью пробирку прилейте 1 мл раствора натрий сульфита. Что наблюдаете? Определите запах в пробирке. Происходит ли реакция? По какому признаку это можно определить? В четвертую пробирку прилейте 1 мл раствора магний хлорида. Происходит ли реакция? По каким признакам это можно определить? Составьте уравнения реакций в молекулярной, полной и сокращенной ионно-молекулярной формах.

Если реакцию кислоты со щелочью проводить без использования индикатора, будут ли заметны изменения? Будет ли протекать реакция?

Вывод. Сделайте обобщающий вывод к практической работе. Для этого используйте ответы на вопросы:

1. При каких условиях происходят реакции ионного обмена в растворах?

2. По каким признакам вы сделали вывод о ходе реакций в каждом опыте?

Это материал учебника

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....