Знаки тангенса и котангенса по четвертям. Основные свойства тригонометрических функций: четность, нечетность, периодичность

Тригонометрия, как наука, зародилась на Древнем Востоке. Первые тригонометрические соотношения были выведены астрономами для создания точного календаря и ориентированию по звездам. Данные вычисления относились к сферической тригонометрии, в то время как в школьном курсе изучают соотношения сторон и угла плоского треугольника.

Тригонометрия – это раздел математики, занимающийся свойствами тригонометрических функций и зависимостью между сторонами и углами треугольников.

В период расцвета культуры и науки I тысячелетия нашей эры знания распространились с Древнего Востока в Грецию. Но основные открытия тригонометрии – это заслуга мужей арабского халифата. В частности, туркменский ученый аль-Маразви ввел такие функции, как тангенс и котангенс, составил первые таблицы значений для синусов, тангенсов и котангенсов. Понятие синуса и косинуса введены индийскими учеными. Тригонометрии посвящено немало внимания в трудах таких великих деятелей древности, как Евклида, Архимеда и Эратосфена.

Основные величины тригонометрии

Основные тригонометрические функции числового аргумента – это синус, косинус, тангенс и котангенс. Каждая из них имеет свой график: синусоида, косинусоида, тангенсоида и котангенсоида.

В основе формул для расчета значений указанных величин лежит теорема Пифагора. Школьникам она больше известна в формулировке: «Пифагоровы штаны, во все стороны равны», так как доказательство приводится на примере равнобедренного прямоугольного треугольника.

Синус, косинус и другие зависимости устанавливают связь между острыми углами и сторонами любого прямоугольного треугольника. Приведем формулы для расчета этих величин для угла A и проследим взаимосвязи тригонометрических функций:

Как видно, tg и ctg являются обратными функциями. Если представить катет a как произведение sin A и гипотенузы с, а катет b в виде cos A * c, то получим следующие формулы для тангенса и котангенса:

Тригонометрический круг

Графически соотношение упомянутых величин можно представить следующим образом:

Окружность, в данном случае, представляет собой все возможные значения угла α — от 0° до 360°. Как видно из рисунка, каждая функция принимает отрицательное или положительное значение в зависимости от величины угла. Например, sin α будет со знаком «+», если α принадлежит I и II четверти окружности, то есть, находится в промежутке от 0° до 180°. При α от 180° до 360° (III и IV четверти) sin α может быть только отрицательным значением.

Попробуем построить тригонометрические таблицы для конкретных углов и узнать значение величин.

Значения α равные 30°, 45°, 60°, 90°, 180° и так далее – называют частными случаями. Значения тригонометрических функций для них просчитаны и представлены в виде специальных таблиц.

Данные углы выбраны отнюдь не случайно. Обозначение π в таблицах стоит для радиан. Рад — это угол, при котором длина дуги окружности соответствует ее радиусу. Данная величина была введена для того, чтобы установить универсальную зависимость, при расчетах в радианах не имеет значение действительная длина радиуса в см.

Углы в таблицах для тригонометрических функций соответствуют значениям радиан:

Итак, не трудно догадаться, что 2π – это полная окружность или 360°.

Свойства тригонометрических функций: синус и косинус

Для того, чтобы рассмотреть и сравнить основные свойства синуса и косинуса, тангенса и котангенса, необходимо начертить их функции. Сделать это можно в виде кривой, расположенной в двумерной системе координат.

Рассмотри сравнительную таблицу свойств для синусоиды и косинусоиды:

Синусоида Косинусоида
y = sin x y = cos x
ОДЗ [-1; 1] ОДЗ [-1; 1]
sin x = 0, при x = πk, где k ϵ Z cos x = 0, при x = π/2 + πk, где k ϵ Z
sin x = 1, при x = π/2 + 2πk, где k ϵ Z cos x = 1, при x = 2πk, где k ϵ Z
sin x = - 1, при x = 3π/2 + 2πk, где k ϵ Z cos x = - 1, при x = π + 2πk, где k ϵ Z
sin (-x) = - sin x, т. е. функция нечетная cos (-x) = cos x, т. е. функция четная
функция периодическая, наименьший период - 2π
sin x › 0, при x принадлежащем I и II четвертям или от 0° до 180° (2πk, π + 2πk) cos x › 0, при x принадлежащем I и IV четвертям или от 270° до 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, при x принадлежащем III и IV четвертям или от 180° до 360° (π + 2πk, 2π + 2πk) cos x ‹ 0, при x принадлежащем II и III четвертям или от 90° до 270° (π/2 + 2πk, 3π/2 + 2πk)
возрастает на промежутке [- π/2 + 2πk, π/2 + 2πk] возрастает на промежутке [-π + 2πk, 2πk]
убывает на промежутках [ π/2 + 2πk, 3π/2 + 2πk] убывает на промежутках
производная (sin x)’ = cos x производная (cos x)’ = - sin x

Определить является ли функция четной или нет очень просто. Достаточно представить тригонометрический круг со знаками тригонометрических величин и мысленно «сложить» график относительно оси OX. Если знаки совпадают, функция четная, в противном случае — нечетная.

Введение радиан и перечисление основных свойств синусоиды и косинусоиды позволяют привести следующую закономерность:

Убедиться в верности формулы очень просто. Например, для x = π/2 синус равен 1, как и косинус x = 0. Проверку можно осуществить обративших к таблицам или проследив кривые функций для заданных значений.

Свойства тангенсоиды и котангенсоиды

Графики функций тангенса и котангенса значительно отличаются от синусоиды и косинусоиды. Величины tg и ctg являются обратными друг другу.

  1. Y = tg x.
  2. Тангенсоида стремится к значениям y при x = π/2 + πk, но никогда не достигает их.
  3. Наименьший положительный период тангенсоиды равен π.
  4. Tg (- x) = — tg x, т. е. функция нечетная.
  5. Tg x = 0, при x = πk.
  6. Функция является возрастающей.
  7. Tg x › 0, при x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, при x ϵ (— π/2 + πk, πk).
  9. Производная (tg x)’ = 1/cos 2 ⁡x .

Рассмотрим графическое изображение котангенсоиды ниже по тексту.

Основные свойства котангенсоиды:

  1. Y = ctg x.
  2. В отличие от функций синуса и косинуса, в тангенсоиде Y может принимать значения множества всех действительных чисел.
  3. Котангенсоида стремится к значениям y при x = πk, но никогда не достигает их.
  4. Наименьший положительный период котангенсоиды равен π.
  5. Ctg (- x) = — ctg x, т. е. функция нечетная.
  6. Ctg x = 0, при x = π/2 + πk.
  7. Функция является убывающей.
  8. Ctg x › 0, при x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, при x ϵ (π/2 + πk, πk).
  10. Производная (ctg x)’ = — 1/sin 2 ⁡x Исправить

В этой статье будут рассмотрены три основных свойства тригонометрических функций: синуса, косинуса, тангенса и котангенса.

Первое свойство - знак функции в зависимости от того, какой четверти единичной окружности приналдежит угол α . Второе свойство - периодичность. Согласно этому свойству, тигонометрическая функция не меняет значения при изменении угла на целое число оборотов. Третье свойсто определяет, как меняются значения функций sin, cos, tg, ctg при противоположных углах α и - α .

Yandex.RTB R-A-339285-1

Часто в математическом тексте или в контексте задачи можно встретить фразу: "угол первой, второй, третьей или четвертой координатной четверти". Что это такое?

Обратимся к единичной окружности. Она разделена на четыре четверти. Отметим на окружности начальную точку A 0 (1 , 0) и, поворачивая ее вокруг точки O на угол α , попадем в точку A 1 (x , y) . В зависимости от того, в какой четверти будет лежать точка A 1 (x , y) , угол α будет называться углом первой, второй, третьей и четвертой четвети соответственно.

Для наглядности приведем иллюстрацию.

Угол α = 30 ° лежит в первой четверти. Угол - 210 ° является углом второй четверти. Угол 585 ° - угол третьей четверти. Угол - 45 ° - это угол четвертой четверти.

При этом углы ± 90 ° , ± 180 ° , ± 270 ° , ± 360 ° не принадлежат ни одной четверти, так как лежат на координатных осях.

Теперь рассмотрим знаки, которые принимают синус, косинус, тангенс и котангенс в зависимости от того, в какой четверти лежит угол.

Чтобы определить знаки синуса по четвертям, вспомним опредение. Синус - это ордината точки A 1 (x , y) . Из рисунка видно, что в первой и второй четвертях она положительна, а в третьей и четверной - отрицательна.

Косинус - это абсцисса точки A 1 (x , y) . В соответсии с этим, определяем знаки косинуса на окружности. Косинус положителен в первой и четвертой четвертях, а отрицателен во второй и третьей четверти.

Для определения знаков тангенса и котангенса по четвертям также вспоминаем определения этих тригонометрических функций. Тангенс - отношение ординаты точки к абсциссе. Значит, по правилу деления чисел с разными знаками, когда ордината и абсцисса имеют одинаковые знаки, знак тангенса на окружности будет положительным, а когда ордината и абсцисса имеют разные знаки - отрицательным. Аналогично определяются знаки котангенса по четвертям.

Важно помнить!

  1. Синус угла α имеет знак плюс в 1 и 2 четвертях, знак минус - в 3 и 4 четвертях.
  2. Косинус угла α имеет знак плюс в 1 и 4 четвертях, знак минус - в 2 и 3 четвертях.
  3. Тангенс угла α имеет знак плюс в 1 и 3 четвертях, знак минус - в 2 и 4 четвертях.
  4. Котангенс угла α имеет знак плюс в 1 и 3 четвертях, знак минус - в 2 и 4 четвертях.

Свойство периодичности

Свойство периодичности - одно из самых очевидных свойств тригонометрических функций.

Свойство периодичности

При изменении угла на целое число полных оборотов значения синуса, косинуса, тангенса и котангенса данного угла остаются неизменными.

Действительно, при изменении угла на целое число оборотов мы всегда будем попадать из начальной точки A на единичной окружности в точку A 1 с одними и теми же координатами. Соответственно, не будут меняться и значения синуса, косинуса, тангенса и котангенса.

Математически данное свойство записывается так:

sin α + 2 π · z = sin α cos α + 2 π · z = cos α t g α + 2 π · z = t g α c t g α + 2 π · z = c t g α

Какое применение на практике находит это свойство? Свойство периодичности, как и формулы приведения, часто используется для вычисления значений синусов, косинусов, тангенсов и котангенсов больших углов.

Приведем примеры.

sin 13 π 5 = sin 3 π 5 + 2 π = sin 3 π 5

t g (- 689 °) = t g (31 ° + 360 ° · (- 2)) = t g 31 ° t g (- 689 °) = t g (- 329 ° + 360 ° · (- 1)) = t g (- 329 °)

Вновь обратимся к единичной окружности.

Точка A 1 (x , y) - результат поворота начальной точки A 0 (1 , 0) вокруг центра окружности на угол α . Точка A 2 (x , - y) - результат поворота начальной точки на угол - α .

Точки A 1 и A 2 симметричны относительно оси абсцисс. В случае, когда α = 0 ° , ± 180 ° , ± 360 ° точки A 1 и A 2 совпадают. Пусть одна точка имеет координаты (x , y) , а вторая - (x , - y) . Вспомним определения синуса, косинуса, тангенса, котангенса и запишем:

sin α = y , cos α = x , t g α = y x , c t g α = x y sin - α = - y , cos - α = x , t g - α = - y x , c t g - α = x - y

Отсюда следует свойство синусов, косинусов, тангенсов и котангенсов противоположных углов.

Свойство синусов, косинусов, тангенсов и котангенсов противоположных углов

sin - α = - sin α cos - α = cos α t g - α = - t g α c t g - α = - c t g α

Согласно этому свойству, справедливы равенства

sin - 48 ° = - sin 48 ° , c t g π 9 = - c t g - π 9 , cos 18 ° = cos - 18 °

Рассмотренное свойство часто используется при решении практических задач в случаях, когда нужно избавиться от отрицательных знаков углов в агрументах тригонометрических функций.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Разнообразны. Некоторые из них - о том, в каких четвертях косинус положительный и отрицательный, в каких четвертях синус положительный и отрицательный. Все оказывается просто, если знаешь, как вычислить значение данных функций в разных углах и знаком с принципом построения функций на графике.

Какие значения косинуса

Если рассматривать то мы имеем следующее соотношение сторон, которое его определяет: косинусом угла а является отношение прилегающего катета ВС к гипотенузе АВ (рис. 1): cos a = ВС/АВ.

С помощью этого же треугольника можно найти синус угла, тангенс и котангенс. Синусом будет соотношение противоположного к углу катета АС к гипотенузе АВ. Тангенс угла находится, если синус искомого угла разделить на косинус того же угла; подставив соответственные формулы нахождения синуса и косинуса, получим, что tg a = АС/ВС. Котангенс, как обратная к тангенсу функция, будет находиться так: ctg a = ВС/АС.

То есть, при одинаковых значениях угла обнаружилось, что в прямоугольном треугольнике соотношение сторон всегда одинаковое. Казалось бы, стало ясно, откуда эти значения, но почему получаются отрицательные числа?

Для этого нужно рассматривать треугольник в декартовой системе координат, где присутствуют как положительные, так и отрицательные значения.

Наглядно про четверти, где какая

Что такое декартовые координаты? Если говорить о двумерном пространстве, мы имеем две направленные прямые, которые пересекаются в точке О - это ось абсцисс (Ох) и ось ординат (Оу). От точки О в направлении прямой располагаются положительные числа, а в обратную сторону - отрицательные. От этого, в конечном итоге, напрямую зависит, в каких четвертях косинус положительный, а в каких, соответственно, отрицательный.

Первая четверть

Если разместить прямоугольный треугольник в первой четверти (от 0 о до 90 о), где ось х и у имеют положительные значения (отрезки АО и ВО лежат на осях там, где значения имеют знак "+"), то что синус, что косинус тоже будут иметь положительные значения, и им присвоено значение со знаком «плюс». Но что происходит, если переместить треугольник во вторую четверть (от 90 о до 180 о)?

Вторая четверть

Видим, что по оси у катет АО получил отрицательное значение. Косинус угла a теперь имеет в соотношении эту сторону с минусом, потому и итоговое его значение становится отрицательным. Выходит, что то, в какой четверти косинус положительный, зависит от размещения треугольника в системе декартовых координат. И в этом случае косинус угла получает отрицательное значение. А вот для синуса ничего не изменилось, ведь для определения его знака нужна сторона ОВ, которая осталась в данном случае со знаком плюс. Подведем итог по первым двум четвертям.

Чтобы выяснить, в каких четвертях косинус положительный, а в каких отрицательный (а также синус и другие тригонометрические функции), необходимо смотреть на то, какой знак присвоен тому или иному катету. Для косинуса угла a важен катет АО, для синуса - ОВ.

Первая четверть пока что стала единственной, отвечающей на вопрос: «В каких четвертях синус и косинус положительный одновременно?». Посмотрим далее, будут ли еще совпадения по знаку этих двух функций.

Во второй четверти катет АО стал иметь отрицательное значение, а значит и косинус стал отрицательным. Для синуса сохранено положительное значение.

Третья четверть

Теперь оба катета АО и ОВ стали отрицательными. Вспомним соотношения для косинуса и синуса:

Cos a = АО/АВ;

Sin a = ВО/АВ.

АВ всегда имеет положительный знак в данной системе координат, так как не направлена ни в одну из двух определённых осями сторон. А вот катеты стали отрицательными, а значит и результат для обоих функций тоже отрицательный, ведь если производить операции умножения или деления с числами, среди которых одно и только одно имеет знак «минус», то результат тоже будет с этим знаком.

Итог на данном этапе:

1) В какой четверти косинус положительный? В первой из трех.

2) В какой четверти синус положительный? В первой и второй из трёх.

Четвёртая четверть (от 270 о до 360 о)

Здесь катет АО вновь приобретает знак «плюс», а значит и косинус тоже.

Для синуса дела всё еще «отрицательны», ведь катет ОВ остался ниже начальной точки О.

Выводы

Для того чтобы понимать, в каких четвертях косинус положительный, отрицательный и т.д., нужно запомнить соотношение для вычисления косинуса: прилегающий к углу катет, деленный на гипотенузу. Некоторые учителя предлагают запомнить так: к(осинус) = (к) углу. Если запомнить этот «чит», то автоматически понимаешь, что синус - это отношение противоположного к углу катета к гипотенузе.

Запомнить, в каких четвертях косинус положительный, а в каких отрицательный, довольно сложно. Тригонометрических функций много, и все они имеют свои значения. Но все же, как итог: положительные значения для синуса - 1, 2 четверти (от 0 о до 180 о); для косинуса 1, 4 четверти (от 0 о до 90 о и от 270 о до 360 о). В остальных четвертях функции имеют значения с минусом.

Возможно, кому-то будет легче запомнить, где какой знак, по изображению функции.

Для синуса видно, что от нуля до 180 о гребень находится над линией значений sin(x), значит и функция здесь положительна. Для косинуса так же: в какой четверти косинус положительный (фото 7), а в какой отрицательный видно по перемещению линии над и под осью cos(x). Как итог, мы можем запомнить два способа определения знака функций синус, косинус:

1. По мнимому кругу с радиусом равным единице (хотя, на самом деле, не важно, какой радиус у круга, но в учебниках чаще всего приводят именно такой пример; это облегчает восприятие, но в то же время, если не оговориться, что это не суть важно, дети могут запутаться).

2. По изображению зависимости функции по (х) от самого аргумента х, как на последнем рисунке.

С помощью первого способа можно ПОНЯТЬ, от чего именно зависит знак, и мы подробно разъяснили это выше. Рисунок 7, построенный по этим данным, как нельзя лучше визуализирует полученную функцию и ее знакопринадлежность.

Знак тригонометрической функции зависит исключительно от координатной четверти, в которой располагается числовой аргумент. В прошлый раз мы учились переводить аргументы из радианной меры в градусную (см. урок «Радианная и градусная мера угла »), а затем определять эту самую координатную четверть. Теперь займемся, собственно, определением знака синуса, косинуса и тангенса.

Синус угла α — это ордината (координата y ) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

Косинус угла α — это абсцисса (координата x ) точки на тригонометрической окружности, которая возникает при повороте радиуса на угол α.

Тангенс угла α — это отношение синуса к косинусу. Или, что то же самое, отношение координаты y к координате x .

Обозначение: sin α = y ; cos α = x ; tg α = y : x .

Все эти определения знакомы вам из курса алгебры старших классов. Однако нас интересуют не сами определения, а следствия, которые возникают на тригонометрической окружности. Взгляните:

Синим цветом обозначено положительное направление оси OY (ось ординат), красным — положительное направление оси OX (ось абсцисс). На этом «радаре» знаки тригонометрических функций становятся очевидными. В частности:

  1. sin α > 0, если угол α лежит в I или II координатной четверти. Это происходит из-за того, что по определению синус — это ордината (координата y ). А координата y будет положительной именно в I и II координатных четвертях;
  2. cos α > 0, если угол α лежит в I или IV координатной четверти. Потому что только там координата x (она же — абсцисса) будет больше нуля;
  3. tg α > 0, если угол α лежит в I или III координатной четверти. Это следует из определения: ведь tg α = y : x , поэтому он положителен лишь там, где знаки x и y совпадают. Это происходит в I координатной четверти (здесь x > 0, y > 0) и III координатной четверти (x < 0, y < 0).

Для наглядности отметим знаки каждой тригонометрической функции — синуса, косинуса и тангенса — на отдельных «радарах». Получим следующую картинку:


Заметьте: в своих рассуждениях я ни разу не говорил о четвертой тригонометрической функции — котангенсе. Дело в том, что знаки котангенса совпадают со знаками тангенса — никаких специальных правил там нет.

Теперь предлагаю рассмотреть примеры, похожие на задачи B11 из пробного ЕГЭ по математике, который проходил 27 сентября 2011. Ведь лучший способ понять теорию — это практика. Желательно — много практики. Разумеется, условия задач были немного изменены.

Задача. Определите знаки тригонометрических функций и выражений (значения самих функций считать не надо):

  1. sin (3π/4);
  2. cos (7π/6);
  3. tg (5π/3);
  4. sin (3π/4) · cos (5π/6);
  5. cos (2π/3) · tg (π/4);
  6. sin (5π/6) · cos (7π/4);
  7. tg (3π/4) · cos (5π/3);
  8. ctg (4π/3) · tg (π/6).

План действий такой: сначала переводим все углы из радианной меры в градусную (π → 180°), а затем смотрим в какой координатной четверти лежит полученное число. Зная четверти, мы легко найдем знаки — по только что описанным правилам. Имеем:

  1. sin (3π/4) = sin (3 · 180°/4) = sin 135°. Поскольку 135° ∈ , это угол из II координатной четверти. Но синус во II четверти положителен, поэтому sin (3π/4) > 0;
  2. cos (7π/6) = cos (7 · 180°/6) = cos 210°. Т.к. 210° ∈ , это угол из III координатной четверти, в которой все косинусы отрицательны. Следовательно, cos (7π/6) < 0;
  3. tg (5π/3) = tg (5 · 180°/3) = tg 300°. Поскольку 300° ∈ , мы находимся в IV четверти, где тангенс принимает отрицательные значения. Поэтому tg (5π/3) < 0;
  4. sin (3π/4) · cos (5π/6) = sin (3 · 180°/4) · cos (5 · 180°/6) = sin 135° · cos 150°. Разберемся с синусом: т.к. 135° ∈ , это II четверть, в которой синусы положительны, т.е. sin (3π/4) > 0. Теперь работаем с косинусом: 150° ∈ — снова II четверть, косинусы там отрицательны. Поэтому cos (5π/6) < 0. Наконец, следуя правилу «плюс на минус дает знак минус», получаем: sin (3π/4) · cos (5π/6) < 0;
  5. cos (2π/3) · tg (π/4) = cos (2 · 180°/3) · tg (180°/4) = cos 120° · tg 45°. Смотрим на косинус: 120° ∈ — это II координатная четверть, поэтому cos (2π/3) < 0. Смотрим на тангенс: 45° ∈ — это I четверть (самый обычный угол в тригонометрии). Тангенс там положителен, поэтому tg (π/4) > 0. Опять получили произведение, в котором множители разных знаков. Поскольку «минус на плюс дает минус», имеем: cos (2π/3) · tg (π/4) < 0;
  6. sin (5π/6) · cos (7π/4) = sin (5 · 180°/6) · cos (7 · 180°/4) = sin 150° · cos 315°. Работаем с синусом: поскольку 150° ∈ , речь идет о II координатной четверти, где синусы положительны. Следовательно, sin (5π/6) > 0. Аналогично, 315° ∈ — это IV координатная четверть, косинусы там положительны. Поэтому cos (7π/4) > 0. Получили произведение двух положительных чисел — такое выражение всегда положительно. Заключаем: sin (5π/6) · cos (7π/4) > 0;
  7. tg (3π/4) · cos (5π/3) = tg (3 · 180°/4) · cos (5 · 180°/3) = tg 135° · cos 300°. Но угол 135° ∈ — это II четверть, т.е. tg (3π/4) < 0. Аналогично, угол 300° ∈ — это IV четверть, т.е. cos (5π/3) > 0. Поскольку «минус на плюс дает знак минус», имеем: tg (3π/4) · cos (5π/3) < 0;
  8. ctg (4π/3) · tg (π/6) = ctg (4 · 180°/3) · tg (180°/6) = ctg 240° · tg 30°. Смотрим на аргумент котангенса: 240° ∈ — это III координатная четверть, поэтому ctg (4π/3) > 0. Аналогично, для тангенса имеем: 30° ∈ — это I координатная четверть, т.е. самый простой угол. Поэтому tg (π/6) > 0. Снова получили два положительных выражения — их произведение тоже будет положительным. Поэтому ctg (4π/3) · tg (π/6) > 0.

В заключение рассмотрим несколько более сложных задач. Помимо выяснения знака тригонометрической функции, здесь придется немного посчитать — именно так, как это делается в настоящих задачах B11. В принципе, это почти настоящие задачи, которые действительно встречается в ЕГЭ по математике.

Задача. Найдите sin α, если sin 2 α = 0,64 и α ∈ [π/2; π].

Поскольку sin 2 α = 0,64, имеем: sin α = ±0,8. Осталось решить: плюс или минус? По условию, угол α ∈ [π/2; π] — это II координатная четверть, где все синусы положительны. Следовательно, sin α = 0,8 — неопределенность со знаками устранена.

Задача. Найдите cos α, если cos 2 α = 0,04 и α ∈ [π; 3π/2].

Действуем аналогично, т.е. извлекаем квадратный корень: cos 2 α = 0,04 ⇒ cos α = ±0,2. По условию, угол α ∈ [π; 3π/2], т.е. речь идет о III координатной четверти. Там все косинусы отрицательны, поэтому cos α = −0,2.

Задача. Найдите sin α, если sin 2 α = 0,25 и α ∈ .

Имеем: sin 2 α = 0,25 ⇒ sin α = ±0,5. Снова смотрим на угол: α ∈ — это IV координатная четверть, в которой, как известно, синус будет отрицательным. Таким образом, заключаем: sin α = −0,5.

Задача. Найдите tg α, если tg 2 α = 9 и α ∈ .

Все то же самое, только для тангенса. Извлекаем квадратный корень: tg 2 α = 9 ⇒ tg α = ±3. Но по условию угол α ∈ — это I координатная четверть. Все тригонометрические функции, в т.ч. тангенс, там положительны, поэтому tg α = 3. Все!

Синусом числа а называется ордината точки, изображающей это число на числовой окружности. Синусом угла в а радиан называется синус числа а .

Синус - функция числа x . Ее область определения

Область значений синуса - отрезок от -1 до 1 , так как любое число этого отрезка на оси ординат является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек.

Период синуса

Знак синуса:

1. синус равен нулю при , где n - любое целое число;

2. синус положителен при , где n - любое целое число;

3. синус отрицателен при

Где n - любое целое число.

Синус - функция нечетная x и -x , то их ординаты - синусы - окажутся также противоположными. То есть для любого x .

1. Синус возрастает на отрезках , где n - любое целое число.

2. Cинус убывает на отрезке , где n - любое целое число.

При ;

при .

Косинус

Косинусом числа а называется абсцисса точки, изображающей это число на числовой окружности. Косинусом угла в а радиан называется косинус числа а .

Косинус - функция числа. Ее область определения - множество всех чисел, так как у любого числа можно найти ординату изображающей его точки.

Область значений косинуса - отрезок от -1 до 1 , так как любое число этого отрезка на оси абсцисс является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек.

Период косинуса равен . Ведь через каждые положение точки, изображающей число, в точности повторяется.

Знак косинуса:

1. косинус равен нулю при , где n - любое целое число;

2. косинус положителен при , где n - любое целое число;

3. косинус отрицателен при , где n - любое целое число.

Косинус - функция четная . Во-первых, область определения этой функции есть множество всех чисел, а значит, симметрична относительно начала отсчета. А во-вторых, если отложить от начала два противоположных числа: x и -x , то их абсциссы - косинусы - окажутся равными. То есть

для любого x .

1. Косинус возрастает на отрезках , где n - любое целое число.

2. Косинус убывает на отрезках , где n - любое целое число.

при ;

при .

Тангенс

Тангенсом числа называется отношение синуса этого числа к косинусу этого числа: .

Тангенсом угла в а радиан называется тангенс числа а .

Тангенс - функция числа. Ее область определения - множество всех чисел, у которых косинус не равен нулю, так как никаких других ограничений в определении тангенса нет. И так как косинус равен нулю при , то , где .

Область значений тангенса

Период тангенса x (не равные ), отличающиеся друг от друга на , и провести через них прямую, то эта прямая пройдет через начало координат и пересечет линию тангенсов в некоторой точке t . Вот и получится, что , то есть число является периодом тангенса.

Знак тангенса: тангенс - отношение синуса к косинусу. Значит, он

1. равен нулю, когда синус равен нулю, то есть при , где n - любое целое число.

2. положителен, когда синус и косинус имеют одинаковые знаки. Это бывает только в первой и в третьей четвертях, то есть при , где а - любое целое число.

3. отрицателен, когда синус и косинус имеют разные знаки. Это бывает только во второй и в четвертой четвертях, то есть при , где а - любое целое число.

Тангенс - функция нечетная . Во-первых, область определения этой функции симметрична относительно начала отсчета. А во-вторых, . В силу нечетности синуса и четности косинуса, числитель полученной дроби равен , а ее знаменатель равен , а значит, сама эта дробь равна .

Вот и получилось, что .

Значит, тангенс возрастает на каждом участке своей области определения , то есть на всех интервалах вида , где а - любое целое число.

Котангенс

Котангенсом числа называется отношение косинуса этого числа к синусу этого числа: . Котангенсом угла в а радиан называется котангенс числа а . Котангенс - функция числа. Ее область определения - множество всех чисел, у которых синус не равен нулю, так как никаких других ограничений в определении котангенса нет. И так как синус равен нулю при , то , где

Область значений котангенса - множество всех действительных чисел.

Период котангенса равен . Ведь если взять любые два допустимые значения x (не равные ), отличающиеся друг от друга на , и провести через них прямую, то эта прямая пройдет через начало координат и пересечет линию котангенсов в некоторой точке t . Вот и получится, что , то есть, что число является периодом котангенса.

Последние материалы раздела:

Вузы курска Курские высшие учебные заведения государственные
Вузы курска Курские высшие учебные заведения государственные

Какую профессию можно получить, поступив в высшие учебные заведения нашего города. На этой неделе во всех школах региона прозвенит последний...

Слои атмосферы по порядку от поверхности земли
Слои атмосферы по порядку от поверхности земли

Космос наполнен энергией. Энергия наполняет пространство неравномерно. Есть места её концентрации и разряжения. Так можно оценить плотность....

Берестяная трубочка — Михаил Пришвин
Берестяная трубочка — Михаил Пришвин

Жанр: рассказГлавные герои: рассказчик - авторЛюди все меньше времени и внимания уделяют природе, а краткое содержание рассказа «Берестяная...