1 в параллелограмме противоположные углы. Параллелограмм

Доказательство

Первым делом проведем диагональ AC . Получаются два треугольника: ABC и ADC .

Так как ABCD — параллелограмм, то справедливо следующее:

AD || BC \Rightarrow \angle 1 = \angle 2 как лежащие накрест.

AB || CD \Rightarrow \angle3 = \angle 4 как лежащие накрест.

Следовательно, \triangle ABC = \triangle ADC (по второму признаку: и AC — общая).

И, значит, \triangle ABC = \triangle ADC , то AB = CD и AD = BC .

Доказано!

2. Противоположные углы тождественны.

Доказательство

Согласно доказательству свойства 1 мы знаем, что \angle 1 = \angle 2, \angle 3 = \angle 4 . Таким образом сумма противоположных углов равна: \angle 1 + \angle 3 = \angle 2 + \angle 4 . Учитывая, что \triangle ABC = \triangle ADC получаем \angle A = \angle C , \angle B = \angle D .

Доказано!

3. Диагонали разделены пополам точкой пересечения.

Доказательство

Проведем еще одну диагональ.

По свойству 1 мы знаем, что противоположные стороны тождественны: AB = CD . Еще раз отметим накрест лежащие равные углы.

Таким образом видно, что \triangle AOB = \triangle COD по второму признаку равенства треугольников (два угла и сторона между ними). То есть, BO = OD (напротив углов \angle 2 и \angle 1 ) и AO = OC (напротив углов \angle 3 и \angle 4 соответственно).

Доказано!

Признаки параллелограмма

Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.

Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?» . То есть, как узнать, что заданная фигура это параллелограмм.

1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.

AB = CD ; AB || CD \Rightarrow ABCD — параллелограмм.

Доказательство

Рассмотрим подробнее. Почему AD || BC ?

\triangle ABC = \triangle ADC по свойству 1 : AB = CD , AC — общая и \angle 1 = \angle 2 как накрест лежащие при параллельных AB и CD и секущей AC .

Но если \triangle ABC = \triangle ADC , то \angle 3 = \angle 4 (лежат напротив AB и CD соответственно). И следовательно AD || BC (\angle 3 и \angle 4 - накрест лежащие тоже равны).

Первый признак верен.

2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны.

AB = CD , AD = BC \Rightarrow ABCD — параллелограмм.

Доказательство

Рассмотрим данный признак. Еще раз проведем диагональ AC .

По свойству 1 \triangle ABC = \triangle ACD .

Из этого следует, что: \angle 1 = \angle 2 \Rightarrow AD || BC и \angle 3 = \angle 4 \Rightarrow AB || CD , то есть ABCD — параллелограмм.

Второй признак верен.

3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны.

\angle A = \angle C , \angle B = \angle D \Rightarrow ABCD — параллелограмм.

Доказательство

2 \alpha + 2 \beta = 360^{\circ} (поскольку ABCD — четырехугольник, а \angle A = \angle C , \angle B = \angle D по условию).

Получается, \alpha + \beta = 180^{\circ} . Но \alpha и \beta являются внутренними односторонними при секущей AB .

И то, что \alpha + \beta = 180^{\circ} говорит и о том, что AD || BC .

При этом \alpha и \beta — внутренние односторонние при секущей AD . И это значит AB || CD .

Третий признак верен.

4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам.

AO = OC ; BO = OD \Rightarrow параллелограмм.

Доказательство

BO = OD ; AO = OC , \angle 1 = \angle 2 как вертикальные \Rightarrow \triangle AOB = \triangle COD , \Rightarrow \angle 3 = \angle 4 , и \Rightarrow AB || CD .

Аналогично BO = OD ; AO = OC , \angle 5 = \angle 6 \Rightarrow \triangle AOD = \triangle BOC \Rightarrow \angle 7 = \angle 8 , и \Rightarrow AD || BC .

Четвертый признак верен.

Муниципальное бюджетное общеобразовательное учреждение

Савинская средняя общеобразовательная школа

Исследовательская работа

Параллелограмм и его новые свойства

Выполнила: ученица 8Б класса

МБОУ Савинская СОШ

Кузнецова Светлана,14 лет

Руководитель: учитель математики

Тульчевская Н.А.

п. Савино

Ивановская область, Россия

2016г.

I . Введение __________________________________________________стр 3

II . Из истории параллелограмма ___________________________________стр 4

III Дополнительные свойства параллелограмма ______________________стр 4

IV . Доказательство свойств _____________________________________ стр 5

V . Решение задач с использованием дополнительных свойств __________стр 8

VI . Применение свойств параллелограмма в жизни ___________________стр 11

VII . Заключение _________________________________________________стр 12

VIII . Литература _________________________________________________стр 13

    Введение

"Среди равных умов

при одинаковости прочих условий

превосходит тот, кто знает геометрию"

(Блез Паскаль).

Во время изучения темы «Параллелограмм» на уроках геометрии мы рассмотрели два свойства параллелограмма и три признака, но когда мы начали решать задачи, то оказалось, что этого недостаточно.

У меня возник вопрос, а есть ли у параллелограмма еще свойства, и как они помогут при решении задач.

И я решила изучить дополнительные свойства параллелограмма и показать, как их можно применить для решения задач.

Предмет исследования : параллелограмм

Объект исследования : свойства параллелограмма
Цель работы:

    формулировка и доказательство дополнительных свойств параллелограмма, которые не изучаются в школе;

    применение этих свойств для решения задач.

Задачи:

    Изучить историю возникновения параллелограмма и историю развития его свойств;

    Найти дополнительную литературу по исследуемому вопросу;

    Изучить дополнительные свойства параллелограмма и доказать их;

    Показать применение этих свойств для решения задач;

    Рассмотреть применение свойств параллелограмма в жизни.
    Методы исследования:

    Работа с учебной и научно – популярной литературой, ресурсами сети Интернет;

    Изучение теоретического материала;

    Выделение круга задач, которые можно решать с использованием дополнительных свойств параллелограмма;

    Наблюдение, сравнение, анализ, аналогия.

Продолжительность исследования : 3 месяца: январь-март 2016г

    1. Из истории параллелограмма

В учебнике геометрии мы читаем следующее определение параллелограмма: параллелограмм – это такой четырехугольник, у которого противоположные стороны попарно параллельны

Слово «параллелограмм» переводится как «параллельные линии» (от греческих слов Parallelos - параллельный и gramme - линия), этот термин был введен Евклидом. В своей книге «Начала» Евклид доказал следующие свойства параллелограмма: противоположные стороны и углы параллелограмма равны, а диагональ делит его пополам. О точке пересечения параллелограмма Евклид не упоминает. Только к концу средних веков была разработана полная теория параллелограммов И лишь в XVII веке в учебниках появились теоремы о параллелограммах, которые доказываются с помощью теоремы Евклида о свойствах параллелограмма.

III Дополнительные свойства параллелограмма

В учебнике по геометрии даны только 2 свойства параллелограмма:

    Противоположные углы и стороны равны

    Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам

В различных источниках по геометрии можно встретить следующие дополнительные свойства:

    Сумма соседних углов параллелограмма равна 180 0

    Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник;

    Биссектрисы противоположных углов параллелограмма лежат на параллельных прямых;

    Биссектрисы соседних углов параллелограмма пересекаются под прямым углом;

    Биссектрисы всех углов параллелограмма при пересечении образуют прямоугольник;

    Расстояния от противоположных углов параллелограмма до одной и той же его диагонали равны.

    Если в параллелограмме соединить противоположные вершины с серединами противоположных сторон, то получится еще один параллелограмм.

    Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его смежных сторон.

    Если в параллелограмме из двух противоположных углов провести высоты, то получится прямоугольник.

IV Доказательство свойств параллелограмма

    Сумма соседних углов параллелограмма равна 180 0

Дано :

ABCD – параллелограмм

Доказать:

A +
B =

Доказательство:

А и
B –внутренние односторонние углы при параллельных прямых ВС АD и секущей АВ, значит,
A +
B =

2

Дано: АBCD - параллелограмм,

АК -биссектриса
А.

Доказать: АВК – равнобедренный

Доказательство:

1)
1=
3 (накрест лежащие при ВСAD и секущей AK ),

2)
2=
3 т. к. АК – биссектриса,

значит 1=
2.

3) АВК – равнобедренный т. к. 2 угла треугольника равны

. Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник

3

Дано: АВСD – параллелограмм,

АК – биссектриса A,

СР - биссектриса C.

Доказать: АК ║ СР

Доказательство:

1) 1=2 т. к. АК-биссектриса

2) 4=5 т.к. СР – биссектриса

3) 3=1 (накрест лежащие углы при

ВС ║ АD и АК-секущей),

4) A =C (по свойству параллелограмма), значит2=3=4=5.

4) Из п. 3 и 4 следует, что 1=4, а эти углы соответственные при прямых АК и СР и секущей ВС,

значит, АК ║ СР (по признаку параллельности прямых)

. Биссектрисы противоположных углов параллелограмма лежат на параллельных прямых

    Биссектрисы соседних углов параллелограмма пересекаются под прямым углом

Дано: АВСD - параллелограмм,

АК-биссектриса A,

DР-биссектриса D

Доказать: АК.

Доказательство:

1) 1=2, т.к. АК - биссектриса

Пусть, 1=2=x, тогда А=2x,

2) 3=4, т.к. D Р – биссектриса

Пусть, 3=4= у, тогда D =2y

3) A +D =180 0 , т.к. сумма соседних углов параллелограмма равна 180

2) Рассмотрим A ОD

1+3=90 0 , тогда
<5=90 0 (сумма углов треугольников равна 180 0)

5. Биссектрисы всех углов параллелограмма при пересечении образуют прямоугольник


Дано: АВСD - параллелограмм, АК-биссектриса A,

DР-биссектриса D,

CM -биссектриса C ,

BF -биссектриса B .

Доказать : KRNS -прямоугольник

Доказательство:

Исходя из предыдущего свойства 8=7=6=5=90 0 ,

значит KRNS -прямоугольник.

    Расстояния от противоположных углов параллелограмма до одной и той же его диагонали равны.

Дано: ABCD-параллелограмм, АС-диагональ.

ВК АС, DPAC

Доказать: BК=DР

Доказательство: 1)DCР=КAB, как внутренние накрест лежащие при АВ ║ СD и секущей АС.

2) AКB=CDР (по стороне и двум прилежащим к ней углам АВ=СD CD Р=AB К).

А в равных треугольниках соответственные стороны равны, значит DР=BК.

    Если в параллелограмме соединить противоположные вершины с серединами противоположных сторон, то получится еще один параллелограмм.

Дано: ABCD-параллелограмм.

Доказать: ВКDР – параллелограмм.

Доказательство:

1) BР=КD (AD=BC, точки К и Р

делят эти стороны пополам)

2) ВР ║ КD (лежат на АD BC)

Если в четырехугольнике противоположные стороны равны и параллельны, значит, этот четырехугольник -параллелограмм.


    Если в параллелограмме из двух противоположных углов провести высоты, то получится прямоугольник.

    Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его смежных сторон.

Дано: ABCD – параллелограмм. BD и AC - диагонали.

Доказать: АС 2 +ВD 2 =2(AB 2 + AD 2 )

Доказательство: 1)АСК: AC ²=
+

2)B Р D : BD 2 = B Р 2 + Р D 2 (по теореме Пифагора)

3) AC ²+ BD ²=СК²+ A К²+ B Р²+Р D ²

4) СК = ВР = Н (высота)

5) АС 2 D 2 = H 2 + A К 2 + H 2 D 2

6) Пусть D К= A Р=х , тогда C К D : H 2 = CD 2 – х 2 по теореме Пифагора)

7) АС²+В D ² = С D 2 - х²+ АК 1 ²+ CD 2 2 D 2 ,

АС²+В D ²=2С D 2 -2х 2 + A К 2 D 2

8) A К =AD+ х , Р D=AD- х ,

АС²+В D ² =2 CD 2 -2х 2 +(AD +х) 2 +(AD -х) 2 ,

АС ²+ В D²=2 С D²-2 х ² +AD 2 +2AD х + х 2 +AD 2 -2AD х + х 2 ,
АС ²+ В D²=2CD 2 +2AD 2 =2(CD 2 +AD 2 ).


V . Решение задач с использованием этих свойств

    Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5 . Найдите его большую сторону.

Дано: ABCD – параллелограмм,

АК – биссектриса
А,

D К – биссектриса
D , АВ=5

Найти : ВС

ешение

Решение

Т.к. АК - биссектриса
А, то АВК – равнобедренный.

Т.к. D К – биссектриса
D , то DCK - равнобедренный

DC =C К= 5

Тогда, ВС=ВК+СК=5+5 = 10

Ответ: 10

2. Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 см и 14 см.


1 случай

Дано:
А,

ВК=14 см, КС=7 см

Найти: Р параллелограмма

Решение

ВС=ВК+КС=14+7=21 (см)

Т.к. АК – биссектриса
А, то АВК – равнобедренный.

АВ=ВК= 14 см

Тогда Р=2 (14+21) =70 (см)

случай

Дано: ABCD – параллелограмм,

D К – биссектриса
D ,

ВК=14 см, КС=7 см

Найти : Р параллелограмма

Решение

ВС=ВК+КС=14+7=21 (см)

Т.к. D К – биссектриса
D , то DCK - равнобедренный

DC =C К= 7

Тогда, Р= 2 (21+7) = 56 (см)

Ответ: 70см или 56 см

3.Стороны параллелограмма равны 10 см и 3 см. Биссектрисы двух углов, прилежащих к большей стороне, делят противоположную сторону на три отрезка. Найдите эти отрезки.

1 случай: биссектрисы пересекаются вне параллелограмма

Дано: ABCD – параллелограмм, АК – биссектриса
А,

D К – биссектриса
D , АВ=3 см, ВС=10 см

Найти : ВМ, МN , NC

Решение

Т.к. АМ - биссектриса
А, то АВМ – равнобедренный.

Т.к. DN – биссектриса
D , то DCN - равнобедренный

DC =CN = 3

Тогда, МN = 10 – (BM +NC ) = 10 – (3+3)=4 см

2 случай: биссектрисы пересекаются внутри параллелограмма

Т.к. АN - биссектриса
А, то АВN – равнобедренный.

АВ=В N = 3 D

А раздвижную решетку – отодвигать на необходимое расстояние в дверном проеме

Параллелограммный механизм - четырёхзвенный механизм, звенья которого составляют параллелограмм. Применяется для реализации поступательного движения шарнирными механизмами.

Параллелограмм с неподвижным звеном - одно звено неподвижно, противоположное совершает качательное движение, оставаясь параллельным неподвижному. Два параллелограмма, соединённых друг за другом, дают конечному звену две степени свободы, оставляя его параллельным неподвижному.

Примеры: стеклоочистители автобусов, погрузчики, штативы, подвесы, автомобильные подвески.

Параллелограмм с неподвижным шарниром - используется свойство параллелограмма сохранять постоянное соотношение расстояний между тремя точками. Пример: чертёжный пантограф - прибор для масштабирования чертежей.

Ромб - все звенья одинаковой длины, приближение (стягивание) пары противоположных шарниров приводит к раздвиганию двух других шарниров. Все звенья работают на сжатие.

Примеры - автомобильный ромбовидный домкрат, трамвайный пантограф.

Ножничный или X-образный механизм , также известный как Нюрнбергские ножницы - вариант ромба - два звена, соединённые посередине шарниром. Достоинства механизма - компактность и простота, недостаток - наличие двух пар скольжения. Два (и более) таких механизма, соединённые последовательно, образуют в середине ромб(ы). Применяется в подъёмниках, детских игрушках.

VII Заключение

Кто с детских лет занимается математикой,

тот развивает внимание, тренирует свой мозг,

свою волю, воспитывает в себе настойчивость

и упорство в достижении цели

А. Маркушевич

    В ходе работы я доказала дополнительные свойства параллелограмма.

    Я убедилась, что применяя эти свойства, можно решать задачи быстрее.

    Я показала, как применяются эти свойства на примерах решения конкретных задач.

    Я узнала много нового о параллелограмме, чего нет в нашем учебнике геометрии

    Я убедилась в том, что знания геометрии очень важны в жизни на примерах применения свойств параллелограмма.

Цель моей исследовательской работы выполнена.

О том, насколько важны математические знания, говорит тот факт, что была учреждена премия тому, кто издаст книгу о человеке, который всю жизнь прожил без помощи математики. Эту премию до сих пор не получил ни один человек.

VIII Литература

    1. ПогореловА.В. Геометрия 7-9: учебник для общеобразоват. учреждений-М.: Просвещение, 2014г

      Л.С.Атанасян и др. Геометрия. Доп. Главы к учебнику 8 кл.: учеб. пособие для учащихся школ и классов с углубл. изуч.математики. – М.: Вита-пресс, 2003

      Ресурсы сети Интернет

      материалы Википедии

Параллелограмм - четырехугольник, у которого противоположные стороны попарно параллельны. Площадь параллелограмма равна произведению его основания (a) на высоту (h). Также можно найте его площадь через две стороны и угол и через диагонали.

Свойства параллелограмма

1. Противоположные стороны тождественны

Первым делом проведем диагональ \(AC \) . Получаются два треугольника: \(ABC \) и \(ADC \) .

Так как \(ABCD \) - параллелограмм, то справедливо следующее:

\(AD || BC \Rightarrow \angle 1 = \angle 2 \) как лежащие накрест.

\(AB || CD \Rightarrow \angle3 = \angle 4 \) как лежащие накрест.

Следовательно, (по второму признаку: и \(AC \) - общая).

И, значит, \(\triangle ABC = \triangle ADC \) , то \(AB = CD \) и \(AD = BC \) .

2. Противоположные углы тождественны

Согласно доказательству свойства 1 мы знаем, что \(\angle 1 = \angle 2, \angle 3 = \angle 4 \) . Таким образом сумма противоположных углов равна: \(\angle 1 + \angle 3 = \angle 2 + \angle 4 \) . Учитывая, что \(\triangle ABC = \triangle ADC \) получаем \(\angle A = \angle C \) , \(\angle B = \angle D \) .

3. Диагонали разделены пополам точкой пересечения

По свойству 1 мы знаем, что противоположные стороны тождественны: \(AB = CD \) . Еще раз отметим накрест лежащие равные углы.

Таким образом видно, что \(\triangle AOB = \triangle COD \) по второму признаку равенства треугольников (два угла и сторона между ними). То есть, \(BO = OD \) (напротив углов \(\angle 2 \) и \(\angle 1 \) ) и \(AO = OC \) (напротив углов \(\angle 3 \) и \(\angle 4 \) соответственно).

Признаки параллелограмма

Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.

Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос - «как узнать?» . То есть, как узнать, что заданная фигура это параллелограмм.

1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны

\(AB = CD \) ; \(AB || CD \Rightarrow ABCD \) - параллелограмм.

Рассмотрим подробнее. Почему \(AD || BC \) ?

\(\triangle ABC = \triangle ADC \) по свойству 1 : \(AB = CD \) , \(\angle 1 = \angle 2 \) как накрест лежащие при параллельных \(AB \) и \(CD \) и секущей \(AC \) .

Но если \(\triangle ABC = \triangle ADC \) , то \(\angle 3 = \angle 4 \) (лежат напротив \(AD || BC \) (\(\angle 3 \) и \(\angle 4 \) - накрест лежащие тоже равны).

Первый признак верен.

2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны

\(AB = CD \) , \(AD = BC \Rightarrow ABCD \) - параллелограмм.

Рассмотрим данный признак. Еще раз проведем диагональ \(AC \) .

По свойству 1 \(\triangle ABC = \triangle ACD \) .

Из этого следует, что: \(\angle 1 = \angle 2 \Rightarrow AD || BC \) и \(\angle 3 = \angle 4 \Rightarrow AB || CD \) , то есть \(ABCD \) - параллелограмм.

Второй признак верен.

3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны

\(\angle A = \angle C \) , \(\angle B = \angle D \Rightarrow ABCD \) - параллелограмм.

\(2 \alpha + 2 \beta = 360^{\circ} \) (поскольку \(\angle A = \angle C \) , \(\angle B = \angle D \) по условию).

Получается, . Но \(\alpha \) и \(\beta \) являются внутренними односторонними при секущей \(AB \) .

И то, что \(\alpha + \beta = 180^{\circ} \) говорит и о том, что \(AD || BC \) .

Параллелограммом называется четырехугольник, у которго противоположные стороны параллельны, т.е. лежат на параллельных прямых

Свойства параллелограмма:
Теорема 22. Противоположные стороны параллелограма равны.
Доказательство. В параллелограмме АВСD проведем диагональ АС. Треугольники АСD и АСВ равны, как имеющие общую сторону АС и две пары равных углов. прилежащих к ней: ∠ САВ=∠ АСD, ∠ АСВ=∠ DAC (как накрест лежащие углы при параллельных прямых AD и ВС). Значит, АВ=CD и ВС=AD, как соответственные стороны равных треугольников, ч.т.д. Из равенства этих треугольников также следует равенство соответственных углов треугольников:
Теорема 23. Противоположные углы параллелограмма равны: ∠ А=∠ С и ∠ В=∠ D.
Равенство первой пары идет из равенства треугольников АВD и CBD, а второй - АВС и ACD.
Теорема 24. Соседние углы параллелограмма, т.е. углы, прилежащие к одной стороне, составляют в сумме 180 градусов.
Это так, потому что они являются внутренними односторонними углами.
Теорема 25. Диагонали параллелограмма делят друг друга в точке их пересечения пополам.
Доказательство. Рассмотрим треугольники ВОС и АОD. По первому свойству AD=ВС ∠ ОАD=∠ ОСВ и ∠ ОDА=∠ ОВС как накрест лежащие при параллельных прямых AD и ВС. Поэтому треугольники ВОС и АОD равны по стороне и прилежащим к ней углам. Значит, ВО=ОD и АО=ОС, как соответственные стороны равных треугольников, ч.т.д.

Признаки параллелограмма
Теорема 26. Если противоположные стороны четырехугольника попарно равны, то он является параллелограммом.
Доказательство. Пусть у четырехугольника АВСD стороны AD и ВС, АВ и CD соответственно равны (рис2). Проведем диагональ АС. Треугольникик АВС и ACD равны по трем сторонам. Тогда углы ВАС и DСА равны и, следовательно, АВ параллельна CD. Параллельность сторон ВС и AD следует из равенства углов CAD и АСВ.
Теорема 27. Если противоположные углы четырехугольника попарно равны, то он является параллелограммом.
Пусть ∠ А=∠ С и ∠ В=∠ D. Т.к. ∠ А+∠ В+∠ С+∠ D=360 о, то ∠ А+∠ В=180 о и стороны AD и ВС параллельны (по признаку параллельности прямых). Также докажем и параллельность сторон АВ и CD и заключим, что АВСD является параллелограммом по определению.
Теорема 28. Если соседние углы четырехугольника, т.е. углы, прилежащие к одной стороне, составляют в сумме 180 градусов, то он является параллелограммом.
Если внутренние односторонные углы в сумме составляют 180 градусов, то прямые праллельны. Значит АВ парал CD и ВС парал AD. Четырехугольник оказывается параллелограммом по определению.
Теорема 29. Если диагонали четырехугольника взаимно делятся в точке пересечения пополам, то четырехугольник - параллелограмм.
Доказательство. Если АО=ОС, ВО=ОD, то треугольники АOD и ВОС равны, как имеющие равны углы (вертикальные) при вершине О, заключенные между парами равных сторон. Из равенства треугольников заключаем, что AD и ВС равны. Также равны стороны АВ и CD, и четырехугольник оказывается параллелограммом по признаку 1.
Теорема 30. Если четырехугольник имеет пару равных, параллельных между собой сторон, то он является параллелограммом.
Пусть в четырехугольнике АВСD стороны АВ и CD параллельны и равны. Проведем диагонали АС и ВD. Из параллельности этих прямых следует равенство накрест лежащих углов АВО=СDО и ВАО=ОСD. Треугольники АВО и CDО равны по стороне и прилежащим к ней углам. Поэтому АО=ОС, ВО=ОD, т.е. диагонали точкой пересечения делятся пополам и четырехугольник оказывается параллелограммом по признаку 4.

В геометрии рассматривают частные случаи параллелограмма.

Параллелограмм - это четырехугольник, у которого противоположные стороны попарно параллельны. На следующем рисунке представлен параллелограмм ABCD. У него сторона AB параллельна стороне CD, а сторона BC параллельна стороне AD.

Как вы уже успели догадаться, параллелограмм является выпуклым четырехугольником. Рассмотрим основные свойства параллелограмма.

Свойства параллелограмма

1. В параллелограмме противоположные углы и противоположные стороны равны. Докажем это свойство - рассмотрим параллелограмм, представленный на следующем рисунке.

Диагональ BD разделяет его на два равных треугольника: ABD и CBD. Они равны по стороне BD и двум прилежащим к ней углам, так как углы накрест лежащие при секущей BD параллельных прямых BC и AD и AB и CD соответственно. Следовательно, AB = CD и
BC = AD. А из равенства углов 1, 2 ,3 и 4 следует, что угол A = угол1 +угол3 = угол2 + угол4 = угол С.

2. Диагонали параллелограмма точкой пересечения делятся пополам. Пусть точка О есть точка пересечения диагоналей AC и BD параллелограмма ABCD.

Тогда треугольник AOB и треугольник COD равны между собой, по стороне и двум прилежащим к ней углам. (AB=CD так как это противоположные стороны параллелограмма. А угол1 = угол2 и угол3 = угол4 как накрест лежащие углы при пересечении прямых AB и CD секущими AC и BD соответственно.) Из этого следует, что AO = OC и OB = OD, что и требовалось доказать.

Все основные свойства проиллюстрированы на следующих трех рисунках.

Последние материалы раздела:

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...