Задача C2: уравнение плоскости через определитель. Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М 1 (x 1 , y 1 , z 1), M 2 (x 2 , y 2 , z 2), M 3 (x 3 , y 3 , z 3) в общей декартовой системе координат.

Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М 1 , М 2 , М 3 необходимо, чтобы векторы были компланарны.

(
) = 0

Таким образом,

Уравнение плоскости, проходящей через три точки:

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.

Пусть заданы точки М 1 (x 1 ,y 1 ,z 1),M 2 (x 2 ,y 2 ,z 2) и вектор
.

Составим уравнение плоскости, проходящей через данные точки М 1 и М 2 и произвольную точку М(х, у, z) параллельно вектору .

Векторы
и вектор
должны быть компланарны, т.е.

(
) = 0

Уравнение плоскости:

Уравнение плоскости по одной точке и двум векторам,

коллинеарным плоскости.

Пусть заданы два вектора
и
, коллинеарные плоскости. Тогда для произвольной точки М(х, у,z), принадлежащей плоскости, векторы
должны быть компланарны.

Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали .

Теорема. Если в пространстве задана точка М 0 0 , у 0 , z 0 ), то уравнение плоскости, проходящей через точку М 0 перпендикулярно вектору нормали (A , B , C ) имеет вид:

A (x x 0 ) + B (y y 0 ) + C (z z 0 ) = 0.

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору
. Тогда скалярное произведение

= 0

Таким образом, получаем уравнение плоскости

Теорема доказана.

Уравнение плоскости в отрезках.

Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D)

,

заменив
, получим уравнение плоскости в отрезках:

Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.

Уравнение плоскости в векторной форме.

где

- радиус- вектор текущей точки М(х, у, z),

Единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат.

,  и  - углы, образованные этим вектором с осями х, у, z.

p – длина этого перпендикуляра.

В координатах это уравнение имеет вид:

xcos + ycos + zcos - p = 0.

Расстояние от точки до плоскости.

Расстояние от произвольной точки М 0 (х 0 , у 0 , z 0) до плоскости Ах+Ву+Сz+D=0 равно:

Пример. Найти уравнение плоскости, зная, что точка Р(4; -3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Таким образом, A = 4/13; B = -3/13; C = 12/13, воспользуемся формулой:

A(x – x 0 ) + B(y – y 0 ) + C(z – z 0 ) = 0.

Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; -1) и

Q(1; -1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.

Вектор нормали к плоскости 3х + 2у – z + 5 = 0
параллелен искомой плоскости.

Получаем:

Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и

В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0.

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор
(1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали(1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 112 + 71 - 24 +D= 0;D= -21.

Итого, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.

Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Находим координаты вектора нормали
= (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0

Пример. Даны координаты вершин пирамиды А 1 (1; 0; 3), A 2 (2; -1; 3), A 3 (2; 1; 1),

    Найти длину ребра А 1 А 2 .

    Найти угол между ребрами А 1 А 2 и А 1 А 4 .

    Найти угол между ребром А 1 А 4 и гранью А 1 А 2 А 3 .

Сначала найдем вектор нормали к грани А 1 А 2 А 3 как векторное произведение векторов
и
.

= (2-1; 1-0; 1-3) = (1; 1; -2);

Найдем угол между вектором нормали и вектором
.

-4 – 4 = -8.

Искомый угол  между вектором и плоскостью будет равен  = 90 0 - .

    Найти площадь грани А 1 А 2 А 3 .

    Найти объем пирамиды.

    Найти уравнение плоскости А 1 А 2 А 3 .

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

2x + 2y + 2z – 8 = 0

x + y + z – 4 = 0;

При использовании компьютерной версии “Курса высшей математики ” можно запустить программу, которая решит рассмотренный выше пример для любых координат вершин пирамиды.

Для запуска программы дважды щелкните на значке:

В открывшемся окне программы введите координаты вершин пирамиды и, нажимитеEnter. Таким образом, поочередно могут быть получены все пункты решения.

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple ( Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

13.Угол между плоскостями, расстояние от точки до плоскости.

Пусть плоскости α и β пересекаются по прямой с.
Угол между плоскостями - это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях .

Другими словами, в плоскости α мы провели прямую а, перпендикулярную с. В плоскости β - прямую b, также перпендикулярную с. Угол между плоскостями α и β равен углу между прямыми а и b.

Заметим, что при пересечении двух плоскостей вообще-то образуются четыре угла. Видите их на рисунке? В качестве угла между плоскостями мы берем острый угол.

Если угол между плоскостями равен 90 градусов, то плоскости перпендикулярны ,

Это определение перпендикулярности плоскостей. Решая задачи по стереометрии, мы используем также признак перпендикулярности плоскостей :

Если плоскость α проходит через перпендикуляр к плоскости β, то плоскости α и β перпендикулярны .

расстояние от точки до плоскости

Рассмотрим точку T, заданную своими координатами:

T = (x 0 , y 0 , z 0)

Также рассмотрим плоскость α, заданную уравнением:

Ax + By + Cz + D = 0

Тогда расстояние L от точки T до плоскости α можно считать по формуле:

Другими словами, мы подставляем координаты точки в уравнение плоскости, а затем делим это уравнение на длину вектора-нормали n к плоскости:

Полученное число и есть расстояние. Давайте посмотрим, как эта теорема работает на практике.


Мы уже выводили параметические уравнения прямой на плоскости, давайте получим параметрические уравнения прямой, которая задана в прямоугольной системе координат в трехмерном пространстве.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz . Зададим в ней прямую a (смотрите раздел способы задания прямой в пространстве), указав направляющий вектор прямой и координаты некоторой точки прямой . От этих данных будем отталкиваться при составлении параметрических уравнений прямой в пространстве.

Пусть - произвольная точка трехмерного пространства. Если вычесть из координат точки М соответствующие координаты точки М 1 , то мы получим координаты вектора (смотрите статью нахождение координат вектора по координатам точек его конца и начала), то есть, .

Очевидно, что множество точек определяет прямую а тогда и только тогда, когда векторы и коллинеарны.

Запишем необходимое и достаточное условие коллинеарности векторов и : , где - некоторое действительное число. Полученное уравнение называется векторно-параметрическим уравнением прямой в прямоугольной системе координат Oxyz в трехмерном пространстве. Векторно-параметрическое уравнение прямой в координатной форме имеет вид и представляет собой параметрические уравнения прямой a . Название "параметрические" не случайно, так как координаты всех точек прямой задаются с помощью параметра .

Приведем пример параметрических уравнений прямой в прямоугольной системе координат Oxyz в пространстве: . Здесь


15.Угол между прямой и плоскостью. Точка пересечения прямой с плоскостью.

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости .

Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (3.2)

2) двумя своими точками M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2), тогда прямая, через них проходящая, задается уравнениями:

3) точкой M 1 (x 1 , y 1 , z 1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой .

Векторa называется направляющим вектором прямой .

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t:

x = x 1 +mt, y = y 1 + nt, z = z 1 + рt. (3.5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y , приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой :

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [n 1 , n 2 ], где n 1 (A 1 , B 1 , C 1) и n 2 (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x 1 , y = y 1 ; прямая параллельна оси Oz.

Пример 1.15 . Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение. По условию задачи вектор ОА (1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде
x-y+3z+D=0. Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: 1-(-1)+3×3+D = 0 Þ D = -11. Итак, x-y+3z-11=0.

Пример 1.16 . Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью 2x+y- z-7=0 угол 60 о.

Решение. Плоскость, проходящая через ось Oz, задается уравнением Ax+By=0, где А и В одновременно не обращаются в нуль. Пусть В не
равно 0, A/Bx+y=0. По формуле косинуса угла между двумя плоскостями

.

Решая квадратное уравнение 3m 2 + 8m - 3 = 0, находим его корни
m 1 = 1/3, m 2 = -3, откуда получаем две плоскости 1/3x+y = 0 и -3x+y = 0.

Пример 1.17. Составьте канонические уравнения прямой:
5x + y + z = 0, 2x + 3y - 2z + 5 = 0.

Решение. Канонические уравнения прямой имеют вид:

где m, n, р - координаты направляющего вектора прямой, x 1 , y 1 , z 1 - координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, x=0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть x=0, тогда y + z = 0, 3y - 2z+ 5 = 0, откуда y=-1, z=1. Координаты точки М(x 1 , y 1 , z 1), принадлежащей данной прямой, мы нашли: M (0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей n 1 (5,1,1) иn 2 (2,3,-2). Тогда

Канонические уравнения прямой имеют вид: x/(-5) = (y + 1)/12 =
= (z - 1)/13.

Пример 1.18 . В пучке, определяемом плоскостями 2х-у+5z-3=0 и х+у+2z+1=0, найти две перпендикулярные плоскости, одна из которых проходит через точку М(1,0,1).

Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид u(2х-у+5z-3) + v(х+у+2z+1)=0, где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом:

(2u +v)x + (- u + v)y + (5u +2v)z - 3u + v = 0.

Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим:

(2u+v)×1 + (-u + v)×0 + (5u + 2v)×1 -3u + v =0, или v = - u.

Тогда уравнение плоскости, содержащей M, найдем, подставив v = - u в уравнение пучка:

u(2x-y +5z - 3) - u (x + y +2z +1) = 0.

Т.к. u¹0 (иначе v=0, а это противоречит определению пучка), то имеем уравнение плоскости x-2y+3z-4=0. Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:

(2u+ v)×1 + (v - u)×(-2) + (5u +2v)×3 = 0, или v = - 19/5u.

Значит, уравнение второй плоскости имеет вид:

u(2x -y+5z - 3) - 19/5 u(x + y +2z +1) = 0 или 9x +24y + 13z + 34 = 0

Данная статья дает представление о том, как составить уравнение плоскости, проходящей через заданную точку трехмерного пространства перпендикулярно к заданной прямой. Разберем приведенный алгоритм на примере решения типовых задач.

Yandex.RTB R-A-339285-1

Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой

Пусть задано трехмерное пространство и прямоугольная система координат O x y z в нем. Заданы также точка М 1 (x 1 , y 1 , z 1) , прямая a и плоскость α , проходящая через точку М 1 перпендикулярно прямой a . Необходимо записать уравнение плоскости α .

Прежде чем приступить к решению этой задачи, вспомним теорему геометрии из программы 10 - 11 классов, которая гласит:

Определение 1

Через заданную точку трехмерного пространства проходит единственная плоскость, перпендикулярная к заданной прямой.

Теперь рассмотрим, как же найти уравнение этой единственной плоскости, проходящей через исходную точку и перпендикулярной данной прямой.

Возможно записать общее уравнение плоскости, если известны координаты точки, принадлежащей этой плоскости, а также координаты нормального вектора плоскости.

Условием задачи нам заданы координаты x 1 , y 1 , z 1 точки М 1 , через которую проходит плоскость α . Если мы определим координаты нормального вектора плоскости α , то получим возможность записать искомое уравнение.

Нормальным вектором плоскости α , так как он ненулевой и лежит на прямой a , перпендикулярной плоскости α , будет являться любой направляющий вектор прямой a . Так, задача нахождения координат нормального вектора плоскости α преобразовывается в задачу определения координат направляющего вектора прямой a .

Определение координат направляющего вектора прямой a может осуществляться разными методами: зависит от варианта задания прямой a в исходных условиях. К примеру, если прямая a в условии задачи задана каноническими уравнениями вида

x - x 1 a x = y - y 1 a y = z - z 1 a z

или параметрическими уравнениями вида:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

то направляющий вектор прямой будет иметь координаты а x , а y и а z . В случае, когда прямая a представлена двумя точками М 2 (x 2 , y 2 , z 2) и М 3 (x 3 , y 3 , z 3) , то координаты направляющего вектора буду определяться как (x3 – x2, y3 – y2, z3 – z2).

Определение 2

Алгоритм для нахождения уравнения плоскости, проходящей через заданную точку перпендикулярно заданной прямой:

Определяем координаты направляющего вектора прямой a: a → = (а x , а y , а z) ;

Определяем координаты нормального вектора плоскости α как координаты направляющего вектора прямой a:

n → = (A , B , C) , где A = a x , B = a y , C = a z ;

Записываем уравнение плоскости, проходящей через точку М 1 (x 1 , y 1 , z 1) и имеющей нормальный вектор n → = (A , B , C) в виде A (x – x 1) + B (y – y 1) + C (z – z 1) = 0 . Это и будет являться требуемым уравнением плоскости, которая проходит через заданную точку пространства и перпендикулярна к данной прямой.

Полученное общее уравнение плоскости: A (x – x 1) + B (y – y 1) + C (z – z 1) = 0 дает возможность получить уравнение плоскости в отрезках или нормальное уравнение плоскости.

Решим несколько примеров, используя полученный выше алгоритм.

Пример 1

Задана точка М 1 (3 , - 4 , 5) , через которую проходит плоскость, и эта плоскость перпендикулярна координатной прямой О z .

Решение

направляющим вектором координатной прямой O z будет координатный вектор k ⇀ = (0 , 0 , 1) . Следовательно, нормальный вектор плоскости имеет координаты (0 , 0 , 1) . Запишем уравнение плоскости, проходящей через заданную точку М 1 (3 , - 4 , 5) , нормальный вектор которой имеет координаты (0 , 0 , 1) :

A (x - x 1) + B (y - y 1) + C (z - z 1) = 0 ⇔ ⇔ 0 · (x - 3) + 0 · (y - (- 4)) + 1 · (z - 5) = 0 ⇔ z - 5 = 0

Ответ: z – 5 = 0 .

Рассмотрим еще один способ решить данную задачу:

Пример 2

Плоскость, которая перпендикулярна прямой O z будет задана неполным общим уравнением плоскости вида С z + D = 0 , C ≠ 0 . Определим значения C и D: такие, при которых плоскость проходит через заданную точку. Подставим координаты этой точки в уравнение С z + D = 0 , получим: С · 5 + D = 0 . Т.е. числа, C и D связаны соотношением - D C = 5 . Приняв С = 1 , получим D = - 5 .

Подставим эти значения в уравнение С z + D = 0 и получим требуемое уравнение плоскости, перпендикулярной к прямой O z и проходящей через точку М 1 (3 , - 4 , 5) .

Оно будет иметь вид: z – 5 = 0 .

Ответ: z – 5 = 0 .

Пример 3

Составьте уравнение плоскости, проходящей через начало координат и перпендикулярной к прямой x - 3 = y + 1 - 7 = z + 5 2

Решение

Опираясь на условия задачи, можно утверждать, что за нормальный вектор n → заданной плоскости можно принять направляющий вектор заданной прямой. Таким, образом: n → = (- 3 , - 7 , 2) . Запишем уравнение плоскости, проходящей через точку О (0 , 0 , 0) и имеющей нормальный вектор n → = (- 3 , - 7 , 2) :

3 · (x - 0) - 7 · (y - 0) + 2 · (z - 0) = 0 ⇔ - 3 x - 7 y + 2 z = 0

Мы получили требуемое уравнение плоскости, проходящей через начало координат перпендикулярно к заданной прямой.

Ответ: - 3 x - 7 y + 2 z = 0

Пример 4

Задана прямоугольная система координат O x y z в трехмерном пространстве, в ней – две точки А (2 , - 1 , - 2) и B (3 , - 2 , 4) . Плоскость α проходит через точку A перпендикулярно прямой А В. Необходимо составить уравнение плоскости α в отрезках.

Решение

Плоскость α перпендикулярна к прямой А В, тогда вектор А В → будет нормальным вектором плоскости α . Координаты этого вектора определяются как разности соответствующих координат точек В (3 , - 2 , 4) и А (2 , - 1 , - 2) :

A B → = (3 - 2 , - 2 - (- 1) , 4 - (- 2)) ⇔ A B → = (1 , - 1 , 6)

Общее уравнение плоскости будет записано в следующем виде:

1 · x - 2 - 1 · y - (- 1 + 6 · (z - (- 2)) = 0 ⇔ x - y + 6 z + 9 = 0

Теперь составим искомое уравнение плоскости в отрезках:

x - y + 6 z + 9 = 0 ⇔ x - y + 6 z = - 9 ⇔ x - 9 + y 9 + z - 3 2 = 1

Ответ: x - 9 + y 9 + z - 3 2 = 1

Также нужно отметить, что встречаются задачи, требование которых – написать уравнение плоскости, проходящей через заданную точку и перпендикулярной к двум заданным плоскостям. В общем, решение этой задачи в том, чтобы составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой, т.к. две пересекающиеся плоскости задают прямую линию.

Пример 5

Задана прямоугольная система координат O x y z , в ней – точка М 1 (2 , 0 , - 5) . Заданы также уравнения двух плоскостей 3 x + 2 y + 1 = 0 и x + 2 z – 1 = 0 , которые пересекаются по прямой a . Необходимо составить уравнение плоскости, проходящей через точку М 1 перпендикулярно к прямой a .

Решение

Определим координаты направляющего вектора прямой a . Он перпендикулярен как нормальному вектору n 1 → (3 , 2 , 0) плоскости n → (1 , 0 , 2) , так и нормальному вектору 3 x + 2 y + 1 = 0 плоскости x + 2 z - 1 = 0 .

Тогда направляющим вектором α → прямой a возьмем векторное произведение векторов n 1 → и n 2 → :

a → = n 1 → × n 2 → = i → j → k → 3 2 0 1 0 2 = 4 · i → - 6 · j → - 2 · k → ⇒ a → = (4 , - 6 , - 2)

Таким образом, вектор n → = (4 , - 6 , - 2) будет нормальным вектором плоскости, перпендикулярной к прямой a . Запишем искомое уравнение плоскости:

4 · (x - 2) - 6 · (y - 0) - 2 · (z - (- 5)) = 0 ⇔ 4 x - 6 y - 2 z - 18 = 0 ⇔ ⇔ 2 x - 3 y - z - 9 = 0

Ответ: 2 x - 3 y - z - 9 = 0

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Последние материалы раздела:

Кто такой Клод Шеннон и чем он знаменит?
Кто такой Клод Шеннон и чем он знаменит?

Клод Элвуд Шеннон – ведущий американский учёный в сфере математики, инженерии, криптоаналитики. Он приобрёл мировую известность, благодаря своим...

Английский с носителем языка по skype Занятия английским по скайпу с носителем
Английский с носителем языка по skype Занятия английским по скайпу с носителем

Вы могли слышать о таком замечательном сайте для языкового обмена, как SharedTalk. К сожалению, он закрылся, но его создатель возродил проект в...

Исследовательская работа
Исследовательская работа " Кристаллы" Что называется кристаллом

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ Кристаллом (от греч. krystallos - "прозрачный лед") вначале называли прозрачный кварц (горный хрусталь),...