Построить систему координат в пространстве. Прямоугольная система координат

Определение положения точки в пространстве

Итак, положение какой-либо точки в пространстве может быть определено только по отношению к каким-либо другим точкам. Та точка, относительно которой рассматривается положение других точек, называется точкой отсчете . Мы так же применим и другое наименование точки отсчета – точка наблюдения . Обычно с точкой отсчета (или с точкой наблюдения) связывают какую-либо систему координат , которую и называют системой отсчета. В выбранной системе отсчета положение КАЖДОЙ точки определяется ТРЕМЯ координатами.

Правая декартова (или прямоугольная) система координат

Эта система координат представляет собой три взаимно перпендикулярных направленных прямых, называемых так же осями координат , пересекающихся в одной точке (начале координат). Точка начала координат обычно обозначается буквой О.

Оси координат носят названия:

1. Ось абсцисс – обозначается как OX;

2. Ось ординат – обозначается как OY;

3. Ось аппликат – обозначается как OZ


Теперь объясним, почему эта система координат называется правой. Давайте посмотрим на плоскость XOY с положительного направления оси OZ, например из точки А, как это показано на рисунке.

Предположим, что мы начинаем поворачивать ось OX вокруг точки О. Так вот – правая система координат имеет такое свойство, что, если смотреть на плоскость XOY из какой-либо точки положительной полуоси OZ (у нас – это точка А), то, при повороте оси OX на 90 против часовой стрелки, её положительное направление совпадет с положительным направлением оси OY.

Такое решение было принято в научном мире, нам же остается принимать это так, как оно есть.


Итак, после того, как мы определились с системой отсчета (в нашем случае – правой декартовой системой координат), положение любой точки описывается через значения её координат или другими словами – через величины проекций этой точки на оси координат.

Записывается это так: A(x, y, z), где x, y, z – и есть координаты точки А.

Прямоугольную систему координат можно представить себе, как линии пересечения трех взаимно перпендикулярных плоскостей.

Следует заметить, что ориентировать прямоугольную систему координат в пространстве можно как угодно, при этом надо выполнить только одно условие – начало координат должно совпадать с центром отсчета (или точкой наблюдения).


Сферическая система координат

Положение точки в пространстве можно описать и другим способом. Предположим, что мы выбрали область пространства, в котором располагается точка отсчета О (или точка наблюдения), и еще нам известно расстояние от точки отсчета до некоторой точки А. Соединим эти две точки прямой ОА. Эта прямая называется радиус-вектором и обозначается, как r . Все точки, имеющие одно и тоже значение радиус-вектора, лежат на сфере, центр которой находится в точке отсчета (или точке наблюдения), а радиус этой сферы равен, соответственно радиус-вектору.

Таким образом, нам становится очевидным, что знание величины радиус-вектора не дает нам однозначного ответа о положении интересующей нас точки. Нужны еще ДВЕ координаты, ведь для однозначного определения местоположения точки количество координат должно равняться ТРЕМ.

Далее мы поступим следующим образом – построим две взаимно перпендикулярные плоскости, которые, естественно, дадут линию пересечения, и эта линия будет бесконечной, потому как и сами плоскости ничем не ограничены. Зададим на этой линии точку и обозначим ее, ну например, как точка О1. А теперь совместим эту точку О1 с центром сферы – точкой О и посмотрим, что получается?


А получается очень интересная картина:

· Как одна, так и другая плоскости будут центральными плоскостями.

· Пересечение этих плоскостей с поверхностью сферы обозначат большие круги

· Один из этих кругов – произвольно, мы назовем ЭКВАТОРОМ , тогда другой круг будет называться ГЛАВНЫМ МЕРИДИАНОМ.

· Линия пересечения двух плоскостей однозначно определит направление ЛИНИИ ГЛАВНОГО МЕРИДИАНА.


Точки пересечения линии главного меридиана с поверхностью сферы обозначим, как М1 и М2

Через центр сферы точку О в плоскости главного меридиана проведем прямую, перпендикулярную линии главного меридиана. Эта прямая носит название ПОЛЯРНАЯ ОСЬ .

Полярная ось пересечет поверхность сферы в двух точках, которые называются ПОЛЮСАМИ СФЕРЫ. Обозначим эти точки, как Р1 и Р2.

Определение координат точки в пространстве

Теперь рассмотрим процесс определения координат точки в пространстве, а так же дадим наименования этим координатам. Для полноты картины, при определении положения точки, укажем основные направления, от которых производится отсчет координат, а так же положительное направление при отсчете.

1. Задаем положение в пространстве точки отсчета (или точки наблюдения). Обозначим эту точку буквой О.

2. Строим сферу, радиус которой равен длине радиус-вектора точки А. (Радиус-вектор точки А – это расстояние между точками О и А). Центр сферы располагается в точке отсчета О.


3. Задаем положение в пространстве плоскости ЭКВАТОРА, а соответственно плоскости ГЛАВНОГО МЕРИДИАНА. Следует напомнить, что эти плоскости взаимно перпендикулярны и являются центральными.

4. Пересечение этих плоскостей с поверхностью сферы определяет нам положение круга экватора, круга главного меридиана, а так же направление линии главного меридиана и полярной оси.

5. Определяем положение полюсов полярной оси и полюсов линии главного меридиана. (Полюса полярной оси – точки пересечение полярной оси с поверхностью сферы. Полюса линии главного меридиана – это точки пересечения линии главного меридиана с поверхностью сферы).


6. Через точку А и полярную ось строим плоскость, которую назовем плоскостью меридиана точки А. При пересечении этой плоскости с поверхностью сферы получится большой круг, который мы назовем МЕРИДИАНОМ точки А.

7. Меридиан точки А пересечет круг ЭКВАТОРА в некоторой точке, которую мы обозначим, как Е1

8. Положение точки Е1 на экваториальном круге определяется длиной дуги, заключенной между точками М1 и Е1. Отсчет ведется ПРОТИВ часовой стрелки. Дуга экваториального круга, заключенная между точками М1 и Е1 называется ДОЛГОТОЙ точки А. Долгота обозначается буквой .

Подведем промежуточный итог. На данный момент нам известны ДВЕ из ТРЕХ координат, описывающих положение точки А в пространстве – это радиус-вектор (r) и долгота (). Теперь мы будем определять третью координату. Эта координата определяется положением точки А на ее меридиане. Но вот положение начальной точки, от которой происходит отсчет, однозначно не определено: мы можем начинать отсчет как от полюса сферы (точка Р1), так и от точки Е1, то есть от точки пересечения линий меридиана точки А и экватора (или другими словами – от линии экватора).


В первом случае, положение точки А на меридиане называется ПОЛЯРНЫМ РАССТОЯНИЕМ (обозначается как р ) и определяется длиной дуги, заключенной между точкой Р1 (или точкой полюса сферы) и точкой А. Отсчет ведется вдоль линии меридиана от точки Р1 к точке А.

Во втором случае, когда отсчет ведется от линии экватора, положение точки А на линии меридиана называется ШИРОТОЙ (обозначается как  и определяется длиной дуги, заключенной между точкой Е1 и точкой А.

Теперь мы можем окончательно сказать, что положение точки А в сферической системе координат определяется через:

· длину радиуса сферы (r),

· длину дуги долготы (),

· длину дуги полярного расстояния (р)

В этом случае координаты точки А запишутся следующим образом: А(r, , p)

Если пользоваться иной системой отсчета, то положение точки А в сферической системе координат определяется через:

· длину радиуса сферы (r),

· длину дуги долготы (),

· длину дуги широты ()

В этом случае координаты точки А запишутся следующим образом: А(r, , )

Способы измерения дуг

Возникает вопрос – как же нам измерить эти дуги? Самый простой и естественный способ – это провести непосредственное измерение длин дуг гибкой линейкой, и это возможно, если размеры сферы сравнимы с размерами человека. Но как поступить, если это условие не выполнимо?

В этом случае мы прибегнем к измерению ОТНОСИТЕЛЬНОЙ длины дуги. За эталон же мы примем длину окружности, частью которой является интересующая нас дуга. Как это можно сделать?

Если через точку О в про-стран-стве мы про-ве-дем три пер-пен-ди-ку-ляр-ные пря-мые, на-зо-вем их, вы-бе-рем на-прав-ле-ние, обо-зна-чим еди-нич-ные от-рез-ки, то мы по-лу-чим пря-мо-уголь-ную си-сте-му ко-ор-ди-нат в про-стран-стве . Оси ко-ор-ди-нат на-зы-ва-ют-ся так: Ох - ось абс-цисс, Оy - ось ор-ди-нат и Оz - ось ап-пли-кат . Вся си-сте-ма ко-ор-ди-нат обо-зна-ча-ет-ся - Oxyz. Таким об-ра-зом, по-яв-ля-ют-ся три ко-ор-ди-нат-ные плос-ко-сти : Оxy, Оxz, Оyz.

При-ве-дем при-мер по-стро-е-ния точки В(4;3;5) в пря-мо-уголь-ной си-сте-ме ко-ор-ди-нат (см. Рис. 1).

Рис. 1. По-стро-е-ние точки B в про-стран-стве

Пер-вая ко-ор-ди-на-та точки B - 4, по-это-му от-кла-ды-ва-ем на Ox 4, про-во-дим пря-мую па-рал-лель-но оси Oy до пе-ре-се-че-ния с пря-мой, про-хо-дя-щей через у=3. Таким об-ра-зом, мы по-лу-ча-ем точку K. Эта точка лежит в плос-ко-сти Oxy и имеет ко-ор-ди-на-ты K(4;3;0). Те-перь нужно про-ве-сти пря-мую па-рал-лель-но оси Oz. И пря-мую, ко-то-рая про-хо-дит через точку с ап-пли-ка-той 5 и па-рал-лель-на диа-го-на-ли па-рал-ле-ло-грам-ма в плос-ко-сти Oxy. На их пе-ре-се-че-нии мы по-лу-чим ис-ко-мую точку B.

Рас-смот-рим рас-по-ло-же-ние точек, у ко-то-рых одна или две ко-ор-ди-на-ты равны 0 (см. Рис. 2).

На-при-мер, точка A(3;-1;0). Нужно про-дол-жить ось Oy влево до зна-че-ния -1, найти точку 3 на оси Ox, и на пе-ре-се-че-нии линий, про-хо-дя-щих через эти зна-че-ния, по-лу-ча-ем точку А. Эта точка имеет ап-пли-ка-ту 0, а зна-чит, она лежит в плос-ко-сти Oxy.

Точка C(0;2;0) имеет абс-цис-су и ап-пли-ка-ту 0 - не от-ме-ча-ем. Ор-ди-на-та равна 2, зна-чит точка C лежит толь-ко на оси Oy, ко-то-рая яв-ля-ет-ся пе-ре-се-че-ни-ем плос-ко-стей Oxy и Oyz.

Чтобы от-ло-жить точку D(-4;0;3) про-дол-жа-ем ось Ox назад за на-ча-ло ко-ор-ди-нат до точки -4. Те-перь вос-ста-нав-ли-ва-ем из этой точки пер-пен-ди-ку-ляр - пря-мую, па-рал-лель-ную оси Oz до пе-ре-се-че-ния с пря-мой, па-рал-лель-ной оси Ox и про-хо-дя-щей через зна-че-ние 3 на оси Oz. По-лу-ча-ем току D(-4;0;3). Так как ор-ди-на-та точки равна 0, зна-чит точка D лежит в плос-ко-сти Oxz.

Сле-ду-ю-щая точка E(0;5;-3). Ор-ди-на-та точки 5, ап-пли-ка-та -3, про-во-дим пря-мые про-хо-дя-щие через эти зна-че-ния на со-от-вет-ству-ю-щих осях, и на их пе-ре-се-че-нии по-лу-ча-ем точку E(0;5;-3). Эта точка имеет первую ко-ор-ди-на-ту 0, зна-чит она лежит в плос-ко-сти Oyz.

2. Координаты вектора

На-чер-тим пря-мо-уголь-ную си-сте-му ко-ор-ди-нат в про-стран-стве Oxyz. За-да-дим в про-стран-стве пря-мо-уголь-ную си-сте-му ко-ор-ди-нат Oxyz. На каж-дой из по-ло-жи-тель-ных по-лу-осей от-ло-жим от на-ча-ла ко-ор-ди-нат еди-нич-ный век-тор, т. е. век-тор, длина ко-то-ро-го равна еди-ни-це. Обо-зна-чим еди-нич-ный век-тор оси абс-цисс, еди-нич-ный век-тор оси ор-ди-нат , и еди-нич-ный век-тор оси ап-пли-кат (см. рис. 1). Эти век-то-ры со-на-прав-ле-ны с на-прав-ле-ни-я-ми осей, имеют еди-нич-ную длину и ор-то-го-наль-ны - по-пар-но пер-пен-ди-ку-ляр-ны. Такие век-то-ра на-зы-ва-ют ко-ор-ди-нат-ны-ми век-то-ра-ми или ба-зи-сом.

Рис. 1. Раз-ло-же-ние век-то-ра по трем ко-ор-ди-нат-ным век-то-рам

Возь-мем век-тор , по-ме-стим его в на-ча-ло ко-ор-ди-нат, и раз-ло-жим этот век-тор по трем неком-пла-нар-ным - ле-жа-щим в раз-ных плос-ко-стях - век-то-рам. Для этого опу-стим про-ек-цию точки M на плос-кость Oxy, и най-дем ко-ор-ди-на-ты век-то-ров , и . По-лу-ча-ем: . Рас-смот-рим по от-дель-но-сти каж-дый из этих век-то-ров. Век-тор лежит на оси Ox, зна-чит, со-глас-но свой-ству умно-же-ния век-то-ра на число, его можно пред-ста-вить как ка-кое-то число x умно-жен-ное на ко-ор-ди-нат-ный век-тор . , а длина век-то-ра ровно в x раз боль-ше длины . Так же по-сту-пим и с век-то-ра-ми и , и по-лу-ча-ем раз-ло-же-ние век-то-ра по трем ко-ор-ди-нат-ным век-то-рам:

Ко-эф-фи-ци-ен-ты этого раз-ло-же-ния x, y и z на-зы-ва-ют-ся ко-ор-ди-на-та-ми век-то-ра в про-стран-стве.

Рас-смот-рим пра-ви-ла, ко-то-рые поз-во-ля-ют по ко-ор-ди-на-там дан-ных век-то-ров найти ко-ор-ди-на-ты их суммы и раз-но-сти, а также ко-ор-ди-на-ты про-из-ве-де-ния дан-но-го век-то-ра на дан-ное число.

1) Сло-же-ние:

2) Вы-чи-та-ние:

3) Умно-же-ние на число: ,

Век-тор, на-ча-ло ко-то-ро-го сов-па-да-ет с на-ча-лом ко-ор-ди-нат, на-зы-ва-ет-ся ра-ди-ус -век-то-ром. (Рис. 2). Век-тор - ра-ди-ус-век-тор, где x, y и z - это ко-эф-фи-ци-ен-ты раз-ло-же-ния этого век-то-ра по ко-ор-ди-нат-ным век-то-рам , , . В дан-ном слу-чае x - это пер-вая ко-ор-ди-на-та точки A на оси Ox, y - ко-ор-ди-на-та точки B на оси Oy, z - ко-ор-ди-на-та точки C на оси Oz. По ри-сун-ку видно, что ко-ор-ди-на-ты ра-ди-ус-век-то-ра од-но-вре-мен-но яв-ля-ют-ся ко-ор-ди-на-та-ми точки М.

Возь-мем точку A(x1;y1;z1) и точку B(x2;y2;z2) (см. рис. 3). Пред-ста-вим век-тор как раз-ность век-то-ров и по свой-ству век-то-ров. При-чем, и - ра-ди-ус-век-то-ры, и их ко-ор-ди-на-ты сов-па-да-ют с ко-ор-ди-на-та-ми кон-цов этих век-то-ров. Тогда мы можем пред-ста-вить ко-ор-ди-на-ты век-то-ра как раз-ность со-от-вет-ству-ю-щих ко-ор-ди-нат век-то-ров и : . Таким об-ра-зом, ко-ор-ди-на-ты век-то-ра мы можем вы-ра-зить через ко-ор-ди-на-ты конца и на-ча-ла век-то-ра.

Рас-смот-рим при-ме-ры, ил-лю-стри-ру-ю-щие свой-ства век-то-ров и их вы-ра-же-ние через ко-ор-ди-на-ты. Возь-мем век-то-ры , , . Нас спра-ши-ва-ют век-тор . В дан-ном слу-чае найти это зна-чит найти ко-ор-ди-на-ты век-то-ра, ко-то-рые пол-но-стью его опре-де-ля-ют. Под-став-ля-ем в вы-ра-же-ние вме-сто век-то-ров со-от-вет-ствен-но их ко-ор-ди-на-ты. По-лу-ча-ем:

Те-перь умно-жа-ем число 3 на каж-дую ко-ор-ди-на-ту в скоб-ках, и то же самое де-ла-ем с 2:

У нас по-лу-чи-лась сумма трех век-то-ров, скла-ды-ва-ем их по изу-чен-но-му выше свой-ству:

Ответ:

При-мер №2.

Дано: Тре-уголь-ная пи-ра-ми-да AOBC (см. рис. 4). Плос-ко-сти AOB, AOC и OCB - по-пар-но пер-пен-ди-ку-ляр-ны. OA=3, OB=7, OC=4; M - сер.AC; N - сер.OC; P - сер. CB.

Найти: ,,,,,,,.

Ре-ше-ние: Вве-дем пря-мо-уголь-ную си-сте-му ко-ор-ди-нат Oxyz с на-ча-лом от-сче-та в точке O. По усло-вию обо-зна-ча-ем точки A, B и C на осях и се-ре-ди-ны ребер пи-ра-ми-ды - M, P и N. По ри-сун-ку на-хо-дим ко-ор-ди-на-ты вер-шин пи-ра-ми-ды: A(3;0;0), B(0;7;0), C(0;0;4).

В пространстве, в которой положение точки может быть определено как её проекции на фиксированные прямые, пересекающиеся в одной точке, называемой началом координат. Эти проекции называются координатами точки, а прямые - осями координат.

В общем случае на плоскости декартова система координат (аффинная система координат) задаётся точкой О (началом координат) и упорядоченной парой приложенных к ней не лежащих на одной прямой векторов е 1 и е 2 (базисных векторов). Прямые, проходящие через начало координат в направлении базисных векторов, называют осями координат данной декартовой системы координат. Первая, определяемая вектором е 1 , называется осью абсцисс (или осью Ох), вторая - осью ординат (или осью Оу). Сама декартова система координат обозначается Ое 1 е 2 или Оху. Декартовыми координатами точки М (рисунок 1) в декартовой системе координат Oe 1 е 2 называется упорядоченная пара чисел (х, у), которые являются коэффициентами разложения вектора ОМ по базису {е 1 , е 2 }, то есть х и у таковы, что ОМ = хе 1 + уе 2 . Число х, -∞ < x < ∞, называется абсциссой, чис-ло у, - ∞ < у < ∞, - ординатой точки М. Если (x, у) - координаты точки М, то пишут М(х, у).

Если на плоскости введены две декартовы системы координат Oe 1 e 2 и 0’е’ 1 е’ 2 так, что векторы базиса {е’ 1 , е’ 2 } выражены через векторы базиса {e 1 ,е 2 } формулами

e’ 1 = a 11 e 1 + a 12 е 2 , е’ 2 = а 21 e 1 + a 22 e 2

и точка О’ имеет в декартовой системе координат Оe 1 e 2 координаты (х 0 , у 0), то координаты (х, у) точки М в декартовой системе координат Оe 1 e2 и координаты (х’, у’) той же точки в декартовой системе координат О’е 1 е’ 2 связаны соотношениями

х = а 11 х’ + а 21 у’ + х 0 , у = а 12 х’+ а 22 у’+ у 0 .

Декартову систему координат называют прямоугольной, если базис {е 1 , е 2 } ортонормированный, то есть векторы е 1 и е 2 взаимно перпендикулярны и имеют длины, равные единице (векторы е 1 и е 2 называют в этом случае ортами). В прямоугольной декартовой системе координат координаты х и у точки М суть величины ортогональных проекций точки М на оси Ох и Оу соответственно. В прямоугольной декартовой системе координат Оху расстояние между точками М 1 (х 1 , у 1) и М 2 (х 2 , у 2) равно √(х 2 -х 1) 2 + (y 2 -y 1) 2

Формулы перехода от одной прямоугольной декартовой системы координат Оху к другой прямоугольной декартовой системе координат О’х’у’, начало которой О’ декартовой системы координат Оху есть О’(х0, у0), имеют вид

х = х’cosα - у’sinα + х 0 , у = х’sin α + у’cosα + у 0

х = х’cosα + у’sinα + х 0 , у = х’sinα - у’cosα + у 0 .

В первом случае система О’х’у’ образуется поворотом базисных векторов е 1 ; е 2 на угол α и последующим переносом начала координат О в точку О’ (рисунок 2),

а во втором случае - поворотом базисных векторов е 1 , е 2 на угол α, последующим отражением оси, содержащей вектор е 2 относительно прямой, несущей вектор е 1 , и переносом начала координат О в точку О’ (рисунок 3).

Иногда используются косоугольные декартовы системы координат, отличающиеся от прямоугольной тем, что угол между единичными базисными векторами не является прямым.

Аналогично определяется общая декартова система координат (аффинная система координат) в пространстве: задаётся точка О - начало координат и упорядоченная тройка приложенных к ней не лежащих в одной плоскости векторов е 1 , е 2 , е 3 (базисных векторов). Как и в случае плоскости, определяются оси координат - ось абсцисс (ось Ох), ось ординат (ось Оу) и ось аппликат (ось Оz) (рисунок 4).

Декартова система координат в пространстве обозначается Oe 1 е 2 е 3 (или Oxyz). Плоскости, проходящие через пары осей координат, называются координатными плоскостями. Декартова система координат в пространстве называется правой, если поворот от оси Ох к оси Оу совершается в направлении, противоположном движению часовой стрелки, если смотреть на плоскость Оху из какой-нибудь точки положительной полуоси Оz, в противоположном случае декартова система координат называется левой. Если базисные векторы е 1 , е 2 , е 3 имеют длины, равные единице, и попарно перпендикулярны, то декартова система координат называется прямоугольной. Положение одной прямоугольной декартовой системы координат в пространстве относительно другой прямоугольной декартовой системы координат с той же ориентацией определяется тремя эйлеровыми углами.

Декартова система координат названа по имени Р. Декарта, хотя в его сочинении «Геометрия» (1637) рассматривалась косоугольная система координат, в которой координаты точек могли быть только положительными. В издании 1659-61 годов к «Геометрии» приложена работа голландского математика И. Гудде, в которой впервые допускаются как положительные, так и отрицательные значения координат. Пространственную декартову систему координат ввёл французский математик Ф. Лаир (1679). В начале18 века установились обозначения х, у, z для декартовых координат.

Построение Декартовой прямоугольной системы координат

на плоскости

Декартова прямоугольная система координатна плоскости образуется двумя взаимно перпендикулярными осями координат OX 1 и OX 2 , которые пересекаются в точке O , называемой началом координат (рис.1). На каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно одинаковы для всех осей (что не является обязательным). В правосторонней системе координат положительное направление осей выбирают так, чтобы при направлении оси OX 2 вверх, ось OX 1 смотрела направо. OX 1 -- ось абсцисс, OX 2 -- ось ординат. Четыре угла (I, II, III, IV), образованные осями координат OX 1 и OX 2 , называются координатными углами или квадрантами .

Точка B A на координатную ось OX 1 ;

Точка C - ортогональная проекция точки A на координатную ось OX 2 ;

Построение Декартовой прямоугольной системы координат в пространстве

Декартова прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX , OY и OZ . Оси координат пересекаются в точке O , которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно одинаковы для всех осей (что не является обязательным). OX -- ось абсцисс, OY -- ось ординат,OZ -- ось аппликат.

Если большой палец правой руки принять за направление X , указательный - за направление Y а средний - за направление Z , то образуется правая система координат. Аналогичными пальцами левой руки образуется левая система координат. Иначе говоря, положительное направление осей выбирают так, чтобы при повороте оси OX против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси OY , если этот поворот наблюдать со стороны положительного направления оси OZ . Правую и левую системы координат невозможно совместить так, чтобы совпали соответствующие оси (рис.2). Точка F - ортогональная проекция точки A на координатную плоскость OXY; Точка E - ортогональная проекция точки A на координатную плоскость OYZ; Точка G - ортогональная проекция точки A на координатную плоскость OX Z ;

Макетное представление Декартовой прямоугольной системы координат в пространстве показано на рисунках 3, 4 и 5.

Определение координат точки в Декартовой прямоугольной системе координат

Главным вопросом любой системы координат является вопрос определения координат точки, находящейся в ее плоскости или пространстве.

Определение координат точки на плоскости Декартовой системы координат

Положение точки A на плоскости определяется двумя координатами - x и y (рис.5). Координата x равна длине отрезка OB , координата y -- длине отрезка OC в выбранных единицах измерения. Отрезки OB и OC определяются линиями, проведёнными из точки A параллельно осям OY и OX соответственно. Координата x называется абсциссой (лат. abscissa - отрезок), координата y -- ординатой (лат. ordinates - расположенный в порядке) точки A . Записывают так:

Если точка A лежит в координатном углу I, то она имеет положительные абсциссу и ординату. Если точка A лежит в координатном углу II, то - отрицательную абсциссу и положительную ординату. Если точка A лежит в координатном углу III, то она имеет отрицательные абсциссу и ординату. Если точка A лежит в координатном углу IV, то - положительную абсциссу и отрицательную ординату.

Так определяются координаты в Декартовой системе координат на плоскости.


Метод координат - это, конечно, очень хорошо, но в настоящих задачах C2 никаких координат и векторов нет. Поэтому их придется вводить. Да-да, вот так взять и ввести: указать начало отсчета, единичный отрезок и направление осей x, y и z.

Самое замечательное свойство этого метода заключается в том, что не имеет никакого значения, как именно вводить систему координат. Если все вычисления будут правильными, то и ответ будет правильным.

Координаты куба

Если в задаче C2 будет куб - считайте, что вам повезло. Это самый простой многогранник, все двугранные углы которого равны 90°.

Система координат также вводится очень просто:

  1. Начало координат - в точке A;
  2. Чаще всего ребро куба не указано, поэтому принимаем его за единичный отрезок;
  3. Ось x направляем по ребру AB, y - по ребру AD, а ось z - по ребру AA 1 .

Обратите внимание: ось z направляется вверх! После двумерной системы координат это несколько непривычно, но на самом деле очень логично.

Итак, теперь у каждой вершины куба есть координаты. Соберем их в таблицу - отдельно для нижней плоскости куба:

Несложно заметить, что точки верхней плоскости отличаются соответствующих точек нижней только координатой z. Например, B = (1; 0; 0), B 1 = (1; 0; 1). Главное - не запутаться!

Призма - это уже намного веселее. При правильном подходе достаточно знать координаты только нижнего основания - верхнее будет считаться автоматически.

В задачах C2 встречаются исключительно правильные трехгранные призмы (прямые призмы, в основании которых лежит правильный треугольник). Для них система координат вводится почти так же, как и для куба. Кстати, если кто не в курсе, куб - это тоже призма, только четырехгранная.

Итак, поехали! Вводим систему координат:

  1. Начало координат - в точке A;
  2. Сторону призмы принимаем за единичный отрезок, если иное не указано в условии задачи;
  3. Ось x направляем по ребру AB, z - по ребру AA 1 , а ось y расположим так, чтобы плоскость OXY совпадала с плоскостью основания ABC.

Здесь требуются некоторые пояснения. Дело в том, что ось y НЕ совпадает с ребром AC, как многие считают. А почему не совпадает? Подумайте сами: треугольник ABC - равносторонний, в нем все углы по 60°. А углы между осями координат должны быть по 90°, поэтому сверху картинка будет выглядеть так:

Надеюсь, теперь понятно, почему ось y не пойдет вдоль AC. Проведем в этом треугольнике высоту CH. Треугольник ACH - прямоугольный, причем AC = 1, поэтому AH = 1 · cos A = cos 60°; CH = 1 · sin A = sin 60°. Эти факты нужны для вычисления координат точки C.

Теперь взглянем на всю призму вместе с построенной системой координат:

Получаем следующие координаты точек:

Как видим, точки верхнего основания призмы снова отличаются от соответствующих точек нижнего лишь координатой z. Основная проблема - это точки C и C 1 . У них есть иррациональные координаты, которые надо просто запомнить. Ну, или понять, откуда они возникают.

Координаты шестигранной призмы

Шестигранная призма - это «клонированная» трехгранная. Можно понять, как это происходит, если взглянуть на нижнее основание - обозначим его ABCDEF. Проведем дополнительные построения: отрезки AD, BE и CF. Получилось шесть треугольников, каждый из которых (например, треугольник ABO) является основанием для трехгранной призмы.

Теперь введем собственно систему координат. Начало координат - точку O - поместим в центр симметрии шестиугольника ABCDEF. Ось x пойдет вдоль FC, а ось y - через середины отрезков AB и DE. Получим такую картинку:

Обратите внимание: начало координат НЕ совпадает с вершиной многогранника! На самом деле, при решении настоящих задач вы обнаружите, что это очень удобно, поскольку позволяет значительно уменьшить объем вычислений.

Осталось добавить ось z. По традиции, проводим ее перпендикулярно плоскости OXY и направляем вертикально вверх. Получим итоговую картинку:

Запишем теперь координаты точек. Предположим, что все ребра нашей правильной шестигранной призмы равны 1. Итак, координаты нижнего основания:

Координаты верхнего основания сдвинуты на единицу по оси z:

Пирамида - это вообще очень сурово. Мы разберем только самый простой случай - правильную четырехугольную пирамиду, все ребра которой равны единице. Однако в настоящих задачах C2 длины ребер могут отличаться, поэтому ниже приведена и общая схема вычисления координат.

Итак, правильная четырехугольная пирамида. Это такая же, как у Хеопса, только чуть поменьше. Обозначим ее SABCD, где S - вершина. Введем систему координат: начало в точке A, единичный отрезок AB = 1, ось x направим вдоль AB, ось y - вдоль AD, а ось z - вверх, перпендикулярно плоскости OXY. Для дальнейших вычислений нам потребуется высота SH - вот и построим ее. Получим следующую картинку:

Теперь найдем координаты точек. Для начала рассмотрим плоскость OXY. Здесь все просто: в основании лежит квадрат, его координаты известны. Проблемы возникают с точкой S. Поскольку SH - высота к плоскости OXY, точки S и H отличаются лишь координатой z. Собственно, длина отрезка SH - это и есть координата z для точки S, поскольку H = (0,5; 0,5; 0).

Заметим, что треугольники ABC и ASC равны по трем сторонам (AS = CS = AB = CB = 1, а сторона AC - общая). Следовательно, SH = BH. Но BH - половина диагонали квадрата ABCD, т.е. BH = AB · sin 45°. Получаем координаты всех точек:

Вот и все с координатами пирамиды. Но не с координатами вообще. Мы рассмотрели лишь самые распространенные многогранники, однако этих примеров достаточно, чтобы самостоятельно вычислить координаты любых других фигур. Поэтому можно приступать, собственно, к методам решения конкретных задач C2.

Последние материалы раздела:

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...

Конспект урока по окружающему миру на тему: «Режим дня II
Конспект урока по окружающему миру на тему: «Режим дня II

Тема Режим дня Учебная задача Цель темы научиться планировать распорядок дня Сформировать понятие о режиме дня школьника Показать...