Применение ртути в современной промышленности. Свойства и характеристики ртути

В 1933 году немецкий физик Вальтер Фриц Мейснер совместно со своим коллегой Робертом Оксенфельдом открыл эффект, который впоследствии назвали его именем. Эффект Мейснера заключается в том, что при переходе в сверхпроводящее состояние, наблюдается полное вытеснение магнитного поля из объема проводника. Наглядно это можно наблюдать с помощью опыта, которому дали название “Гроб Магомета” (по легенде, гроб мусульманского пророка Магомета висел в воздухе без физической поддержки). В этой статье мы расскажем об Эффекте Мейснера и его будущему и настоящему практическому применению.

В 1911 году Хейке Камерлинг-Оннес сделал важное открытие – сверхпроводимость. Он доказал, что если охладить некоторые вещества до температуры 20 К, то они не оказывают сопротивление электрическому току. Низкая температура “успокаивает” случайные колебания атомов, и электричество не встречает сопротивление.

После этого открытия началась настоящая гонка по нахождению таких веществ, которые не будут оказывать сопротивление без охлаждения, например при обычной комнатной температуре. Такой сверхпроводник сможет передавать электричество на гигантские расстояния. Дело в том, что обычные линии электропередач теряют значительное количество электрического тока, как раз из-за сопротивления. Пока же физики ставят свои опыты с помощью охлаждения сверхпроводников. И одним из самых популярных опытов, является демонстрация Эффекта Мейснера. В сети можно встретить множество роликов, показывающих этот эффект. Мы выложили один, который лучше всего демонстрирует это.

Для демонстрации опыта левитации магнита над сверхпроводником нужно взять высокотемпературную сверхпроводящую керамику и магнит. Керамика охлаждается с помощью азота до уровня сверхпроводимости. К ней подключается ток и сверху кладется магнит. В полях 0,001 Тл магнит смещается вверх и левитирует над сверхпроводником.

Объясняется эффект тем, что при переходе вещества в сверхпроводимость, магнитное поле выталкивается из его объема.

Как можно применить эффект Мейснера на практике? Наверное, каждый читатель этого сайта видел множество фантастических фильмов, в которых автомобили парили над дорогой. Если удастся изобрести вещество, которое превратится в сверхпроводник при температуре, скажем не ниже +30, то это уже не окажется фантастикой.

А как же сверхскоростные поезда, которые тоже парят над железной дорогой. Да они существуют уже сейчас. Но в отличие от Эффекта Мейснера, там действуют другие законы физики: отталкивание однополюсных сторон магнитов. К сожалению, дороговизна магнитов не позволяет широко распространить эту технологию. С изобретение сверхпроводника, которого не нужно охлаждать, летающие машины станут реальностью.

Ну а пока Эффект Мейснера взяли на свое вооружение фокусники. Одно из таких представлений мы раскопали для вас в сети. Свои трюки показывает труппа “Эксос”. Никакой магии – только физика.

Сверхпроводимость: история открытия и сущность явления.

История открытия.

Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски и Кароль Ольшевски выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и металл совсем перестанет проводить ток. Эксперименты, проводимые Камерлингом-Оннесом со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 Кельвинах (около −270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий спад сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

В 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками.

Нулевое сопротивление - не единственная отличительная черта сверхпроводников. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.

Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем и Хайнцем Лондоном. Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга - Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².

В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.

В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La-Sr-Cu-O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y-Ba-Cu-O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg-Ba-Ca-Cu-O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.

В 2015 году был установлен новый рекорд температуры, при которой достигается сверхпроводимость. Для H 2 S (сероводород) при давлении 100 ГПа был зафиксирован сверхпроводящий переход при температуре 203 К (-70°C).

Понятие о сверхпроводимости.

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением(при постоянном токе) при достижении ими температуры ниже определённого значения (критическая температура)

Сверхпроводящее состояние возникает скачкообразно при температуре, которая называется температурой перехода. Выше этой температуры металл или полупроводник находится в нормальном состоянии, а ниже ее – в сверхпроводящем. Температура перехода данного вещества определяется соотношением двух «противоположных сил»: одна стремится упорядочить электроны, а другая – разрушить этот порядок. Сверхпроводящее состояние физики называют макроскопическим квантово-механическим состоянием. Квантовая механика, которой обычно пользуются для описания поведения вещества в микроскопическом масштабе, здесь применяется в макроскопическом масштабе. Именно то обстоятельство, что квантовая механика здесь позволяет объяснить макроскопические свойства вещества, и делает сверхпроводимость столь интересным явлением.

Классификация.

Существует несколько критериев для классификации сверхпроводников. Вот основные из них:

    По их отклику на магнитное поле: они могут быть I рода, что значит, что они имеют единственное значение магнитного поля, H c , выше которого они теряют сверхпроводимость. Или II рода, подразумевающего наличие двух критических значений магнитного поля, H c1 и H c2 ,. При приложении магнитного поля в этом диапазоне происходит частичное его проникновение в сверхпроводник с сохранением сверхпроводящих свойств.

    По их критической температуре: низкотемпературные, если Tc < 77 K (ниже температуры кипения азота), и высокотемпературные.

    По материалу: чистый химический элемент (такие как свинец или ртуть, однако не все элементы в чистом виде достигают сверхпроводящего состояния), сплавы (например, NbTi), керамика (например, YBCO, MgB 2), сверхпроводники на основе железа, органические сверхпроводники и т. п.

Принципиальные свойства сверхпроводников

    Нулевое электрическое сопротивление. Для постоянного электрического тока электрическое сопротивление сверхпроводника равно нулю. Это было продемонстрировано в ходе эксперимента, где в замкнутом сверхпроводнике был индуцирован электрический ток, который протекал в нём без затухания в течение 2,5 лет (эксперимент был прерван забастовкой рабочих, подвозивших криогенные жидкости).

    Наличие критических свойств:

Критическое магнитное поле (критическая индукция) . Критическое магнитное поле – значение поля, выше которого сверхпроводник находится в нормальном состоянии. Критические поля обычно лежат в интервале от нескольких десятков гаусс до нескольких сотен тысяч гаусс в зависимости от сверхпроводника и его металлофизического состояния. Критическое поле данного сверхпроводника меняется с температурой, уменьшаясь при ее повышении. При температуре перехода критическое поле равно нулю, а при абсолютном нуле оно максимально

Рис. 2. СВЕРХПРОВОДИМОСТЬ разрушается при сильных магнитных полях и высоких температурах. Представлена фазовая диаграмма магнитное поле – абсолютная температура для олова. При условиях, соответствующих точкеА , олово находится в нормальном, несверхпроводящем состоянии. Если же его охладить до точкиВ , то оно становится

сверхпроводящим.

    Критический ток . Критический ток – максимальный постоянный ток, который может выдерживать сверхпроводник без потери сверхпроводящего состояния. Как и критическое магнитное поле, критический ток сильно зависит от температуры, уменьшаясь при ее увеличении.

    Критическая температура. Температура T c , при достижении которой происходит скачок, называется критической. Внимательное исследование показывает, что такой переход наблюдается в некотором интервале температур. Критическая температура своя для каждого вещества.

Рис. 3 Вид «сверхпроводящего перехода». Зависимость сопротивления от температуры для образца 1 (более «чистого») и 2 (более «грязного»). Критическая температура T c обозначает середину перехода, когда сопротивление падает наполовину по сравнению с нормальным состоянием. Начало падения - T c0 , конец - T ce

    Полное вытеснение магнитного поля - Эффект Мейснера-Оксенфельда, о котором подробно рассказывается далее.

Эффект Мейснера-Оксенфельда. В течение 22 лет после открытия сверхпроводимости считалось, что сверхпроводник - это идеальный проводник, т. е. просто металл с сопротивлением равным нулю.

Посмотрим, как должен вести себя такой идеальный проводник во внеш- нем магнитном поле (достаточно слабом, чтобы не разрушить сверхпро- водимость). Пусть в исходном состоянии идеальный проводник охлажден до некоторой температуры T < T c и внешнее магнитное поле отсутствует. Внесем теперь такой идеальный проводник во внешнее магнитное поле. Что тогда произойдет? Достаточно легко понять, что магнитное поле в такой идеальный проводник не проникнет. Действительно, сразу при появлении внешнего магнитного поля на поверхности идеального проводника возникает ток, который по правилу Ленца создает свое собственное магнитное поле, направленное навстречу приложенному и полное поле в образце будет равно нулю в любой точке образца.

Рис.4. Нормальный проводник, обладающий отличным от нуля сопротивлением при любой температуре (1), внесен в магнитное поле. В соответствии с законом электромагнитной индукции возникают токи, которые сопротивляются проникновению магнитного поля в металл (2). Однако если сопротивление отлично от нуля, они быстро затухают. Магнитное поле пронизывает образец нормального металла и практически однородно (3);

Однако, того же состояния (идеальный проводник при T < Tc во внешнем магнитном поле) можно достигнуть и другим путем: сначала наложить внешнее магнитное поле на ”теплый” образец с T > Tc , а затем охладить его до температуры T < Tc . Тогда электродинамика, основанная на уравнениях Максвелла, предсказывает для идеального проводника иной результат. При T > Tc, ρ0 и магнитное поле хорошо проникает в образец. После охлаждения его ниже Tc поле остается в образце.

Итак, до 1933 года считалось, что сверхпроводник - это идеальный проводник. Но вот Мейснер и Оксенфельд обнаружили, что это не так. Оказалось, что при T < Tc магнитное поле в образце равно нулю всегда B = 0, независимо от пути перехода к условию T < Tc при наличии магнитного поля. Однако, равенство B = 0 не относится к тонкому поверхностному слою тела. В действительности, как мы увидим в дальнейшем, магнитное поле проникает в сверхпроводник на некоторую глубину, большую по сравнению межатомными расстояниями (обычно ∼10 −5 см), зависящую от рода металла и от температуры. По этой же причине равенство B = 0 вообще не имеет места в тонких металлических пленках или малых частицах, толщина или размеры которых порядка величины глубины проникновения.

Это было чрезвычайно важное открытие. Ведь, если B = 0 независимо от предыстории образца, то это равенство можно рассматривать как характеристику сверхпроводящего состояния, которое возникает при H < Hcm. Но тогда можно рассматривать переход в сверхпроводящее состояние как фазовый переход в новую фазу и использовать для исследования сверхпроводящей фазы термодинамический подход. Итак, сверхпроводящее состояние удовлетворяет уравнениям, которые вытекают из экспериментальных данных

Таким образом можно сказать, что сверхпроводник это не идеальный проводник, а идеальный диамагнетик! По этой причине эффект Мейснера приводит ко многим интересным явлениям, например левитации сверхпроводника в магнитном поле – Рис.5, которые можно наблюдать уже сейчас и которые несут с собой фантастические возможности в будущем.

Рис. 5: Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом.

Теоретическое объяснение эффекта сверхпроводимости.

Уравнения Лондонов.

Первая попытка построить макроскопическую теорию сверхпроводников, точнее их электродинамику была осуществлена в 1935 году братьями Ф. Лондоном и Г. Лондоном. Они хотели, не вдаваясь в микроскопические причины сверхпроводимости, невыясненные к тому времени, записать в математической форме основные экспериментальные факты: отсутствие сопротивления и эффект Мейсснера. Они резонно предположили, что носителями тока в сверхпроводнике, так же как в металле, являются электроны проводимости. Равенство нулю сопротивления (ρ = 0) означает что электрон при своем движении не испытывает столкновений, т. е. свободно ускоряется под действием электрического поля E.

где j – плотность тока, – постоянная,n – концентрация электронов.

Эти два уравнения и представляет собой основу Лондоновской электродинамики сверхпроводников.

Г лубина проникновения магнитного поля в сверхпроводник

При помощи уравнения Максвелла запишем, гдеили.

Величина λ называется лондонской длиной проникновения.

Рассмотрим случай, когда сверхпроводник занимает полупространство z > 0 - рис.6 . И пусть x компонента магнитного поля снаружи сверхпроводника равна

Рис. 6: Полупространство занятое сверхпроводником в магнитном поле.

Тогда имеем решение, т.е. магнитное поле экспоненциально спадает вглубь сверхпроводника на длине λ.

Давайте оценим теперь глубину проникновения магнитного поля в сверхпроводник. Согласно полученной нами формуле

Таким образом, магнитное поле в сверхпроводник все же проникает, но на небольшую глубину, порядка 500 − 1000 Å.

Рис. 7: Зависимость глубины проникновения от температуры.

Глубина проникновения не является постоянной величиной и изменяется с изменением температуры - рис. 7. Эта зависимость имеет вид

В точке сверхпроводящего перехода λ обращается в бесконечность.

Куперовские пары. Длина когерентности.

Для описания сверхпроводников даже на макроскопическом уровне необходимо применение квантовой механики. Дело в том, что сверхпроводимость - явление сугубо квантовое. Объяснить ее с классических позиций невозможно. В сверхпроводнике, так же как и в металле, в переносе тока участвуют электроны проводимости. Однако, существенное различие между теми и другими заключается в том, что если в металле электроны движутся нескоррелированно под действием приложенного электрического поля (каждый сам по себе), то в сверхпроводнике возникает корреляция в движении электронов. Пространственный масштаб, на котором электроны сверхпроводника ”чувствуют” друг друга, называется длина когерентности ξ. Физической причиной возникновения корреляции в движении электронов является существующее в сверхпроводнике эффективное притяжение между ними. Это притяжение как бы объединяет электроны с противоположно направленными спинами в пары, называемые куперовскими парами - рис. 8.

Рис. 3: Куперовские пары в сверхпроводнике.

Характерный размер такой пары и является длиной когерентности ξ. В чистых металлах величина ξ " 10−4 см = 10000 Å. Возникает естественный вопрос: как такие пары могут помещаться в металле не мешая друг другу. Ведь из оценок лондоновской длины проникновения следует, что концентрация электронов в металле, принимающих участие в сверхпроводимости, порядка 1022 - 1023 см−3 . Это значит, что пары ”проникают” друг через друга и в то же время как частицы газа являются свободными и практически не взаимодействуют друг с другом. Такое положение возможно только в квантовой механике, так же как течение этого ”газа” куперовских пар через решетку без рассеяния.

В чем же причина притяжения между электронами в сверхпроводнике. Ведь электроны, являясь отрицательно заряженными частицами, по закону Кулона должны отталкиваться друг от друга. Такое кулоновское отталкивание действительно имеет место в вакууме. Но в сверхпроводнике (в металле) электроны движутся не в вакууме, а в кристаллической решетке. Естественно, что при своем движении они деформируют решетку. Деформация решетки позволяет им понизить потенциальную энергию, поэтому естественно, что электроны будут притягиваться к месту деформации.

Такой механизм сверхпроводимости называется фононным и был введен в работе Бардина, Купера и Шрифера (БКШ в 1956 г.) и одновременно Боголюбовым 6 в 1958 г. Фононным же этот механизм называется потому, что два электрона, пролетая друг мимо друга, обмениваются виртуальным фононом (квантом колебаний кристаллической решетки) с энергией ħ ω и импульсом ħ k - рис. 9.

Рис. 5: Взаимодействие двух электронов за счет обмена виртуальным фононом.

Таким образом, образование куперовских пар или куперовское спаривание электронов в сверхпроводнике выгодно с энергетической точки зрения (это понижает энергию системы). Существенно, что при спаривании образуется частица, называемая куперовской парой, со спином 0.

Поскольку образование куперовских пар энергетически выгодно, то, чтобы разорвать такую пару, необходимо затратить энергию, которую обозначим через ∆. Очевидно, что когда тепловая энергия kT сравняется с ∆, куперовская пара разрушится и сверхпроводимость исчезнет. Поэтому,

Если теперь ввести в рассмотрение скорость электронов в металле -(скорость электронов, обладающих энергией Ферми), то длину когерент- ности можно выразить через них следующим образом

Сверхпроводники I и II рода.

Существует два рода сверхпроводников, магнитные свойства которых, в частности проникновение магнитного поля в сверхпроводник (т. е. эффект Мейснера), существенно различаются. Происхождение этих различий связано с величиной отношения двух характерных длин λ и ξ. Магнитная длина λ характеризует глубину проникновения магнитного поля в сверхпроводник. Длина когерентности ξ дает масштаб расстояний, на которых электроны сверхпроводника ”чувствуют” друг друга и в результате движутся когерентно. Материалы с ξ > λ называют сверхпроводниками I рода, а в случае ξ < λ говорят о сверхпроводниках II рода. К сверхпроводникам I рода относятся, как правило, чистые металлы. Для них типичны λ ∼ 300 Å и ξ ∼ 104 Å. К сверхпроводникам II рода принадлежат грязные металлы, сплавы. Для них характерны ξ = 50 Å и λ ∼ 103 Å.В сверхпроводнике II рода самопроизвольно зарождаются вихревые токи.

Вихри Абрикосова.

Явление квантования магнитного потока играет большую роль в сверхпроводниках II рода. Как мы помним, это сверхпроводники, у которых лондоновская длина проникновения λ значительно больше длины когерентности ξ. Вследствие этого поверхностная энергия на границе сверхпроводящей и нормальной фаз при определенных условиях может стать отрицательной. Тогда ясно, что в сверхпроводящей фазе должны появиться очень измельченные N (нормальные) области, т. к. выгодна именно обширная поверхность раздела. При заданном потоке на бесконечности N области будут иметь форму тонких цилиндрических трубочек, через которые и проходят силовые линии магнитного поля - рис. 9. По периферии такой трубочки течет незатухающий сверхпроводящий ток. Такую вот трубочку и называют вихрем. Абрикосовским вихрем, поскольку Абрикосов 1 был первый, кто догадался о существовании таких вихрей в сверхпроводниках II рода (и вообще понял, что в природе существует два типа сверхпроводников).

Рис. 9: Проникновение магнитного поля в сверхпроводник II рода.

Структура абрикосовского вихря выглядит следующим образом - рис. 10. В центре вихря имеется сердцевина, размером порядка длины когерентности ξ - кор вихря, где плотность сверхпроводящих электронов равна нулю, т. е. там сверхпроводимость разрушена и кор вихря образует собой нормальную фазу N. На больших расстояниях вещество находится в сверхпроводящем состоянии, причем вокруг кора вихря циркулирует незатухающий сверхпроводящий ток I, амплитуда которого убывает вглубь S области и сходит на нет на расстоянии от кора порядка λ.

Рис. 10: Структура абрикосовского вихря.


А при чем здесь квантование магнитного потока? А притом, что поток магнитного поля через абрикосовский вихрь в точности равен кванту магнитного потока Φ 0 = hc/2e . Каждый абрикосовский вихрь несет в себе квант магнитного потока Φ 0 . Пользуясь этим, можно оценить при каком магнитном поле в сверхпроводнике появится первый вихрь.

При меньших полях магнитное поле не проникает в сверхпроводник II рода, а начиная с H = Hc1 начинается его проникновение в виде абрикосовских вихрей. Поле Hc1 называют первым критическим полем.

Фазовая диаграмма для сверхпроводника II рода выглядит следующим образом - рис. 11. Состояние сверхпроводника с абрикосовскими вихрями

называется фазой Шубникова или смешанным состоянием. В поле Hc2 нормальные области (центры вихрей) начинают перекрываться, и весь сверхпроводник переходит в нормальное состояние. Остается только тонкий сверхпроводящий приповерхностный слой, который разрушается в поле Hc3.

Рис. 8: Фазовая диаграмма сверхпроводника II рода.

Вихри «небезразличны» друг другу: текущие в них токи создают вза- имные помехи, поэтому параллельные вихри отталкиваются. Они стара- ются держаться подальше друг от друга, но когда их много, то оттал- кивание идет со всех сторон. Подобно атомам кристалла, вихри (в до- статочно чистом сверхпроводнике) образуют правильную решетку. Если смотреть в направлении магнитного поля, как бы с торца цилиндриков вихрей, то, как правило, получается картина треугольной решетки. Ее удалось наблюдать экспериментально приблизительно теми же способа- ми, что и промежуточное состояние сверхпроводников I рода, но, конеч- но, с помощью микроскопа.

Эффект Дфозефсона. В 1962 Б.Джозефсон, аспирант Кембриджского университета, размышляя над тем, что будет, если сблизить два сверхпроводника на расстояние нескольких ангстрем, высказал предположение, что куперовские пары должны за счет «туннельного» эффекта переходить из одного сверхпроводника в другой при нулевом напряжении.

Было предсказано два замечательных эффекта. Во-первых, через туннельный сверхпроводящий контакт (переход, представляющий собой два сверхпроводника, разделенные слоем диэлектрика) возможно протекание сверхпроводящего (бездиссипативного) тока. Критическое значение этого тока зависит от внешнего магнитного поля. Во-вторых, если ток через контакт превосходит критический ток перехода, то контакт становится источником высокочастотного электромагнитного излучения. Первый из этих эффектов называют стационарным эффектом Джозефсона, второй – нестационарным. Оба эффекта хорошо наблюдаются экспериментально. В частности, наблюдались осцилляции максимального сверхпроводящего тока через переход при увеличении магнитного поля. Если ток, задаваемый внешним источником, превысит критическое значение, то на переходе появляется напряжение U , периодически зависящее от времени. Частота колебаний напряжения зависит от того, насколько ток через контакт превышает его критическое значение.

Конечно, сблизить два сверхпроводника на расстояние нескольких ангстрем невозможно. Поэтому в экспериментах на подложку напылялся тонкий слой сверхпроводящего материала, такого, как алюминий, затем он окислялся с поверхности на глубину нескольких ангстрем, а сверху напылялся еще один слой алюминия. Напомним, что оксид алюминия – диэлектрик. Такой «сэндвич» эквивалентен двум сверхпроводникам, расположенным на расстоянии нескольких ангстрем друг от друга.

Эффект Джозефсона обусловлен фазовыми соотношениями между электронами в сверхпроводящем состоянии. Выше говорилось, что суть сверхпроводящего состояния – в когерентном движении куперовских пар через атомную решетку. Когерентность куперовских пар сверхпроводника определяется тем, что пары электронов движутся «в фазе». Куперовские же пары двух разных сверхпроводников движутся «не в фазе». Если два сверхпроводника тесно приблизить друг к другу, то куперовские пары могут туннелировать через зазор между ними. При туннелировании фаза куперовской пары изменяется. Если изменение таково, что куперовская пара начинает идти «в ногу» с парами во втором сверхпроводнике, то туннелирование возможно. Это и происходит в стационарном эффекте Джозефсона. Величиной магнитного поля определяется сдвиг фазы, который приобретают туннелирующие пары.

Интересно? Так давайте посмотрим видео и узнаем побольше про этот эффект

Хаотичное движение атомов проводника препятствует прохождению электрического тока. Сопротивление проводника уменьшается с уменьшением температуры. При дальнейшем снижении температуры проводника наблюдается полное уменьшение сопротивление и явление сверхпроводимости.

При некоторой температуре (близкой 0 oK) сопротивление проводника резко падает до нуля. Это явление называется сверхпроводимостью. Однако, в сверхпроводниках наблюдается также другое явление —- эффект Мейснера. Проводники в сверхпроводящем состоянии обнаруживают необычное свойство. Из объема сверхпроводника полностью вытесняется магнитное поле.

Вытеснение сверхпроводником магнитного поля.

Проводник в сверхпроводящем состоянии, в отличие от идеального проводника, ведет себя как диамагнетик. Внешнее магнитное поле вытесняется из объема сверхпроводника. Тогда если поместить магнит над сверхпроводником, магнит зависает в воздухе.

Возникновение этого эффекта связано с тем, что при внесении сверхпроводника в магнитное поле в нем возникают вихревые токи индукции, магнитное поле которых полностью компенсирует внешнее поле (как в любом диамагнетике). Но индуцированное магнитное поле само также создает вихревые токи, направление которых противоположно токам индукции по направлению и равно по величине. В результате в объеме сверхпроводника отсутствуют и магнитное поле и ток. Объем сверхпроводника экранируется тонким приповерхностным слоем - скин-слоем - на толщину которого (порядка 10-7-10-8 м) проникает магнитное поле и в котором происходит его компенсация.

а - нормальный проводник, обладающий отличным от нуля сопротивлением при любой температуре (1), внесен в магнитное поле. В соответствии с законом электромагнитной индукции возникают токи, которые сопротивляются проникновению магнитного поля в металл (2). Однако если сопротивление отлично от нуля, они быстро затухают. Магнитное поле пронизывает образец нормального металла и практически однородно (3)-

б - из нормального состояния при температуре выше T c есть два пути: Первый: при понижении температуры образец переходит в сверхпроводящее состояние, затем можно наложить магнитное поле, которое выталкивается из образца. Второй: сначала наложить магнитное поле, которое проникнет в образец, а затем понизить температуру, тогда при переходе поле вытолкнется. Выключение магнитного поля дает ту же картинку-

в - если бы не было эффекта Мейснера, проводник без сопротивления вел бы себя по-другому. При переходе в состояние без сопротивления в магнитном поле он бы сохранял магнитное поле и удерживал бы его даже при снятии внешнего магнитного поля. Размагнитить такой магнит можно было бы, только повышая температуру. Такое поведение, однако, на опыте не наблюдается

Как и всякие диамагнетики, сверхпроводники выталкиваются из магнитного поля, при этом эффект выталкивания выражен столь сильно, что появляется возможность удерживать груз в пространстве с помощью магнитного поля.

Напомню вам еще что нибудь научного и интересного: вот смотрите, как . А знаете ли вы или что такое

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько десятков чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость - квантовое явление. Оно характеризуется также эффектом Мейснера, заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.

Открытие в 1986-1993 гг. ряда высокотемпературных сверхпроводников (ВТСП) далеко отодвинуло температурную границу сверхпроводимости и позволило и практически использовать сверхпроводящие материалы не только при температуре жидкого гелия (4.2 К), но и при температуре кипения жидкого азота (77 К), гораздо более дешевой криогенной жидкости.

Видео YouTube

История открытия

Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте (англ.) независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски (англ.) и Кароль Ольшевски (англ.) выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 градуса Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и совсем перестанут проводить ток. Эксперименты, проводимые Камерлингом-Оннесем со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 градусах Кельвина (около −270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий скачок сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

В 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками.

Нулевое сопротивление - не единственная отличительная черта сверхпроводимости. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.

Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем (англ.) и Хайнцем Лондоном (англ.). Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга - Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².

В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.

В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La-Sr-Cu-O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y-Ba-Cu-O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg-Ba-Ca-Cu-O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.

Видео YouTube


Фазовый переход в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Тс - температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода. Ширина интервала перехода зависит от неоднородности металла, в первую очередь - от наличия примесей и внутренних напряжений. Известные ныне температуры Тс изменяются в пределах от 0,0005 К у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb3Ge, в плёнке) и 39 К у диборида магния (MgB2) у низкотемпературных сверхпроводников (Тс ниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников. В настоящее время фаза HgBa2Ca2Cu3O8+d (Hg−1223) имеет наибольшее известное значение критической температуры - 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К).

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Тc теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода. Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.


Эффект Мейснера

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера, заключающийся в выталкивании сверхпроводником магнитного потока rotB = 0 . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположнонаправленное внешнему, приложенному магнитному полю и компенсирующее его.

Достаточно сильное магнитное поле при данной температуре разрушает сверхпроводящее состояние вещества. Магнитное поле с напряжённостью Нc, которое при данной температуре вызывает переход вещества из сверхпроводящего состояния в нормальное, называется критическим полем. При уменьшении температуры сверхпроводника величина Нc возрастает. Зависимость величины критического поля от температуры с хорошей точностью описывается выражением


где Hc0 - критическое поле при нулевой температуре. Сверхпроводимость исчезает и при пропускании через сверхпроводник электрического тока с плотностью, большей, чем критическая jc, поскольку он создаёт магнитное поле, большее критического.

Момент Лондона

Вращающийся сверхпроводник генерирует магнитное поле, точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B», где измерялись магнитные поля четырёх сверхпроводящих гироскопов, чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы, использование момента Лондона было одним из немногих способов определить их ось вращения.

Применение сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa2Cu3Ox, получены вещества, для которых температура Тc перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля Hc2.
Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона, андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD) для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации.
Вихри в сверхпроводниках второго рода можно использовать в качестве ячеек памяти. Подобное применение уже нашли некоторые магнитные солитоны. Существуют и более сложные дву- и трёхмерные магнитные солитоны, напоминающие вихри в жидкостях, только роль линий тока в них играют линии, по которым выстраиваются элементарные магнитики (домены).

Электроны в металлах
Открытие изотопического эффекта означало, что сверхпроводимость, вероятно, вызывается взаимодействием между электронами проводимости и атомами кристаллической решетки. Чтобы выяснить, как это приводит к сверхпроводимости, нужно рассмотреть структуру металла. Как и все кристаллические твердые тела, металлы состоят из положительно заряженных атомов, расположенных в пространстве в строгом порядке. Порядок, в котором размещены атомы, можно сравнить с повторяющимся рисунком на обоях, но только рисунок должен повторяться в трех измерениях. Электроны проводимости движутся среди атомов кристалла со скоростями от 0,01 до 0,001 скорости света; их движение и есть электрический ток.

В 1911 году голландский физик Х. Камерлинг-Оннес открыл явление сверхпроводимости. Он проводил измерения электрического сопротивления ртути при низких температурах. Оннес хотел выяснить, сколь малым может стать сопротивление вещества электрическому току, если максимально очистить вещество от примесей и максимально снизить «тепловой шум», т.е. уменьшить температуру.

Результат этого исследования оказался неожиданным: при температуре ниже 4,15 К сопротивление почти мгновенно исчезло. График такого поведения сопротивления в зависимости от температуры приведен на рис. 1.

Электрический ток — это движение заряженных частиц. Уже в то время было известно, что электрический ток в твердых телах — это поток электронов. Они заряжены отрицательно и намного легче, чем атомы, из которых состоит всякое вещество.

Каждый атом в свою очередь состоит из положительно заряженного ядра и электронов, взаимодействующих с ним и между собой по закону Кулона. Каждый атомный электрон занимает определенную «орбиту». Чем ближе «орбита» к ядру, тем сильнее электрон притягивается к нему, тем большая энергия требуется, чтобы оторвать такой электрон от ядра. Наоборот, самые внешние от ядра электроны наиболее легко отрываются от него, хотя и для этого нужно затратить энергию.

Внешние электроны называются валентными. В веществах, именуемых металлами, они действительно отрываются от атомов, когда те объединяются в твердое тело, и образуют газ почти свободных электронов. Это простая, красивая и часто оказывающаяся правильной физическая картина: кусок вещества представляет собой как бы сосуд, в котором находится «газ» электронов (рис. 2).

Если мы создали электрическое поле — приложили к исследуемому кусочку вещества напряжение, в электронном газе возникнет ветер как бы под действием разности давлений. Этот ветер и есть электрический ток.

Металлы

Отнюдь не все вещества хорошо проводят электрический ток. В диэлектриках валентные электроны остаются «привязанными» к своим атомам и не так-то просто заставить их двигаться через весь образец.

Довольно сложно объяснить, почему одни вещества оказываются металлами, а другие — диэлектриками. Это зависит от того, из каких атомов они составлены и как эти атомы расположены. Иногда возможны превращения, когда расположение атомов меняется, например, под действием давления атомы сближаются и диэлектрик становится металлом.

Через диэлектрики ток не течет, но и в металлах электроны движутся не вполне свободно. Они наталкиваются на атомные «остовы», от которых «оторвались», и рассеиваются на них. При этом возникает трение или, как говорят, электрический ток испытывает сопротивление .

При сверхпроводимости сопротивление исчезает, становится равным нулю, т.е. движение электронов происходит без трения. Между тем опыт нашей повседневной жизни показывает, казалось бы, что такое движение невозможно.

На разрешение этого противоречия были направлены работы физиков на протяжении десятков лет.

Открытое свойство настолько необычно, что металлы, обладающие сопротивлением, в противоположность сверхпроводникам называются нормальными .

Сопротивление

Электрическое сопротивление куска металла (например, проволоки) измеряется в омах и определяется размерами и материалом образца. В формуле

R = ρ × l / S

R — сопротивление, l — длина (размер образца в том направлении, в котором течет ток), S — поперечное сечение образца. Написав такую формулу, мы как бы продолжаем сравнивать электроны с газом: чем шире и короче труба, тем легче продуть через нее газ.

Величина ρудельное сопротивление, характеризующее свойства материала, из которого выполнен образец.

У чистой меди при комнатной температуре ρ = 1,75·10 -6 Ом·см.

Медь — один из наиболее хорошо проводящих ток металлов, она очень широко используется для изготовления электрических проводов. Некоторые другие металлы при комнатной температуре проводят электрический ток хуже:

Для сравнения приведем удельные сопротивления некоторых диэлектриков, тоже при комнатной температуре:

При понижении температуры T удельное сопротивление меди постепенно понижается и при температуре несколько кельвинов составляет 10 -9 Ом·см, но сверхпроводником медь не становится. А алюминий, свинец, ртуть переходят в сверхпроводящее состояние, и проведенные с ними опыты показывают, что удельное сопротивление сверхпроводника во всяком случае не превышает 10 -23 Ом·см — в сто триллионов раз меньше, чем у меди!

Остаточное сопротивление

Удельное сопротивление металла зависит от температуры. Условный график ρ(T ), скажем, для меди, вы видите на рис. 3. Чем выше температура, тем больше сопротивление, тем сильнее колеблются составляющие металл атомные «остовы» и тем большую помеху они представляют для электрического тока. Если, наоборот, приближать температуру к абсолютному нулю, сопротивление образца будет «стремиться» к ρ 0 — остаточному сопротивлению. Остаточное сопротивление зависит от совершенства и состава образца. В любом веществе встречаются посторонние атомы-примеси, а также всевозможные другие дефекты. Чем меньше в образце дефектов, тем меньше остаточное сопротивление. Именно эта зависимость интересовала Оннеса в 1911 году. Он вовсе не искал «сверхпроводимость», а пытался выяснить, сколь малым можно сделать остаточное сопротивление, очищая образец. Он проводил опыты с ртутью, потому что в то время ртуть можно было довести до большей степени чистоты , чем платину, золото или медь (эти металлы являются лучшими проводниками, чем ртуть, и Оннес изучал их перед открытием сверхпроводимости. Ни золото, ни платина, ни медь не «сверхпроводят»).

Критическая температура

Сверхпроводимость возникает скачком при понижении температуры. Температура T c , при достижении которой происходит скачок, называется критической. Внимательное исследование показывает, что такой переход наблюдается в некотором интервале температур (рис. 4). Трение движущихся электронов исчезает независимо от «чистоты» образца, но чем образец «чище», тем резче скачок сопротивления, его ширина в самых «чистых» образцах меньше сотой доли градуса. В этом случае говорят о «хороших» образцах или сверхпроводниках; в «плохих» образцах ширина перехода может достигать десятков градусов. (Это, конечно, относится к так называемым высокотемпературным сверхпроводникам, у которых T c достигает сотен кельвинов.)

Критическая температура своя для каждого вещества. Эта температура и год обнаружения сверхпроводимости (точнее, год опубликования статьи об этом) указаны на рис. 5 для нескольких чистых элементов. У ниобия самая высокая (при атмосферном давлении) критическая температура из всех элементов Периодической таблицы Д. И. Менделеева, хотя и она не превышает 10 К.

Еще Оннес не только обнаружил сверхпроводимость ртути, олова и свинца, но и нашел первые сверхпроводящие сплавы — сплавы ртути с золотом и оловом. С тех пор эта работа продолжалась, «на сверхпроводимость» проверялись всё новые соединения и постепенно класс сверхпроводников расширялся.

Низкие температуры

Исследование сверхпроводимости шло очень медленно. Для наблюдения явления нужно было охлаждать металлы до низких температур, а это не так просто. Образец должен охлаждаться постоянно, для чего его помещают в охлаждающую жидкость. Все жидкости, известные нам из повседневного опыта, при низких температурах замерзают, отвердевают. Поэтому необходимо ожижить вещества, которые при комнатных условиях являются газами. На рис. 6 указаны температуры кипения T b и плавления T m пяти веществ (при атмосферном давлении).

Если понижать температуру ниже T b , вещество ожижается, а ниже T m оно отвердевает. (Гелий при атмосферном давлении остается жидким вплоть до абсолютного нуля температур.) Так что для наших целей какое-либо из указанных веществ можно использовать в промежутке между T b и T m . До 1986 года максимальная известная критическая температура сверхпроводимости едва превышала 20 К, поэтому при исследовании сверхпроводимости нельзя было обойтись без жидкого гелия. В качестве охладителя также широко применяется азот. Азот и гелий используются на последовательных ступенях охлаждения. Оба эти вещества нейтральны и безопасны.

Ожижение гелия — сама по себе интереснейшая и увлекательная проблема, решением которой занимались многие физики на рубеже XIX-XX вв. Цели достиг Оннес в 1908 году. Специально для этого он создал лабораторию в Лейдене (Нидерланды). В течение 15 лет лаборатория обладала монополией на уникальные исследования в новой области температур. В 1923-1925 гг. жидкий гелий научились получать еще в двух лабораториях мира — в Торонто и в Берлине. В Советском Союзе такое оборудование появилось в начале 1930-х гг. в Харьковском физико-техническом институте.

После Второй мировой войны постепенно во многих странах развивалась целая отрасль промышленности по обеспечению лабораторий жидким гелием. До этого всё находилось на «самообслуживании». Технические затруднения и физическая сложность явления приводили к тому, что знания о сверхпроводимости накапливались очень медленно. Только через 22 года после первого открытия было обнаружено второе фундаментальное свойство сверхпроводников.

Эффект Мейснера

О его наблюдении сообщили немецкие физики В. Мейснер и Р. Оксенфельд в 1933 году.

До сих пор мы называли сверхпроводимостью исчезновение электрического сопротивления. Однако сверхпроводимость — нечто более сложное, чем просто отсутствие сопротивления. Это еще и определенная реакция на внешнее магнитное поле. Эффект Мейснера заключается в том, что постоянное не слишком сильное магнитное поле выталкивается из сверхпроводящего образца. В толще сверхпроводника магнитное поле ослабляется до нуля, сверхпроводимость и магнетизм можно назвать как бы противоположными свойствами.

При поиске новых сверхпроводников проверяются оба главных свойства сверхпроводимости:

  • в сверхпроводнике обращается в нуль электрическое сопротивление;
  • из сверхпроводника выталкивается магнитное поле.

В некоторых случаях в «грязных» сверхпроводниках падение сопротивления с температурой может быть гораздо более растянутым, чем это изображено на рис. 1 для ртути. В истории исследований неоднократно бывало так, что физики принимали за сверхпроводимость падение сопротивления по каким-то другим причинам, например вследствие обычного короткого замыкания.

Для доказательства существования сверхпроводимости необходимо наблюдать проявления по меньшей мере обоих главных ее свойств. Весьма эффектный опыт, демонстрирующий присутствие эффекта Мейснера, представлен на рис. 7: постоянный магнит парит над сверхпроводящей чашечкой. Впервые такой опыт осуществил советский физик В. К. Аркадьев в 1945 году.

В сверхпроводнике возникают выталкивающие магнитное поле токи, их магнитное поле отталкивает постоянный магнит и компенсирует его вес. Существенны и стенки чашечки, которые отталкивают магнит к центру. Над плоским дном положение магнита неустойчиво, от случайных толчков он уйдет в сторону. Такой парящий магнит напоминает легенды о левитации. Наиболее известна легенда о гробе религиозного пророка. Гроб, помещенный в пещеру, парил там в воздухе без всякой видимой поддержки. Сейчас нельзя с уверенностью сказать, основаны ли подобные рассказы на каких-либо реальных явлениях. В настоящее время с помощью эффекта Мейснера технически возможно «осуществить легенду».

Магнитное поле

Современная физика использует понятие поля для описания воздействия одного тела на другое на расстоянии, без непосредственного соприкосновения. Так, посредством электромагнитного поля взаимодействуют заряды и токи. Всем, кто изучал законы электромагнитного поля, известен наглядный образ поля — картина его силовых линий. Впервые этот образ использовал английский физик М. Фарадей. Для наглядности полезно вспомнить еще один образ поля, использованный другим английским физиком — Дж. К. Максвеллом.

Представьте себе, что поле — движущаяся жидкость, например вода, текущая вдоль направлений силовых линий. Попытаемся описать с ее помощью взаимодействие зарядов по закону Кулона. Пусть есть бассейн, для простоты плоский и мелкий, его вид сверху изображен на рис. 8. В дне выполнены два отверстия: через одно вода поступает в бассейн (это как бы положительный заряд), а через другое вытекает (это сток, или отрицательный заряд). Текущая в таком бассейне вода изображает электрическое поле двух неподвижных зарядов. Вода прозрачна, и ее течение для нас незаметно. Но внесем в струи «пробный положительный заряд» — шарик на ниточке. Мы сразу почувствуем силу — жидкость увлекает шарик за собой.

Вода относит шарик от источника — одноименные заряды отталкиваются. К стоку, или заряду другого знака, шарик притягивается, причем сила между зарядами зависит от расстояния между ними, как и положено по закону Кулона.

Токи и поля в сверхпроводниках

Для того чтобы разобраться в поведении токов и полей в сверхпроводниках, нужно вспомнить закон магнитной индукции. Сейчас для наших целей полезнее дать ему более общую формулировку, чем в школьном курсе физики. Закон магнитной индукции говорит вообще-то о взаимоотношении электрического и магнитного полей. Если представить электромагнитное поле как жидкость, то взаимоотношение электрической и магнитной компонент поля можно представлять как взаимоотношение спокойного (ламинарного) и вихревого течения жидкости. Каждое из них может существовать само по себе. Пусть перед нами, например, спокойный широкий поток — однородное электрическое поле. Если попробовать изменить это поле, т.е. как бы затормозить или ускорить жидкость, то обязательно появятся вихри — магнитное поле. Изменение магнитного поля всегда ведет к появлению электрического поля, а электрическое поле вызывает в проводящем контуре ток, это и есть обычное явление магнитной индукции: изменение магнитного поля наводит ток. Именно этот физический закон работает на всех электростанциях мира, тем или иным способом вызывая изменения магнитного поля в проводнике. Возникающее электрическое поле порождает ток, который поступает в наши дома и на промышленные предприятия.

Но вернемся к сверхпроводникам. Постоянный ток в сверхпроводнике не нуждается в присутствии электрического поля, и в равновесной ситуации электрическое поле в сверхпроводнике равно нулю. Такое поле ускоряло бы электроны, а никакого сопротивления, трения, которое уравновесило бы ускорение, в сверхпроводниках нет. Сколь угодно малое постоянное электрическое поле привело бы к бесконечному возрастанию тока, что невозможно. Электрическое поле возникает только в несверхпроводящих участках цепи. Ток в сверхпроводниках течет без падения напряжения.

При мысленных рассуждениях не выявляется ничего, что могло бы препятствовать существованию магнитного поля в сверхпроводнике. Однако ясно, что сверхпроводник будет мешать магнитному полю изменяться. Действительно, изменение магнитного поля порождало бы ток, который создавал бы магнитное поле, компенсирующее первоначальное изменение.

Итак, любой контур из сверхпроводника должен сохранять текущий сквозь него поток магнитного поля. (Магнитный поток через контур есть просто произведение напряженности магнитного поля на площадь контура.)

То же самое должно происходить и в толще сверхпроводника. Поднесем, например, к сверхпроводящему образцу магнит — его магнитное поле не может проникнуть в сверхпроводник. Любая такая «попытка» приводит к возникновению тока в сверхпроводнике, магнитное поле которого компенсирует внешнее поле. В итоге магнитное поле в толще сверхпроводника отсутствует, а по поверхности течет именно такой ток, какой для этого требуется. В толще обычного проводника, который вносят в магнитное поле, всё происходит точно так же, однако там есть сопротивление и наведенный ток довольно быстро затухает, а его энергия переходит в теплоту из за трения. (Эту теплоту очень просто обнаружить на опыте: приблизьте руку к работающему трансформатору, и вы почувствуете исходящее от него тепло.) В сверхпроводнике сопротивления нет, ток не затухает и «не пускает» магнитное поле внутрь сколь угодно долго. Описанная картина точна и многократно подтверждена на опыте.

Теперь выполним другой мысленный опыт. «Возьмем» тот же кусок сверхпроводящего вещества, но при достаточно высокой температуре, когда оно еще находится в нормальном состоянии. Внесем его в магнитное поле и подождем, пока всё успокоится, токи затухнут — вещество пронизывает магнитный поток. Будем понижать температуру, ожидая, когда вещество перейдет в сверхпроводящее состояние. Кажется, что понижение температуры не должно повлиять на картину магнитного поля. Магнитный поток в сверхпроводнике не должен меняться. Если убрать магнит — источник внешнего магнитного поля, то сверхпроводник должен этому сопротивляться и на поверхности должны возникнуть сверхпроводящие токи, поддерживающие магнитное поле внутри вещества.

Однако такое поведение совершенно не соответствует тому, что наблюдается на опыте: эффект Мейснера будет иметь место и в этом случае. Если охлаждать нормальный металл в магнитном поле, то при переходе в сверхпроводящее состояние магнитное поле выталкивается из сверхпроводника. На его поверхности при этом появляется незатухающий ток, который обеспечивает нулевое магнитное поле в толще сверхпроводника. Описанная картина сверхпроводящего состояния наблюдается всегда — независимо от того, каким способом совершен переход в это состояние.

Конечно, это описание предельно идеализировано и по ходу изложения мы будем его усложнять. Но уже сейчас стоит упомянуть о том, что существуют два рода сверхпроводников, которые по-разному реагируют на магнитное поле. Мы начали рассказывать о свойствах сверхпроводников I рода, с открытия которых и началась сверхпроводимость. Позднее были открыты сверхпроводники II рода с несколько иными свойствами. В основном с ними связаны практические применения сверхпроводимости.

Идеальный диамагнетизм

Выталкивание магнитного поля столь же удивительно для физика, как и отсутствие сопротивления. Дело в том, что постоянное магнитное поле обычно проникает всюду. Ему не препятствует экранирующий электрическое поле заземленный металл. В большинстве случаев граница тела для магнитного поля — это не стенка, сдерживающая его «течение», а как бы небольшая ступенька на дне бассейна, меняющая глубину и незначительно влияющая на это «течение». Напряженность магнитного поля в веществе меняется на сотые или тысячные доли процента по сравнению с его силой вовне (за исключением таких магнитных веществ, как железо и другие ферромагнетики, где к внешнему присоединяется большое внутреннее магнитное поле). Во всех прочих веществах магнитное поле либо чуть-чуть усиливается — и такие вещества называются парамагнетиками, либо чуть-чуть ослабляется — такие вещества получили название диамагнетиков.

В сверхпроводниках магнитное поле ослабляется до нуля, они являются идеальными диамагнетиками .

Только экран из непрерывно поддерживаемых токов может «не пропустить» магнитное поле. Сверхпроводник сам создает на своей поверхности такой экран и поддерживает его сколь угодно долго. Поэтому эффект Мейснера, или идеальный диамагнетизм сверхпроводника, не менее удивителен, чем его идеальная проводимость.

На рис. 9 условно изображено, что происходит с металлическим шариком при изменении температуры T и наложении магнитного поля H (силовые линии магнитного поля обозначены стрелками, пронизывающими или обтекающими образец). Металл в нормальном состоянии маркируется голубым цветом, если металл переходит в сверхпроводящее состояние, цвет меняется на зеленый. Для сравнения на рис. 9, в показано, как вел бы себя идеальный проводник (обозначен буквами IC) — металл без эффекта Мейснера с нулевым сопротивлением (если бы он существовал). Это состояние обозначено красным цветом.

Рис. 9. Эффект Мейснера:

а - нормальный проводник, обладающий отличным от нуля сопротивлением при любой температуре (1), внесен в магнитное поле. В соответствии с законом электромагнитной индукции возникают токи, которые сопротивляются проникновению магнитного поля в металл (2). Однако если сопротивление отлично от нуля, они быстро затухают. Магнитное поле пронизывает образец нормального металла и практически однородно (3);

б - из нормального состояния при температуре выше T c есть два пути: Первый: при понижении температуры образец переходит в сверхпроводящее состояние, затем можно наложить магнитное поле, которое выталкивается из образца. Второй: сначала наложить магнитное поле, которое проникнет в образец, а затем понизить температуру, тогда при переходе поле вытолкнется. Выключение магнитного поля дает ту же картинку;

в - если бы не было эффекта Мейснера, проводник без сопротивления вел бы себя по-другому. При переходе в состояние без сопротивления в магнитном поле он бы сохранял магнитное поле и удерживал бы его даже при снятии внешнего магнитного поля. Размагнитить такой магнит можно было бы, только повышая температуру. Такое поведение, однако, на опыте не наблюдается.

Немного истории

В следующей главе мы подробнее расскажем об удивительных свойствах сверхпроводников, а эту главу нам хочется завершить перечислением наиболее важных работ, выполненных физиками за время изучения сверхпроводимости.

Прежде всего это уже упомянутые открытия Х. Камерлинг-Оннеса (1911) и В. Мейснера и Р. Оксенфельда (1933). Первое теоретическое объяснение поведения сверхпроводника в магнитном поле предложено в Англии (1935) эмигрировавшими из Германии немецкими физиками Ф. Лондоном и Г. Лондоном. В 1950 году Л. Д. Ландау и один из авторов данной книги написали работу, в которой построили более общую теорию сверхпроводимости. Это описание оказалось удобным и используется до сих пор, оно называется теорией Гинзбурга—Ландау или ψ-теорией сверхпроводимости.

Механизм явления был раскрыт в 1957 году американскими физиками Дж. Бардином, Л. Купером и Дж. Шриффером. По заглавным буквам их фамилий эта теория называется теорией БКШ, а сам механизм (для него существенно парное поведение электронов) часто называют «куперовское спаривание», поскольку его идею придумал Л. Купер. Для развития физики сверхпроводимости большую роль сыграло установление существования сверхпроводников двух типов — I и II родов. Ртуть и ряд других сверхпроводников — это сверхпроводники I рода. Сверхпроводники II рода — это по большей части сплавы двух и большего количества элементов. Большую роль при открытии сверхпроводимости II рода сыграли работы Л. В. Шубникова с сотрудниками в Харькове в 1930-е гг. и А. А. Абрикосова в 1950-е гг.

Кроме того, большое влияние оказали открытия и исследования в 1950-х гг. соединений с относительно высокими критическими температурами, способных выдерживать весьма высокие магнитные поля и пропускать в сверхпроводящем состоянии токи большой плотности. Пожалуй, кульминацией этих исследований стали опыты Дж. Кюнцлера с сотрудниками (1960). Они продемонстрировали, что проволока из Nb 3 Sn при T = 4,2 К в поле 88 000 Э (более сильного поля просто не было в их распоряжении) пропускает ток плотностью 100 тыс. А/см 2 . Открытые в то время сверхпроводники до сих пор работают в технических устройствах. Подобные материалы выделяют сейчас в особый класс сверхпроводников, который получил название «жесткие сверхпроводники».

В 1962 году английский физик Б. Джозефсон теоретически предсказал совершенно необычные явления, которые должны происходить на контактах сверхпроводников. Эти предсказания затем были полностью подтверждены, а сами явления получили название слабой сверхпроводимости или эффектов Джозефсона и быстро нашли практическое применение.

Наконец, статья (1986) работающих в Цюрихе физиков, швейцарца А. Мюллера и немца Г. Беднорца, ознаменовала открытие нового класса сверхпроводящих веществ — высокотемпературных сверхпроводников — и породила лавину новых исследований в этой области.

Градусы шкалы Кельвина принято обозначать заглавной буквой К, они равны привычным градусам Цельсия, но отсчитываются от абсолютного нуля температуры. По шкале Цельсия абсолютный нуль температуры есть -273,16°C, так что упомянутая температура 4,15 К равна -269,01°C. Далее мы будем стараться приводить округленные значения.

Картина возникновения электрического сопротивления, конечно, сложнее, и дальше мы остановимся на ней подробнее.

Способом «перегонки», аналогичным процессу дистилляции воды.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...