Коэффициенты линейной регрессии. Гипотеза линейной регрессии

х - называется предиктором - независимой или объясняющей переменной.

Для данной величины х, Y — значение переменной у (называемой зависимой, выходной переменной, или переменной отклика), которое расположено на линии оценки. Это есть значение, которое мы ожидаем для у (в среднем), если мы знаем величину х, и называется она «предсказанное значение у» (рис. 5).

а - свободный член (пересечение) линии оценки; это значение Y, когда х = 0.

b - угловой коэффициент или градиент оценённой линии; он представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем х на одну единицу (рис. 5). Коэффициент b называют коэффициентом регрессии.

Например: при увеличении температуры тела человека на 1 о С, частота пульса увеличивается в среднем на 10 ударов в минуту.

Рисунок 5. Линия линейной регрессии, показывающая коэффициент а и угловой коэффициент b (величину возрастания Y при увеличении х на одну единицу)

Математически решение уравнения линейной регрессии сводится к вычислению параметров а и b таким образом, чтобы точки исходных данных корреляционного поля как можно ближе лежали к прямой регрессии .

Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого Френсису Гальтону (1889). Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» или «двигался вспять» к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Мы наблюдаем регрессию к среднему при скрининге и клинических исследованиях, когда подгруппа пациентов может быть выбрана для лечения потому, что их уровни определённой переменной, скажем, холестерина, крайне высоки (или низки). Если это измерение через некоторое время повторяется, средняя величина второго считывания для подгруппы обычно меньше, чем при первом считывании, имея тенденцию (т.е. регрессируя) к среднему, подобранному по возрасту и полу в популяции, независимо от лечения, которое они могут получить. Пациенты, набранные в клиническое исследование на основе высокого уровня холестерина при их первом осмотре, таким образом, вероятно, покажут в среднем падение уровня холестерина при втором осмотре, даже если в этот период они не лечились.

Часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.


Насколько хорошо линия регрессии согласуется с данными, можно судить, рассчитав коэффициент R (обычно выраженный в процентах и называемый коэффициентом детерминации), который равняется квадрату коэффициента корреляции (r 2). Он представляет собой долю или процент дисперсии у, который можно объяснить связью с х, т.е. долю вариации признака-результата, сложившуюся под влиянием независимого признака. Может принимать значения в диапазоне от 0 до 1, или соответственно от 0 до 100%. Разность (100% - R) представляет собой процент дисперсии у, который нельзя объяснить этим взаимодействием.

Пример

Соотношение между ростом (измеренным в см) и систолическим артериальным давлением (САД, измеренным в мм рт. ст.) у детей. Мы провели анализ парной линейной регрессии зависимости САД от роста (рис. 6). Имеется существенное линейное соотношение между ростом и САД.

Рисунок 6. Двумерный график, показывающий соотношение между систолическим артериальным давлением и ростом. Изображена оценённая линия регрессии, систолическое артериальное давление.

Уравнение линии оценённой регрессии имеет следующий вид:

САД = 46,28 + 0,48 х рост.

В этом примере свободный член не представляет интереса (рост, равный нулю, явно вне диапазона величин, наблюдаемых в исследовании). Однако мы можем интерпретировать угловой коэффициент; предсказано, что у этих детей САД увеличивается в среднем на 0,48 мм рт.ст. при увеличении роста на один сантиметр

Мы можем применить уравнение регрессии для предсказания САД, которое мы ожидаем у ребёнка при данном росте. Например, ребёнок ростом 115 см имеет предсказанное САД, равное 46,28 + (0,48 х 115) = 101,48 мм рт. ст., ребёнок ростом 130 имеет предсказанное САД, 46,28 + (0,48 х 130) = 108,68 мм рт. ст.

При расчете коэффициента корреляции, установлено, что он равен 0,55, что указывает на прямую корреляционную связь средней силы. В этом случае коэффициент детерминации r 2 = 0,55 2 = 0,3 . Таким образом, можно сказать, что доля влияния роста на уровень артериального давления у детей не превышает 30%, соответственно на долю других факторов приходится 70% влияния.

Линейная (простая) регрессия ограничивается рассмотрением связи между зависимой переменной и только одной независимой переменной. Если в связи присутствует более одной независимой переменной, тогда нам необходимо обратиться к множественной регрессии. Уравнение для такой регрессии выглядит так:

y = a + bx 1 +b 2 x 2 +.... + b n х n

Можно интересоваться результатом влияния нескольких независимых переменных х 1 , х 2 , .., х n на переменную отклика у. Если мы полагаем, что эти х могут быть взаимозависимы, то не должны смотреть по отдельности на эффект изменения значения одного х на у, но должны одновременно принимать во внимание величины всех других х.

Пример

Поскольку между ростом и массой тела ребёнка существует сильная зависимость, можно поинтересоваться, изменяется ли также соотно-шение между ростом и систолическим артериальным давлением, если принять во внимание также и массу тела ребёнка и его пол. Множественная линейная регрессия позволяет изучить совместный эффект этих нескольких независимых переменных на у.

Уравнение множественной регрессии в этом случае может иметь такой вид:

САД = 79,44 - (0,03 х рост) + (1,18 х вес) + (4,23 х пол)*

* - (для признака пол используют значения 0 - мальчик, 1 - девочка)

Согласно этому уравнению, девочка, рост которой 115 см и масса тела 37 кг, будет иметь прогнозируемое САД:

САД = 79,44 - (0,03 х 115) + (1,18 х 37) + (4,23 х 1) = 123,88 мм.рт.ст.

Логистическая регрессия очень похожа на линейную; её применяют, когда есть интересующий нас бинарный исход (т.е. наличие/отсутствие симптома или субъекта, который имеет/не имеет заболевания) и ряд предикторов. Из уравнения логистической регрессии можно определить, какие предикторы влияют на исход, и, используя значения предикторов пациента, оценить вероятность того, что он/она будет иметь определённый исход. Например: возникнут или нет осложнения, будет лечение эффективным или не будет.

Начинают создания бинарной переменной, чтобы представить эти два исхода (например, «имеет болезнь» = 1, «не имеет болезни» = 0). Однако мы не можем применить эти два значения как зависимую переменную в анализе линейной регрессии, поскольку предположение нормальности нарушено, и мы не можем интерпретировать предсказанные величины, которые не равны нулю или единице.

Фактически, вместо этого мы берём вероятность того, что субъект классифицируется в ближайшую категорию (т.е. «имеет болезнь») зависимой переменной, и чтобы преодолеть математические трудности, применяют логистическое, преобразование, в уравнении регрессии — натуральный логарифм отношения вероятности «болезни» (p) к вероятности «нет болезни» (1-p).

Интегративный процесс, называемый методом максимального правдоподобия, а не обычная регрессия (так как мы не можем применить процедуру линейной регрессии) создаёт из данных выборки оценку уравнения логистической регрессии

logit (p) = a + bx 1 +b 2 x 2 +.... + b n х n

logit (р) — оценка значения истинной вероятности того, что пациент с индивидуальным набором значений для х 1 ... х n имеет заболевание;

а — оценка константы (свободный член, пересечение);

b 1 , b 2 ,... ,b n — оценки коэффициентов логистической регрессии.

1. Вопросы по теме занятия:

1. Дайте определение функциональной и корреляционной связи.

2. Приведите примеры прямой и обратной корреляционной связи.

3. Укажите размеры коэффициентов корреляции при слабой, средней и сильной связи между признаками.

4. В каких случаях применяется ранговый метод вычисления коэффициента корреляции?

5. В каких случаях применяется расчет коэффициента корреляции Пирсона?

6. Каковы основные этапы вычисления коэффициента корреляции ранговым методом?

7. Дайте определение «регрессии». В чем сущность метода регрессии?

8. Охарактеризуйте формулу уравнения простой линейной регрессии.

9. Дайте определение коэффициента регрессии.

10. Какой можно сделать вывод, если коэффициент регрессии веса по росту равен 0,26кг/см?

11. Для чего используется формула уравнения регрессии?

12. Что такое коэффициент детерминации?

13. В каких случаях используется уравнение множественной регрессии.

14. Для чего применяется метод логистической регрессии?

Задача.

По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (Y, млн. руб.).

Таблица 1.

Зависимость объема выпуска продукции от объема капиталовложений.

X
Y

Требуется :

1. Найти параметры уравнения линейной регрессии , дать экономическую интерпретацию коэффициента регрессии.

2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.

3. Проверить выполнение предпосылок МНК.

4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α = 0,05).

5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F - критерия Фишера (α = 0,05), найти среднюю относительную ошибку аппроксимации . Сделать вывод о качестве модели.

6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости α = 0,1, если прогнозное значения фактора Х составит 80% от его максимального значения.

7. Представить графически фактические и модельные значения Y точки прогноза.

8. Составить уравнения нелинейной регрессии и построить их графики:

Гиперболической;

Степенной;

Показательной.

9. Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.

Найдем параметры уравнения линейной регрессии и дадим экономическую интерпретацию коэффициента регрессии.

Уравнение линейной регрессии имеет вид: ,

Вычисления для нахождения параметров a и b приведены в таблице 2.

Таблица 2.

Расчет значений для нахождения параметров уравнения линейной регрессии.

Уравнение регрессии имеет вид: y = 13,8951 + 2,4016*x.

С увеличением объема капиталовложений (X) на 1 млн. руб. объем выпускаемой продукции (Y) увеличится в среднем на 2,4016 млн. руб. Таким образом, наблюдается положительная корреляция признаков, что свидетельствует об эффективности работы предприятий и выгодности капиталовложений в их деятельность.

2. Вычислим остатки; найдем остаточную сумму квадратов; оценим дисперсию остатков и построим график остатков.

Остатки вычисляются по формуле: e i = y i - y прогн.

Остаточная сумма квадратов отклонений: = 207,74.

Дисперсия остатков: 25.97.

Расчеты приведены в таблице 3.

Таблица 3.

Y X Y=a+b*x i e i = y i - y прогн. e i 2
100,35 3,65 13,306
81,14 -4,14 17,131
117,16 -0,16 0,0269
138,78 -1,78 3,1649
136,38 6,62 43,859
143,58 0,42 0,1744
73,93 8,07 65,061
102,75 -1,75 3,0765
136,38 -4,38 19,161
83,54 -6,54 42,78
Сумма 0,00 207,74
Среднее 111,4 40,6

График остатков имеет вид:


Рис.1. График остатков

3. Проверим выполнение предпосылок МНК, который включает элементы:

- проверка равенства математического ожидания случайной составляющей нулю;

- случайный характер остатков;

- проверка независимости;

- соответствие ряда остатков нормальному закону распределения.

Проверка равенства математического ожидания уровней ряда остатков нулю.

Осуществляется в ходе проверки соответствующей нулевой гипотезы H 0: . С этой целью строится t-статистика , где .

, таким образом, гипотеза принимается.

Случайный характер остатков.

Проверим случайность уровней ряда остатков с помощью критерия поворотных точек:

Количество поворотных точек определяем по таблице остатков:

e i = y i - y прогн. Точки поворота e i 2 (e i - e i -1) 2
3,65 13,31
-4,14 * 17,13 60,63
-0,16 * 0,03 15,80
-1,78 * 3,16 2,61
6,62 * 43,86 70,59
0,42 * 0,17 38,50
8,07 * 65,06 58,50
-1,75 * 3,08 96,43
-4,38 19,16 6,88
-6,54 42,78 4,68
Сумма 0,00 207,74 354,62
Среднее

= 6 > , следовательно, свойство случайности остатков выполняется.

Независимость остатков проверяется с помощью критерия Дарбина - Уотсона :

=4 - 1,707 = 2,293.

Так как попало в интервал от d 2 до 2, то по данному критерию можно сделать вывод о выполнении свойства независимости. Это означает, что в ряде динамики не имеется автокорреляции, следовательно, модель по этому критерию адекватна.

Соответствие ряда остатков нормальному закону распределения определяется с помощью R/S-критерия с критическими уровнями (2,7-3,7);

Рассчитаем значение RS:

RS = (e max - e min)/ S,

где e max - максимальное значение уровней ряда остатков E(t) = 8,07;

e min - минимальное значение уровней ряда остатков E(t) = -6,54.

S - среднеквадратическое отклонение, = 4,8044.

RS = (e max - e min)/ S= (8,07 + 6,54)/4,8044 = 3,04.

Так как 2,7 < 3,04 < 3,7, и полученное значение RS попало в за-данный интервал, значит, выполняется свойство нормальности распределения.

Таким образом, рассмотрев различные критерии выполнения предпосылок МНК, приходим к выводу, что предпосылки МНК выполняются.

4. Осуществим проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента α = 0,05.

Проверка значимости отдельных коэффициентов регрессии связана с определением расчетных значений t-критерия (t-статистики) для соответствующих коэффициентов регрессии:

Затем расчетные значения сравниваются с табличными t табл = 2,3060. Табличное значение критерия определяется при (n- 2) степенях свободы (n - число наблюдений) и соответствующем уровне значимости a (0,05)

Если расчетное значение t-критерия с (n- 2) степенями сво-боды превосходит его табличное значение при заданном уровне зна-чимости, коэффициент регрессии считается значимым.

В нашем случае коэффициенты регрессии a 0 - незначимый, а 1 - значимый коэффициенты.

Тема: Элементы теории корреляции

Объекты ряда генеральных совокупностей обладают несколькими подлежащими изучению признаками Х, У, ..., которые можно интерпретировать как систему взаимосвязанных величин. Примерами могут служить: масса животного и количество гемоглабина в крови, рост мужчины и объем грудной клетки, увеличение рабочих мест в помещении и уровень заболеваемости вирусными инфекциями, количество вводимого препарата и концентрация его в крови и т.д.

Очевидно, что между этими величинами существует связь, но она не может быть строгой фукциональной зависимостью, так как на изменение одной из величин влияет не только изменение второй величины, но и другие факторы. В таких случаях говорят, что две величины связаны стохастической (т.е. случайной) зависимостью. Мы будем изучать частный случай стохастической зависимости – корреляционную зависимость .

ОПРЕДЕЛЕНИЕ: стохастической , если на изменение одной из них влияет не только изменение второй величины, но и другие факторы.

ОПРЕДЕЛЕНИЕ: Зависимость случайных величин называют статистической, если изменения одной из них приводит к изменению закона распределения другой.

ОПРЕДЕЛЕНИЕ: Если изменение одной из случайных величин влечет изменение среднего другой случайной величины, то статистическую зависимость называют корреляционной.

Примерами корреляционной зависимости являются связи между:

Массой тела и ростом;

    дозой ионизирующего излучения и числом мутаций;

    пигментом волос человека и цветом глаз;

    показателями уровня жизни населения и процентом смертности;

    количеством пропущенных студентами лекций и оценкой на экзамене и т.д.

Именно корреляционные зависимости наиболее часто встречаются в природе в силу взаимовлияния и тесного переплетения огромного множества самых различных факторов, определяющих значения изучаемых показателей.

Результаты наблюдения, проведенные над тем или иным биологическим объктом по корреляционно связанным признакам У и Х можно изобразить точками на плоскости, построив систему прямоугольных координат. В результате получается некая диаграмма рассеяния, позволяющая судить о форме и тесноте связи между варьирующими признаками.

Если эту связь можно будет апроксимировать некоторой кривой, то можно будет прогнозировать изменение одного из параметров при целенаправленном изменении другого параметра.

Корреляционную зависимость от
можно описать с помощью уравнения вида

(1)

г
де
условное среднее величины , соответствующее значениювеличины
, а
некоторая функция. Уравнение (1) называется на
.

Рис.1. Линейная регрессия значима. Модель
.

Функцию
называютвыборочной регрессией на
, а ее график –выборочной линией регрессии на
.

Совершенно аналогично выборочным уравнением регрессии
на является уравнение
.

В зависимости от вида уравнения регрессии и формы соответствующей линии регрессии определяют форму корреляционной зависимости между рассматриваемыми величинами – линейной, квадратической, показательной, экспоненциальной.

Важнейшим является вопрос выбора вида функции регрессии
[или
], например линейная или нелинейная (показательная, логарифмическая и т.д.)

На практике вид функции регрессии можно определить построив на координатной плоскости множество точек, соответствующих всем имеющимся парам наблюдений (
).

Рис. 2. Линейная регрессия незначима. Модель
.

Р
ис. 3. Нелинейная модель
.

Например, на рис.1. видна тенденция роста значений с ростом
, при этом средние значениярасполагается визуально на прямой. Имеет смысл использовать линейную модель (вид зависимостиот
принято называть моделью) зависимостиот
.

На рис.2. средние значения не зависят от, следовательно линейная регрессия незначима (функция регрессии постоянна и равна).

На рис. 3. прослеживается тенденция нелинейности модели.

Примеры прямолинейной зависимости:

    увеличение количество потребляемого йода и снижение показателя заболеваемости зобом,

    увеличение стажа рабочего и повышение производительности.

Примеры криволинейной зависимости:

    с увеличением осадков – увеличивается урожай, но это происходит до определенного предела осадков. После критической точки осадки уже оказываются излишними, почва заболачивается и урожай снижается,

    связь между дозой хлора, примененной для обеззараживания воды и количеством бактерий в 1 мл. воды. С увеличением дозы хлора количество бактерий в воде снижается, но по достижению критической точки количество бактерий будет оставаться постоянным (или совсем отсутствовать), как бы мы не увеличивали дозу хлора.

Линейная регрессия

Выбрав вид функции регрессии, т.е. вид рассматриваемой модели зависимости от Х (или Х от У), например, линейную модель
, необходимо определить конкретные значения коэффициентов модели.

При различных значениях а и
можно построить бесконечное число зависимостей вида
т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов.

Метод наименьших квадратов (мнк)

Линейную функцию
ищем, исходя лишь из некоторого количества имеющихся наблюдений. Для нахождения функции с наилучшим соответствием наблюдаемым значениям используемметод наименьших квадратов.

Рис.4. Пояснение к оценке коэффициентов методом наименьших квадратов

Обозначим: - значение, вычисленное по уравнению

- измеренное значение,

- разность между измеренными и вычисленными по уравнению значениям,

.

В методе наименьших квадратов требуется, чтобы , разность между измеренными и вычисленными по уравнению значениям , была минимальной. Следовательно, находимо подобрать коэффициентыа и так, чтобы сумма квадратов отклонений наблюдаемых значений от значений на прямой линии регрессии оказалась наименьшей:

Это условие достигается если параметры а и будут вычислены по формулам:

называют коэффициентом регрессии ; называютсвободным членом уравнения регрессии.

Полученная прямая является оценкой для теоретической линии регрессии. Имеем

Итак,
являетсяуравнением линейной регрессии.

Регрессия может быть прямой
и обратной
.

ОПРЕДЕЛЕНИЕ: Обратная регрессия означает, что при росте одного параметра, значения другого параметра уменьшаются.

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

Изучение корреляционных зависимостей основывается на исследовании таких связей между переменными, при которых значения одной переменной, ее можно принять за зависимую переменную, «в среднем» изменяются в зависимости от того, какие значения принимает другая переменная, рассматриваемая как причина по отношению к зависимой переменной. Действие данной причины осуществляется в условиях сложного взаимодействия различных факторов, вследствие чего проявление закономерности затемняется влиянием случайностей. Вычисляя средние значения результативного признака для данной группы значений признака-фактора, отчасти элиминируется влияние случайностей. Вычисляя параметры теоретической линии связи, производится дальнейшее их элиминирование и получается однозначное (по форме) изменение «y» с изменением фактора «x».

Для исследования стохастических связей широко используется метод сопоставления двух параллельных рядов, метод аналитических группировок, корреляционный анализ, регрессионный анализ и некоторые непараметрические методы. В общем виде задача статистики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы (аналитического выражения) влияния факторных признаков на результативный. Для ее решения применяют методы корреляционного и регрессионного анализа.

ГЛАВА 1. УРАВНЕНИЕ РЕГРЕССИИ: ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

1.1. Уравнение регрессии: сущность и типы функций

Регрессия (лат. regressio- обратное движение, переход от более сложных форм развития к менее сложным) - одно из основных понятий в теории вероятности и математической статистике, выражающее зависимость среднего значения случайной величины от значений другой случайной величины или нескольких случайных величин. Это понятие введено Фрэнсисом Гальтоном в 1886.

Теоретическая линия регрессии - это та линия, вокруг которой группируются точки корреляционного поля и которая указывает основное направление, основную тенденцию связи.

Теоретическая линия регрессии должна отображать изменение средних величин результативного признака «y» по мере изменения величин факторного признака «x» при условии полного взаимопогашения всех прочих – случайных по отношению к фактору «x» - причин. Следовательно, эта линия должна быть проведена так, чтобы сумма отклонений точек поля корреляции от соответствующих точек теоретической линии регрессии равнялась нулю, а сумма квадратов этих отклонений была ба минимальной величиной.

y=f(x) - уравнение регрессии - это формула статистической связи между переменными.

Прямая линия на плоскости (в пространстве двух измерений) задается уравнением y=a+b*х. Более подробно: переменная y может быть выражена через константу (a) и угловой коэффициент (b), умноженный на переменную x. Константу иногда называют также свободным членом, а угловой коэффициент - регрессионным или B-коэффициентом.

Важным этапом регрессионного анализа является определение типа функции, с помощью которой характеризуется зависимость между признаками. Главным основанием должен служить содержательный анализ природы изучаемой зависимости, ее механизма. Вместе с тем теоретически обосновать форму связи каждого из факторов с результативным показателем можно далеко не всегда, поскольку исследуемые социально-экономические явления очень сложны и факторы, формирующие их уровень, тесно переплетаются и взаимодействуют друг с другом. Поэтому на основе теоретического анализа нередко могут быть сделаны самые общие выводы относительно направления связи, возможности его изменения в исследуемой совокупности, правомерности использования линейной зависимости, возможного наличия экстремальных значений и т.п. Необходимым дополнением такого рода предположений должен быть анализ конкретных фактических данных.

Приблизительно представление о линии связи можно получить на основе эмпирической линии регрессии. Эмпирическая линия регрессии обычно является ломанной линией, имеет более или менее значительный излом. Объясняется это тем, что влияние прочих неучтенных факторов, оказывающих воздействие на вариацию результативного признака, в средних погашается неполностью, в силу недостаточно большого количества наблюдений, поэтому эмпирической линией связи для выбора и обоснования типа теоретической кривой можно воспользоваться при условии, что число наблюдений будет достаточно велико.

Одним из элементов конкретных исследований является сопоставление различных уравнений зависимости, основанное на использовании критериев качества аппроксимации эмпирических данных конкурирующими вариантами моделей Наиболее часто для характеристики связей экономических показателей используют следующие типы функций:

1. Линейная:

2. Гиперболическая:

3. Показательная:

4. Параболическая:

5. Степенная:

6. Логарифмическая:

7. Логистическая:

Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные.

Для нахождения параметров а и b уравнения регрессии используют метод наименьших квадратов. При применении метода наименьших квадратов для нахождения такой функции, которая наилучшим образом соответствует эмпирическим данным, считается, что сумка квадратов отклонений эмпирических точек от теоретической линии регрессии должна быть величиной минимальной.

Критерий метода наименьших квадратов можно записать таким образом:

Следовательно, применение метода наименьших квадратов для определения параметров a и b прямой, наиболее соответствующей эмпирическим данным, сводится к задаче на экстремум.

Относительно оценок можно сделать следующие выводы:

1. Оценки метода наименьших квадратов являются функциями выборки, что позволяет их легко рассчитывать.

2. Оценки метода наименьших квадратов являются точечными оценками теоретических коэффициентов регрессии.

3. Эмпирическая прямая регрессии обязательно проходит через точку x, y.

4. Эмпирическое уравнение регрессии построено таким образом, что сумма отклонений

.

Графическое изображение эмпирической и теоретической линии связи представлено на рисунке 1.


Параметр b в уравнении – это коэффициент регрессии. При наличии прямой корреляционной зависимости коэффициент регрессии имеет положительное значение, а в случае обратной зависимости коэффициент регрессии – отрицательный. Коэффициент регрессии показывает на сколько в среднем изменяется величина результативного признака «y» при изменении факторного признака «x» на единицу. Геометрически коэффициент регрессии представляет собой наклон прямой линии, изображающей уравнение корреляционной зависимости, относительно оси «x» (для уравнения

).

Раздел многомерного статистического анализа, посвященный восстановлению зависимостей, называется регрессионным анализом. Термин «линейный регрессионный анализ» используют, когда рассматриваемая функция линейно зависит от оцениваемых параметров (от независимых переменных зависимость может быть произвольной). Теория оценивания

неизвестных параметров хорошо развита именно в случае линейного регрессионного анализа. Если же линейности нет и нельзя перейти к линейной задаче, то, как правило, хороших свойств от оценок ожидать не приходится. Продемонстрируем подходы в случае зависимостей различного вида. Если зависимость имеет вид многочлена (полинома). Если расчёт корреляции характеризует силу связи между двумя переменными, то регрессионный анализ служит для определения вида этой связи и дает возможность для прогнозирования значения одной (зависимой) переменной отталкиваясь от значения другой (независимой) переменной. Для проведения линейного регрессионного анализа зависимая переменная должна иметь интервальную (или порядковую) шкалу. В то же время, бинарная логистическая регрессия выявляет зависимость дихотомической переменной от некой другой переменной, относящейся к любой шкале. Те же условия применения справедливы и для пробит-анализа. Если зависимая переменная является категориальной, но имеет более двух категорий, то здесь подходящим методом будет мультиномиальная логистическая регрессия можно анализировать и нелинейные связи между переменными, которые относятся к интервальной шкале. Для этого предназначен метод нелинейной регрессии.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....