Какую картину называют спектром излучения. Виды спектров

Спектр в физике - распределение значений физической величины (обычно энергии, частоты или массы). Графическое представление такого распределения называется спектральной диаграммой. Обычно под спектром подразумевается электромагнитный спектр - спектр частот (или, что то же самое, энергий квантов) электромагнитного излучения.

В научный обиход термин спектр ввёл Ньютон в 1671-1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму

Непрерывные (или сплошные) спектры , как показывает

опыт, дают тела, находящиеся в твердом или жидком

состоянии, а также сильно сжатые газы. Для получения

непрерывного спектра нужно нагреть тело до высокой температуры.

Характер непрерывного спектра и сам факт его существования

определяются не только свойствами отдельных излучающих

атомов, но и в сильной степени зависят от взаимодействия

атомов друг с другом.

Непрерывный спектр дает также высокотемпературная

плазма. Электромагнитные волны излучаются плазмой в

основном при столкновении электронов с ионами.

Линейчатые спектры. Внесем в бледное пламя газовой

горелки кусочек асбеста, смоченного раствором

обыкновенной поваренной соли.

При наблюдении пламени в спектроскоп на фоне едва

различимого непрерывного спектра пламени вспыхнет

яркая желтая линия. Эту желтую линию дают пары натрия,

которые образуются при расщеплении молекул поваренной

соли в пламени. Каждый из них - это частокол цветных

линий различной яркости, разделенных широкими темными

полосами. Такие спектры называются линейчатыми. Наличие

линейчатого спектра означает, что вещество излучает свет только

вполне определенных длин волн (точнее, в определенных очень

узких спектральных интервалах). Каждая линия имеет конечную

ширину. Линейчатые спектры дают все вещества в газообразном

атомарном (но не молекулярном) состоянии. В этом случае свет

излучают атомы, которые практически не взаимодействуют друг

с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют

свечение паров вещества в пламени или свечение газового

разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные

спектральные линии расширяются, и, наконец, при очень

большом сжатии газа, когда взаимодействие атомов становится

существенным, эти линии перекрывают друг друга, образуя

непрерывный спектр.

Главное свойство линейчатых спектров состоит в том, что

длины волн (или частоты) линейчатого спектра какого-либо

вещества зависят только от свойств атомов этого вещества,

но совершенно не зависят от способа возбуждения свечения

Полосатые спектры . Полосатый спектр состоит из отдельных

полос, разделенных темными промежутками. С помощью очень

хорошего спектрального аппарата можно обнаружить, что каждая

полоса представляет собой совокупность большого числа очень

тесно расположенных линий. В отличие от линейчатых спектров

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на несколько типов:

Непрерывные спектры. Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Распределение энергии по частотам, т.е. спектральная плотность интенсивности излучения, для различных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум мри определенной частоте. Энергия излучения, приходящаяся на очень малые и очень большие частоты, ничтожно мала. При повышении температуры максимум спектральной плотности излучения смещается в сторону коротких волн.

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Линейчатые спектры. Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли.

При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. Каждый из них - это частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая линия имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают строго определенные длины волн. Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения. Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету, и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения. Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.

Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Поэтому, знакомясь с линейчатыми спектрами, мы тем самым делаем первый шаг к изучению строения атомов. Наблюдая эти спектры, ученые получили возможность «заглянуть» внутрь атома. Здесь оптика вплотную соприкасается с атомной физикой.

Вопрос 5. Виды спектров. Спектральный анализ.

Спектральный состав излучения атомов различных веществ весьма разнообразен. Тем не менее, все спектры можно разделить на три сильно отличающихся друг от друга типа.

Непрерывные (сплошные) спектры. В непрерывном спектре излучения (рис. 19.12.1) представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу с плавным переходом от одного цвета к другому.

Непрерывные (или сплошные) спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Линейчатые спектры. Линейчатые спектры излучения (Рис. 19.13.2,3,4) представляют собой набор цветных линий различной яркости, разделенных широкими темными полосами. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая из линий имеет конечную ширину. Линейчатые спектры дают все вещества в газообразном атомарном (но не в молекулярном) состоянии. Изолированные атомы химического элемента излучают строго определенные длины волн, характерные данному химическому элементу. Природа линейчатых спектров объясняется тем, что у атомов конкретного вещества существуют только ему свойственные стационарные состояния со своим набором энергетических уровней.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом. При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры. Полосатые спектры излучения состоят из отдельных полос, разделенных темными промежутками (Рис 19.14: а, б ).

С помощью очень хорошего спектрального прибора можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Спектры поглощения. Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии поглощения (Рис. 19.15). Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линиипоглощения, образующие в совокупности спектр поглощения. Спектры поглощения могут быть непрерывными, линейчатыми и полосатыми.

Атом, поглощая свет, переходит из основного состояния в возбужденное, причем для возбуждения атомов пригодны строго определенные кванты энергии , соответствующие данному газу. Поэтому газ поглощает из непрерывного спектра те самые кванты света, которые может излучать сам.


Оптические спектры

Спектры испускания

400 450 500 550 600 700 (нм )

(1−сплошной; линейчатые: 2−натрия; 3−водорода; 4−гелия)

Полосатые спектры

Cпектр испускания паров молекул иода

Спектр испускания угольной дуги (полосы молекул CN и С 2)

Спектры поглощения

400 450 500 550 600 700 (нм )

(5−солнечный; линейчатые: 6−натрия; 7−водорода; 8−гелия)

На рисунках 19.13 и 19.15 сопоставлены спектры испускания и поглощения разреженных паров натрия, водорода и гелия.

Изучая спектры испускания и поглощения атомов, еще в 19 веке физики пришли к выводу, что атом не является неделимой частицей, а обладает некоторой внутренней сложной структурой.

Использование линейчатых спектров лежит в основе спектрального анализа – метода исследования химического состава веществ по их спектрам. Отдельные линии в спектрах различных элементов могут совпадать, но в целом спектр каждого элемента является его индивидуальной характеристикой. Спектральный анализ сыграл большую роль в науке. Например, в спектре Солнца (1814) были открыты фраунгоферовы темные линии, происхождение которых объясняется следующим образом. Солнце, являясь раскаленным газовым шаром (Т ~ 6000 °С), испускает сплошной спектр. Солнечные лучи проходят через атмосферу Солнца (солнечную корону, температура которой ~(2000–3000) °С. Корона поглощает из сплошного спектра излучение определенной частоты, а на Земле регистрируется солнечный спектр поглощения (рис. 19.15,5), по которому можно определить, какие химические элементы присутствуют в короне Солнца. По спектрам поглощения на Солнце были обнаружены все земные элементы, а также неизвестный ранее элемент, который назвали гелий. Через 26 лет (1894) открыли гелий на Земле. Благодаря спектральному анализу на Земле было открыто еще 25 химических элементов.

Более того, спектральный анализ Солнца и звезд показал, что входящие в их состав химические элементы имеются и на Земле, т.е. вещество Вселенной состоит из одного и того же набора элементов.

Из-за своей сравнительной простоты и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии и машиностроении. С помощью спектрального анализа определяют химический состав руд и минералов как по спектрам испускания, так и по спектрам поглощения. Состав сложных смесей анализируется по молекулярным спектрам.

При определенных условиях методами спектрального анализа можно не только определить химический состав компонент, но и их количественное содержание.

Контрольные вопросы:

1. Приведите формулу Бальмера и поясните ее физический смысл.

2. Почему из различных серий спектральных линий атома водорода первой была изучена серия Бальмера?

3. Какие серии спектральных линий вы знаете?

4. Чему равна частота излучения атома водорода, соответствующая коротковолновой границе серии Брэкета?

5. Нарисуйте и поясните схему энергетических уровней атома водорода.

6. Приведите схему опыта Резерфорда и поясните ее.

7. Что такое постулаты Бора? Каков их физический смысл? Как с их помощью объясняется линейчатый спектр атома?

8. Что такое стационарные орбиты? Как рассчитываются их радиусы?

9. Почему ядерная модель атома по Резерфорду оказалась несостоятельной?

10. Приведите схему опыта Франка и Герца и вольт-амперную характеристику, описывающую результат этого эксперимента.

11. Какие постулаты Бора были подтверждены опытами Франка и Герца?

12. Какие основные выводы можно сделать на основании опытов Франка и Герца?

13. Пользуясь моделью Бора, укажите спектральные линии, которые могут возникнуть при переходе атома водорода из состояний с n =3 и с n = 4.

14. Назовите виды спектров испускания. Охарактеризуйте условия получения каждого вида спектров.

15. Что такое спектр поглощения? Условия получения спектровпоглощения.

16. Что лежит в основе спектрального анализа?

Формула тонкой линзы

Формула тонкой линзы связывает d (расстояние от предмета до оптического центра линзы), f (расстояние от оптического центра до изображения) с фокусным расстоянием F (рис. 101).

Треугольник АВО подобен треугольнику OB 1 A 1 . Из подобия следует, что

Треугольник OCF подобен треугольнику FB 1 A 1 . Из подобия следует, что

Это и есть формула тонкой линзы.

Расстояния F, d и f от линзы до действительных точек берутся со знаком плюс, расстояния от линзы до мнимых точек - со знаком минус.

Отношение размера изображения Н к линейному размеру предмета h называют линейным увеличением линзы Г.

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры. Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представ.тены волны всех длин волн. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу (см. рис. V, 1 на цветной вклейке).

Распределение энергии по частотам, т. е. спектральная плотность интенсивности излучения, для разных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум при определенной частоте Vmax (рис. 10.3). Энергия излучения, приходящаяся на очень малые (V -> 0) и очень большие (v -> v ) частоты, ничтожно мала. При повышении температуры тела максимум спектральной плотности излучения смещается в сторону коротких волн.

Непрерывные (или сплошные) спектры , как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть те.ло до высокой температуры.

Характер непрерывного спектра и сам факт его существования не только определяются свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновениях электронов с ионами.

Линейчатые спектры. Внесем в бледное пламя газовой горелки кусочек асбеста, смоченный раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп увидим, как на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия (см.рис. V, 2 на цветной вклейке).

Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На цветной вклейке приведены также спектры водорода и гелия. Каждый из спектров - это частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). На рисунке 10.4 показано примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре. Каждая линия имеет конечную ширину.



Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают свет строго определенных длин волн.

Обычно для наблюдения линeйчaтыx спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когдаa взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляетет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спеутров полосатые спектры образуются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, используют свечение паров вещества в пламени или свечение газового разряда.

Спектры поглощения. Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны. Энергия этих волн определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету ( 8 10 -5 см), и поглощает все остальные.

Если пропускать белый свет сквозь холодный, не излучающий газ, то на фоне непрерывного спектра источника появляются темные линии (см. рис. V, 5-8 на цветной вклейке). Газ поглощает наиболее интенсивно свет именно тех длин волн, которые он сам испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементарный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.

Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.

Статья рассказывает об определении и видах спектра, освещает области применения спектроскопии, а также описывает исследование незнакомого твердого вещества и применяемые для этого виды спектров.

Что такое спектр?

Вообще, в таком виде этот вопрос побуждает читателя вспоминать об уроках физики и бесконечных формулах. Однако это понятие охватывает гораздо большее разнообразие и выходит за рамки школьной программы. Итак, спектр - это распределение значений некоторой величины (иногда понятия). Под величиной, конечно, часто подразумевают конкретные массу, энергию, длину волны. Но бывают и совсем другие распределения. Например, женщина умеет готовить два блюда - это ее кулинарный спектр. Или мужчина может пить кофе, компот, чай, но не приемлет алкоголь, значит, его диапазон напитков ограничен. То есть бывают совершенно несвязанные с наукой виды спектров. Физика в примерах выше никакой роли не играет.

Электромагнитная шкала

Однако чаще всего люди слышат это понятие, когда речь идет о науке (в частности об электромагнитной шкале). Откуда берутся электромагнитные волны? Сам механизм их возникновения до сих пор остается загадкой. Вообще область не частиц, а полей весьма загадочна. Однако известно, что электромагнитные поля (а значит и волны) возникают при наличии движущегося в пространстве заряда. И в зависимости от того, какой он и как движется, на электромагнитной шкале проявляются различные виды излучения. Спектр в данном случае рассматривается в зависимости от длины волны. Напомним, что под этим термином понимается минимальное расстояние между одинаковыми фазами соседних возмущений (если проще - между идущими друг за другом максимумами или минимумами). Самыми большими длинами волн обладают радиоволны, самыми маленькими - гамма-излучение. То, что видит человеческий глаз, составляет лишь малую долю всего диапазона и расположено ближе к началу шкалы. Поэтому виды спектров различаются прежде всего по длине волны или частоте.

Спектроскопия

Познавательная часть этой статьи описала некоторые основные понятия. Однако самым главным в любом исследовании является его актуальность.

Другими словами - область применения. По этой части все виды спектров лидируют. Их используют везде: от криминалистики до создания новых веществ, от биологии до межзвездного пространства. Наука, которая сосредоточена на этом физическом понятии, как читатель наверняка уже понял, называется спектроскопия. На данный момент виды спектров (спектральный анализ - соответственно) различают по нескольким критериям.

Типы спектров

Как было сказано, первый критерий - длина волны. Напомним, что частота волны обратно пропорциональная длине - эти понятия непрерывно связаны. В соответствии с областями на электромагнитной шкале, существуют радио, ультрафиолетовые, видимые, инфракрасные, рентгеновские виды спектров. Второй критерий - геометрия эксперимента. Снятие на отражение и на пропускание спектра могут быть принципиально разными.

Анализ различий может много сообщить об изучаемой субстанции. Например, выводы о составе и плотности колец Сатурна были сделаны именно так.

Линии и полосы

Шутка про сферического коня в вакууме только наполовину шутка. Пятьдесят процентов, если не большинство физических понятий в природе не существует в чистом виде. Поэтому следующий критерий, который разделяет виды спектров, условен. Один идеальный атом (или молекула) вещества в абсолютном вакууме даст распределение электромагнитных сигналов, состоящее из тонких линий. Данные условия невыполнимы, но тем не менее очень узкие полосы с неразличимыми внутри отдельными компонентами принято считать линейчатым спектром. Как правило, он представляет собой набор столбиков разной высоты (она обозначает интенсивность) на соответствующих длинах волн. Однако существуют и другие виды спектров, которые называются полосчатыми: каждая линия имеет широкие, размытые края.

Голубое небо

Вопрос, почему небо голубое, задает каждый непоседа четырех лет. Ответ и прост, и сложен одновременно: оно имеет такой цвет, потому что микроколебания (называемые флуктуациями) земной атмосферы из всего солнечного спектра рассеивают только соответствующую ему область длин волн. Все остальное поглощается (в большей степени) или отражается.

Это еще одни критерий. То есть существуют спектры поглощения, испускания и рассеяния. Исследования каждого дает свои результаты. Но основную информацию о веществе несут разные виды спектров испускания. Они дают однозначный ответ, что и в каком количестве присутствует в исследуемой субстанции. Два других вида покажут сложность структуры и способы взаимодействия отдельных ее частей между собой.

Лунный камень

За что и какой спектр отвечает, покажем на примере булыжника, доставленного с Луны. Если разнообразными манипуляциями заставить камень светиться, получившийся спектр однозначно покажет, какие именно химические элементы системы Менделеева в нем есть. Другие процедуры способны извлечь из этих же спектров концентрации обнаруженных элементов. Однако твердое тело и его свойства определяются не только тем, из чего оно состоит, но и как эти отдельные элементарные части относительно друг друга расположены. Классический пример - графит и алмаз. В обоих случаях - это родной углерод. Но по-разному связанны атомы - и мы получаем очень мягкий и наиболее твердый природные материалы. Почему родной? Потому что он еще и основа жизни. К слову сказать, помимо упомянутых форм, существуют еще и фуллерены, и нанотрубки, и недавно открытый графен, за который ученые получили Нобелевскую премию. Правда, в последнем случае стоит оговориться, что вещество двумерно, это значительно меняет все представление о тонких слоях веществ. Итак, о строении твердого вещества, о входящих в его состав минералах расскажет спектроскопия рассеяния. Например, Рамановские линии (при верной интерпретации) до нескольких элементарных ячеек определяют структуру кристалла. А вот анализ края поглощения, вернее, его деталей: угла наклона, наличия аномалий в виде отклонения от линейной формы, помогает найти степень стройности этой структуры, то есть показать, какие кристаллы в камне с Луны - четкие или вещество почти аморфно?

По этим данным специалисты вычисляют происхождение вещества камня, а также метаморфозы пород, входящих в его состав.

Цифровой мир

Современность немыслима без цифровых технологий. И, главное, отнюдь не быстродействие процессоров или количество гигабайт оперативной памяти, а шифрование сигнала. Конечно, это важно прежде всего для тех областей, где необходима конфиденциальность - в банковском деле, личном общении через интернет. Но даже простая запись фильма на диск - это шифровка. Ведь лазер прожигает не картинки, а нули и единицы. Люди, которые работают в сфере создания и обработки фотографий, знают, сколько «весит» изображение в изначальном формате Raw. Для непосвященных раскроем секрет: очень много. Потому что каждому пикселю задается свой оттенок и освещенность. Но привычные нам jpeg, tiff или даже bmp занимают на носителях информации гораздо меньше места, при этом видимое качество ничуть не хуже.

Так в чем же секрет? Ответ - виды спектров сигнала и варианты его сжатия. Фурье доказал, что любой сигнал может быть с достаточно высокой точностью разложен на ряд функций. Таким образом, каждый пиксель привычных форматов фотографии отображает не непосредственно зафиксированную краску, а спектр сигнала. Некоторые видеоформаты используют не Фурье, а вейвлет-преобразование для раскодировки небольших порций единиц и нулей в конкретную картинку. Таким образом, потеряв совсем небольшую (меньше одного процента) часть изображения можно значительно, иногда в сто раз, сократить количество занимаемого на диске или флеш-карте места.

Последние материалы раздела:

Ол взмш при мгу: отделение математики Заочные математические школы для школьников
Ол взмш при мгу: отделение математики Заочные математические школы для школьников

Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...