Что такое методы доказательства теорем. Помочь ученикам найти выход из ситуации

Индукция - форма мышления, посредством которой мысль наводится на какое-либо общее правило, общее положение, присущее всем конкретным объектам какого либо класса.
Дедукция - такая форма мышления, когда новая мысль выводится чисто логическим путем из предшествующих мыслей. Такая последовательность мыслей называется выводом, а каждый компонент этого вывода является либо ранее доказанной мыслью либо аксиомой, либо гипотезой.
Дедуктивное доказательство - одна из форм доказательств, когда тезис, являющийся каким-либо единичным или частным суждением, подводится под общее правило.
Всякое доказательство состоит из трех частей:
тезис, доводов, демонстраций.
Правила доказательства:
1. Тезис и аргументы должны быть суждениями ясными и определенными.
2. Тезис должен оставаться одним и тем же на продолжении всего доказательства.
3. Тезис не должен содержать в себе логического противоречия.
4. Тезис, который нужно доказать, не должен находиться в логическом противооречии с высказанными ранее суждениями.
5. Доводы приводимые в подтверждение тезиса, не должны противоречить друг другу.
6. Приведение к абсурду. Истинность того или иного тезиса можно обосновать, доказав ложность пртивоположного тезиса.
7. Тезис и доводы должны быть обоснованны фактами.
8. Доказательство должно быть полным.
9. Доводы приводимые в подверждение истинности тезиса, должны являться достаточными для данного тезиса.
10. Доводы приводимые в доказательстве истинности тезиса сами должны быть истинными.
11. Доводы должны быть суждениями, истинность которых доказана самостоятельно независимо от тезиса.
ПРИМЕЧАНИЕ: Тезис - мысль или положение, истинность которого требуется доказать.

Учимся доказывать теорему.

Усвоить содержание теорем (правил, формул, тождеств и т. д.), которые изучаются в школе, не так уж трудно. Для этого необходимо систематически пытаться понять смысл теоремы (правил, формул, тождеств и т. д., как можно чаще применять их при решении задач, при доказательстве других теорем. Такая работа, как показывает практика, приводит к непроизвольному усвоению их содержания, запоминанию их формулировок. Значительно труднее научиться доказывать теоремы. При этом речь идет не о запоминании доказательства той или иной теоремы, которая была рассмотрена на уроке. Специально запоминать доказательство не нужно, нужно научиться самому доказывать теоремы. Доказательства теорем в учебнике следует рассматривать как образец (эталон) рассуждений при доказательстве какого-либо утверждения.

Что значит доказать теорему, что такое доказательство?

Доказательство в широком смысле - это логическое рассуждение, в процессе которого истинность какой-либо мысли обосновывается с помощью других положений.

Поэтому, когда вы убеждаете своего товарища в чем-либо или отстаиваете в споре с ним свое мнение, свою точку зрения, то вы по существу производите доказательство (умело или неумело - это уже другой вопрос) . В жизни все время, каждодневно в общении с другими людьми, приходится доказывать те или иные мысли, утверждения, приходится убеждать в чем-то, т. е. доказывать.

Доказательство математических теорем есть частный случай доказательства вообще. Оно отличается от доказательства в житейских условиях или в других науках тем, что оно совершается по возможности чисто дедуктивным способом (от латинского слова дедукция - выведение), т. е. выведением новой доказываемой мысли (утверждения, суждения) из ранее доказанных или принятых без доказательства мыслей (аксиом) по правилам логики без каких-либо ссылок на примеры или опыт. В других науках, в житейских обстоятельствах мы для доказательства часто прибегаем к примерам, к опыту. Мы говорим: «Смотри» - и это может служить доказательством. В математике такой способ доказательства недопустим, ссылаться, например, на очевидные отношения, иллюстрируемые чертежом, не разрешается. Математическое доказательство должно представлять собой цепочку логических следствий из исходных аксиом, определений, условий теоремы и ранее доказанных теорем до требуемого заключения.

Таким образом, при доказательстве теоремы мы сводим ее к ранее доказанным теоремам, а те в свою очередь еще к другим и т. д. Очевидно, что этот процесс сведения должен быть конечным, и поэтому всякое доказательство в конце концов сводит доказываемую теорему к исходным определениям и принятым без доказательства аксиомам.

Следовательно, аксиомы служат не только для косвенного определения первичных понятий, но и в качестве оснований для доказательства всех теорем математики. Вот почему в числе аксиом встречаются и такие, которые указывают особые свойства понятий, имеющих логические определения. Так, например, параллельные прямые в курсе геометрии являются не первичным понятием, а определяемым. Однако одно из свойств параллельных прямых, а именно что ч ерез точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной , мы вынуждены принять за аксиому, ибо, как было установлено великим русским геометром Н. И. Лобачевским (1792-1856), а также немецким математиком К. Ф. Гауссом (1777-1855) и венгерским математиком Я. Больяй (1802-1860), доказать это свойство параллельных прямых на основе лишь остальных аксиом геометрии невозможно.

Всякий шаг доказательства состоит из трех частей:

1) предложение (аксиома, теорема, определение), на основе которого производится этот шаг доказательства; это основание шага доказательства называется посылкой или аргументом;

2) логическое рассуждение, в процессе которого посылка применяется к условиям теоремы или к ранее полученным следствиям;

3) логическое следствие применения посылки к условиям или ранее полученным следствиям.

В последнем шаге доказательства теоремы в качестве следствия получаем утверждение, которое необходимо было доказать. Покажем процесс доказательства на примере такой теоремы: «Диагонали прямоугольника равны».

В этой теореме нам дан произвольный (любой) прямоугольник,Для того чтобы легче было рассуждать в процессе доказательства, поступают следующим образом. Начертим вполне определенный прямоугольник ABCD, но при доказательстве не будем использовать какие-либо частные особенности этого прямоугольника (например, что его сторона АВ примерно в 2 раза больше стороны AD и т. д.). Поэтому наши рассуждения относительно этого определенного прямоугольника будут верны и для любого другого прямоугольника, т. е. они будут иметь общий характер для всех прямоугольников.

Проведем диагонали АС и BD. Рассмотрим полученные треугольники ABC и ABD. У этих треугольников углы ABC и BAD равны как прямые, катет АВ - общий, а катеты ВС и AD равны как противоположные стороны прямоугольника. Следовательно, эти треугольники равны. Отсюда следует, что стороны АС и BD также равны, что и требовалось доказать.

Все доказательство этой теоремы можно изобразить в виде следующей схемы.


№ шага Посылки (аргументы) Условия Следствия
1. Определение: прямоугольник - это четырехугольугольник, у которого все углы прямые ABCD - прямоугольник A - прямой
B> - прямой.
2. Теорема: Прямые углы равны. A - прямой
B - прямой.
A =B.
3. Теорема: Противоположные стороны прямоугольника равны. ABCD - прямоугольник BC=AD
4. Первый признак равенства двух треугольников. ВС=AD, AB=AB,B =A ABC=BAD.
5. Определение равенства треугольников. ABC =BAD,
AC и BD соответственные стороны
AC=BD.

Самое трудное в доказательстве - это найти последовательность посылок (аксиом, теорем, определений), применяя которые к условиям теоремы или промежуточным результатам (следствиям) в конечном итоге можно получить нужное следствие - доказываемое положение.

Какими правилами нужно руководствоваться при поиске этой последовательности? Очевидно, что эти правила не могут носить обязательный характер, они лишь указывают возможные пути поиска. Поэтому они называются эвристическими правилами или просто эвристиками (от греческого слова эврика - нахожу, нашел). Многие выдающиеся математики, такие, как Папп (древнегреческий математик, живший в III в.), Блез Паскаль (1623-1662), Рене Декарт (1596-1650), Жак Адамар (1865-1963), Дьердж Пойя (1887) и многие другие, занимались разработкой эвристик для поиска доказательства теорем и решения задач. Вот некоторые эвристические правила, которые полезно помнить:

1.Полезно заменять названия объектов, о которых идет речь в теореме (задаче), их определениями или признаками.

Например, в рассмотренной выше теореме шла речь о прямоугольнике, и мы для доказательства использовали определение прямоугольника.

2.Если можно, то нужно доказываемое положение раздробить на части и доказывать каждую часть в отдельности.

Так, например, доказательство теоремы: «Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм» - можно разделить на две части: сначала доказать, что одна пара противоположных сторон данного четырехугольника параллельна, а затем доказать, что и вторая пара противоположных сторон также параллельна.

Так следует поступать всегда, когда есть возможность доказываемое утверждение разбить на несколько частей более простых утверждений.

3.В поисках доказательства теоремы полезно идти с двух сторон: от условий теоремы к заключению и от заключения к условиям.

Например, нужно доказать такую теорему: «Если некоторая последовательность такова, что любой ее член, начиная со второго, является средним арифметическим предшествующего и последующего членов, то эта последовательность - арифметическая прогрессия».

Пойдем от условия теоремы. Что нам дано? Дано, что каждый член последовательности, начиная со второго (обозначим его a n , где n³ 2), есть среднее арифметическое предшествующего и последующего членов, т.

a n- 1 и a n+1 . Значит, верно такое равенство:
(1)

Теперь пойдем от заключения. А что нам нужно доказать? Нужно доказать, что эта последовательность - арифметическая прогрессия. А какая последовательность называется арифметической прогрессией? Вспоминаем определение:

a n = a n-1 + d, где n2, d - постоянное число. (2)

Сопоставляем данное нам условие (1) с заключением (2). Чтобы условие приняло форму заключения, надо преобразовать так:

2a n = a n-1 + a n+1 , (3)

Отсюда a n - a n-1 = a n+1 - a n . (4)

Левая и правая части (4) обозначают одно и то же, а именно разность между двумя последовательными членами заданной последовательности. Если в равенстве (4) п давать последовательно значения 2, 3 и т. д., то получим: а 2 -a 1 = а 3 - a 2 , затем а 3 - a 2 = a 4 - a 3 и т. д. Следовательно, все эти разности равны между собой, а это значит, что разность а п - а п -1 есть постоянное число, которое можно обозначить буквой, например, буквой d:

а п - а п-1 = d.

Отсюда получаем: a n = a n-1 + d, а это значит, что согласно определению (2) данная последовательность есть арифметическая прогрессия, что нам и надо было доказать.

Эту эвристику можно и так сформулировать: надо стараться сблизить условие и заключение теоремы, преобразуя их или заменяя их следствиями.

Известен и ряд более частных эвристических правил, которые применяются при поиске лишь некоторых теорем. Например, такая эвристика: для того чтобы доказать равенство каких-либо отрезков, надо найти или построить фигуры, соответствующими сторонами которых являются эти отрезки; если фигуры окажутся равными, то будут равны и соответствующие отрезки.

Изучая теоремы, нужно не просто запоминать их доказательство, а каждый раз думать и устанавливать, какими методами они доказываются, какими эвристическими правилами руководствовались при нахождении этих доказательств, как догадались (додумались) до этих доказательств.

В ряде случаев для доказательства теорем используется особый прием, называемый «доказательством от противного» или «приведением к нелепости».

Сущность этого приема заключается в том, что предполагают несправедливость (ложность) заключения данной теоремы и доказывают, что такое предположение приводит к противоречию с условием или с ранее доказанными теоремами или аксиомами. А так как любое утверждение может быть либо верным, либо неверным (ничего другого быть не может), то полученное противоречие показывает, что допущение о ложности заключения теоремы неверно и, следовательно, заключение верно, тем самым теорема доказана.

Приведем пример.


Теорема. Две прямые, порознь параллельные третьей, параллельны между собой.

Дано: а||с, b||с.
Доказать: а||b.

Докажем эту теорему методом от противного. Допустим, что заключение теомы неверно, т. е. прямая а непараллельна прямой b. Тогда они пересекаются в некоторой точке М. А так как по условию каждая из этих прямых параллельна прямой с, то получается, что через точку М проведены две прямые а и b, параллельные одной и той же прямой с. А мы знаем по аксиоме параллельности, что через точку вне прямой можно провести не более одной прямой, параллельной данной. Пришли к противоречию с аксиомой. Это показывает, что наше предположение о непараллельности прямых а и b неверно, следовательно, а||b, что и требовалось доказать.

Другой пример.

Теорема. Среднее арифметическое двух положительных чисел не меньше {значит: больше или равно) среднего геометрического этих чисел.

Эту теорему можно так записать:

Где а>0, b>0, (1)

Ее можно доказать как прямым способом, так и способом от противного. Докажем ее способом от противного.

Для этого допустим, что она неверна, т. е. среднее арифметическое меньше среднего геометрического двух положительных чисел:; (2)

Умножим обе части (2) на 2 и возведем их в квадрат, получим: a 2 + 2ab + b 2 <.4ab или a 2 - 2ab + b 2 < 0. По формуле квадрата разности двух чисел получаем: (а - b) 2 < 0.

В результате получили явную нелепость: квадрат некоторого числа (а - b) отрицателен, чего быть не может. Следовательно, предположение о неверности теоремы привело к противоречию, что доказывает справедливость теоремы.

Таким образом, доказательство от противного некоторой теоремы состоит в том, что мы делаем допущение о неверности заключения теоремы. Затем делаем ряд логических умозаключений на основе этого допущения, в результате которых приходим к явно нелепому положению (к противоречию с условием или ранее доказанными теоремами, аксиомами). Далее рассуждаем так: если бы наше предположение было бы верным, то мы могли бы прийти лишь к верному выводу, а так как мы пришли к неверному выводу, то это означает, что наше предположение было ложным, следовательно, тем самым мы убедились, что заключение теоремы верно.

Заметим, что если в результате рассуждений мы не получили бы нелепости (противоречия), то это еще не означало бы, что предположение верно. Иными словами, если исходить из верности (справедливости) заключения теоремы и из этого предположения получить верное (очевидное) следствие, то это еще не значит, что предположение верно: может случиться, что исходная теорема как раз неверна.

На этом построены многие софизмы (умышленно ложно построенные умозаключения, кажущиеся лишь правильными), этим объясняются многие ошибки, допускаемые, при решении задач.

Рассмотрим, например, такое равенство: а - b = b - a (1), где а и b - произвольные числа. Допустим, что (1) верно, тогда возвысим обе части (1) в квадрат, получим:

a 2 - 2ab + b 2 = b 2 - 2ab + a 2

Перенеся все члены в одну сторону и сделав приведение подобных, придем к совершенно верному равенству: 0 = 0. Но отсюда нельзя делать вывод, что и исходное равенство (1) верно. Если бы мы такой вывод сделали, то пришли бы к такому софизму: 2а = 2b или а = b, т. е. любые произвольные числа равны между собой. Ошибка состоит в том, что из равенства квадратов двух чисел не следует равенство самих этих чисел. Например, (-2) 2 = 2 2 , но -22.

Вот пример ошибочного решения задачи.

Задача. Решить уравнение 3+ x + 2 = 0 (1).

Допустим, что уравнение (1) имеет решение и, следовательно, равенство (1) верно. Тогда получим: З= - х - 2. Возведем обе части равенства в квадрат: 9х = х 2 + 4х + 4 или х 2 -5x + 4 = 0, отсюда x 1 =4, х 2 =1. Можно ли найденные значения х считать корнями уравнения (1)? Некоторые ученики отвечают на этот вопрос утвердительно, ибо ведь все преобразования уравнения верные. И все же ни одно из найденных значений х не является корнем (1). Это подтверждает проверка. Подставляя найденные значения х в (1), получаем явно нелепые равенства: 12 = 0 и 6 = 0.

А как все же решить это уравнение. Заметим, что выражение в левой части уравнения имеет смысл, если x0. Тогда левая часть уравнения при любых допустимых значениях х принимает только положительные значения и ни как не может быть равной 0, следовательно, данное уравнение корней не имеет.

Таким образом вы должны учиться доказывать теоремы (формулы, тождества и т. д.), овладевать общими способами поиска доказательства теорем.

Аксиома есть очевидная истина, не требующая доказательства .

Теорема или предложение есть истина, требующая доказательства .

Доказательство есть совокупность рассуждений, делающих данное предложение очевидным .

Доказательство достигает своей цели, когда при помощи его обнаруживается, что данное предложение есть необходимое следствие аксиом или какого-нибудь другого предложения, уже доказанного.

Всякое доказательство основано на том начале, что при правильном умозаключении из истинного предложения нельзя вывести ложного заключения.

Состав теоремы . Всякая теорема состоит из двух частей, a) условия и b) заключения или следствия .

Условие иногда называют предположением. Оно дано и поэтому иногда получает название данного.

Обратная теорема . Предложение, у которого заключение данной теоремы делается условием, а условие заключением, называется теоремой обратной данной .

В таком случае данная теорема называется прямой.

Две теоремы в совокупности, прямая и обратная, называются взаимно-обратными теоремами.

Они находятся в таком взаимном отношении, что, выбрав любую из них за прямую, можно другую принять за обратную.

В двух взаимно-обратных предложениях одно из них вытекает как необходимое следствие другого.

Если в теореме мы обозначим условие буквой, стоящей на первом месте, а заключение буквой, стоящей на втором месте, то прямую теорему можно схематически представить выражением (Aa), а обратную выражением (aA).

Выражение (Aa) схематически представляет предложение: если имеет место A, то имеет место a.

Если для данного предложения (Aa) имеет место и теорема (aA), то обе теоремы (Aa) и (aA) называются взаимно-обратными теоремами.

Примером двух таких взаимно-обратных теорем могут послужить теоремы:

Первая теорема . В треугольнике против равных сторон лежат равные углы .

Вторая теорема . В треугольнике против равных углов лежат равные стороны .

В первой теореме данным условием будет равенство сторон треугольника, а заключением равенство противолежащих углов, а во второй наоборот.

Не всякая теорема имеет свою обратную.

Примером арифметического предложения, не имеющего своего обратного, может послужить следующая теорема . Если в двух произведениях множители равны, то и произведения равны .

Обратное предположение несправедливо. Действительно, из того, что произведения равны, не следует, что множители равны.

Примером геометрического предложения, для которого обратное предложение не имеет места, может послужить теорема : во всяком квадрате диагонали равны .

Предложение обратное этому будет: если диагонали четырехугольника равны, то он будет квадратом.

Это предположение неверно, ибо диагонали бывают равными не в одном квадрате.

Так как обратное предположение не всегда справедливо, то каждый раз обратное предложение требует особого доказательства.

В теории геометрических доказательств весьма важно иногда знать, когда данное предложение допускает свое обратное.

Для этой цели может послужить следующее правило обратимости . Когда в предположении всем возможным и различным условиям соответствуют все возможные и различные заключения, обратное предложение имеет место.

Рассмотрим для примера.

Прямое предложение . Если два треугольника имеют по две равные стороны, то третья сторона будет больше, равна или меньше третьей стороны другого треугольника, смотря по тому, будет ли угол между равными сторонами больше, равен или меньше соответствующего угла другого треугольника.

В этом предложении трем различным и возможным предположениям об угле соответствуют три различных и возможных заключения о противолежащей стороне, поэтому, согласно с правилом обратимости, данная теорема допускает обратное предположение :

Когда два треугольника имеют по две равных стороны, угол между ними будет больше, равен или меньше соответствующего угла другого треугольника, смотря по тому, будет ли третья сторона больше, равна или меньше третьей стороны данного треугольника.

Кроме обратной прямая теорема может иметь свою противоположную.

Противоположная теорема есть такая, в которой из отрицания условия вытекает отрицание заключения .

Противоположная теорема может иметь свою обратную.

Чтобы обобщить все эти теоремы, мы их представим схематически в следующей общей форме:

    Прямая или основная теорема. Если имеет место условие или свойство A, то имеет место заключение или свойство B.

    Обратная . Если имеет место B, то имеет место A.

    Противоположная . Если не имеет места A, то не имеет места B.

    Обратная противоположной . Если не имеет места B, то не имеет места A.

Следующие примеры поясняют на частных случаях взаимное отношение этих теорем:

    Прямая теорема . Если при пересечении двух данных прямых третьей соответственные углы равны, то данные прямые параллельны.

    Обратная теорема . Если две прямые параллельны, то при пересечении их третье, соответственные углы равны.

    Противоположная . Если при пересечении двух прямых третьей соответственные углы не равны, прямые не параллельны.

    Обратная противоположной . Если прямые не параллельны, соответственные углы не равны.

При геометрическом изложении теорем достаточно доказать только две из этих трех теорем, тогда остальные две теоремы справедливы без доказательства.

На этой связи теорем основан прием, по которому для доказательства обратной теоремы ограничиваются часто только доказательством теоремы противоположной.

Способы геометрических доказательств

Для доказательства геометрических теорем существует два основных способа: синтетический и аналитический .

Эти методы называют иногда сокращенно синтезом и анализом .

Синтез есть такой метод доказательства, в котором данное предложение является необходимым следствием другого, уже доказанного .

В синтезе цепь доказательств начинается с какого-нибудь известного предложения и оканчивается данным предложением. При доказательстве исходное предложение сопоставляется с аксиомой или с другим уже известным предложением. Синтетический способ удобен для вывода таких новых предложений, которые заранее не обозначены. Для доказательства же данного предложения он представляет много неудобств. В нем не видно: a) какую из известных теорем нужно выбрать для того, чтобы доказываемое предложение вытекало как ее необходимое следствие, и b) какое из следствий выбранного предложения приводит к доказываемому предложению.

Синтез называют поэтому не методом открытия новых истин, а методом их изложения.

Впрочем и при самом изложении теорем методом синтетическим является неудобство в том отношении, что не видно, почему за исходную истину в цепи доказательств выбрано то, а не другое предложение, то, а не другое его следствие.

Примером синтетического способа доказательства может послужить следующая теорема.

Теорема . Сумма углов треугольника равна двум прямым .

Дан треугольник ABC (черт. 224).

Требуется доказать, что A + B + C = 2d.

Доказательство . Проведем прямую DE параллельную AC.

Сумма углов, лежащих по одну сторону прямой, равна двум прямым, следовательно,

α + B + γ = 2d

то, заменяя в предыдущем равенстве углы α и γ равными им углами, имеем:

A + B + C = 2d (ЧТД).

Здесь исходным предложением в цепи доказательств выбрана теорема о сумме углов, лежащих по одну сторону прямой.

Она поставлена в связь с теоремами о равенстве углов накрест-лежащих при пересечении двух параллельных третьею косвенною.

Доказываемая теорема есть необходимое следствие всех предложенных теорем и является в цепи доказательств последним заключением.

Анализ есть способ обратный синтезу. В анализе цепь рассуждений начинается доказываемой теоремой и оканчивается какой-нибудь другой уже известной истиной .

Анализ является в двух видах. От доказываемого предложения мы можем перейти к предложению, служащему его ближайшим основанием или его ближайшим следствием.

Переходя от данного предложения к предложению, служащему его ближайшим основанием, мы смотрим на данное предложение как на необходимое следствие.

Переходя от данного предложения к его ближайшему следствию, мы смотрим на данное предложение как на основание для цепи умозаключений.

Первый способ анализа . Совершая анализ переходом к основанию, отыскивают то первое ближайшее предложение, из которого данное вытекает как необходимое следствие. Если это предложение было прежде доказано, то доказано и данное предложение, если же нет, то отыскивают второе предложение, служащее основанием для первого.

Такой переход к основанию следует продолжать до тех пор, пока не дойдем до предложения вполне доказанного. Данное предложение явится как необходимое следствие последнего доказанного предложения.

Обозначая каждое предложение буквой и ставя ее впереди или позади другой, смотря по тому, будет ли оно служить основанием или следствием другого предложения, мы схематически можем этот прием анализа выразить в виде

где M есть данное предложение, L его ближайшее основание, а H предложение, вполне доказанное. Если верно предложение H, то верно предложение K; если верно K, то верно L; если верно L, то верно и M.

Второй способ анализа состоит в переходе от данного предложения к его следствию. Этот прием применяют чаще, потому что легче находить необходимое следствие, нежели отыскивать основание какой-нибудь истины. По этому способу выводят из данного предложения ту теорему, которая служит его ближайшим следствием. Если это следствие есть предложение прежде доказанное, то на нем и останавливаются; если же нет, переходят к следующему ближайшему следствию и вообще продолжают такой последовательный вывод следствий до тех пор, пока не дойдут до предложения, вполне доказанного.

Если последнее предложение не верно, то и данное не верно, ибо неверное следствие нельзя получить из верного предложения.

Если же последнее предложение верно, то для убеждения в верности данного предложения требуется, чтобы были соблюдены некоторые условия.

Схематически этот прием анализа можно представить в виде

M - N - O - P - Q - R - S

где M данное предложение, N предложение, служащее его ближайшим следствием, а S то последнее предложение, в справедливости которого мы вполне убеждены.

Из двух предложений R и S, стоящих в такой связи, что если справедливо R, то справедливо и предложение S, мы, как известно, не всегда можем обратно заключать, что если справедливо S, то справедливо и предложение R.

Чтобы последнее заключение имело место, требуется, чтобы теоремы R и S были взаимно-обратными предложениями.

Итак, для того, чтобы убедиться, что теоремы R и S стоят в такой связи, что она удовлетворяет схеме R - S и схеме S - R, требуется доказать, что предложения R и S взаимно-обратны.

Таким образом, чтобы можно было по верности последнего предложения S заключить о верности данного предложения M, требуется доказать, что каждые два рядом стоящие предложения R и S, P и R, O и P, N и O, M и N удовлетворяют закону обратимости.

Если это доказано, то цепь предложений можно обратить, и рядом со схемой M - N - O - P - Q - R - S справедлива и схема

S - R - Q - P - O - N - M

по которой мы имеем право заключить, что если справедливо предложение S, то справедливо и предложение M.

Так как затруднительно всякий раз доказывать обратимость двух предложений, то этого избегают, соединяя способ аналитический с синтетическим. После того, как из предложения M выведено предложение S как его следствие, смотрят, нельзя ли обратно вывести предложение M как необходимое следствие предложения S.

Если синтез есть способ, называемый дедукцией или выводом , то анализ можно назвать редукцией (приведение, наводка).

Примером аналитического способа доказательства может послужить следующая теорема.

Теорема . Диагонали параллелограмма пересекаются пополам.

Доказательство . Если диагонали пересекаются пополам, то треугольники AOB и DOC равны (черт. 225). Равенство же треугольников AOB и DOC вытекает из того, что AB = CD как противоположные стороны параллелограмма и ∠α = ∠γ, ∠β = ∠δ как накрест-лежащие углы.

Таким образом мы видим, что последовательно данное предложение заменяется другим и такое замещение совершается до тех пор, пока не дойдем до предложения уже доказанного.

Сравнение синтеза с анализом . Способ аналитический вернее ведет к доказательству данной теоремы, ибо от данной теоремы легче переходить к его ближайшему основанию или следствию.

Хотя анализ лучше синтеза объясняет, почему выбран тот или другой путь для доказательства теоремы, однако неопределенность при доказательствах не устраняется вполне в том смысле, что при последовательных заменах одного предложения другим, мы не всегда можем дойти до предложения нам известного, ибо иногда не видно, какое из следствий или какое из оснований данного предложения нужно выбрать для того, чтобы его доказать. Затруднения увеличиваются еще больше, когда приходится для доказательства проводить новые вспомогательные прямые. Иногда трудно дать верные указания, какие из них облегчают доказательство данной теоремы.

Анализ, как и все логические приемы, только облегчает и помогает находить доказательство данного предложения, но не всегда необходимо ведет к самому доказательству.

Кроме этих прямых существует непрямой способ доказательства, известный под именем доказательства от противного или способа приведения к нелепости.

Способ доказательства от противного состоит в том, что для доказательства данного предложения убеждают в невозможности предположения противоположного .

На этом основании это доказательство называется доказательством от противного. Оно достигает своей цели всякий раз, когда из двух предложений, данного и противоположного, одно непременно имеет место.

В этом случае для доказательства данного, допустив противоположное предложение, выводят из него такие следствия, которые противоречат аксиомам или теоремам, уже доказанным. Если одно из следствий этого предложения ложно, то и противоположное предложение ложно, а следовательно данное предложение справедливо.

Этот прием часто применяют для доказательства теорем обратных или противоположных данным.

Не трудно заметить, что этот способ есть второй способ анализа, в котором от данного предложения последовательно переходят к его следствиям.

Примером применения такого способа может послужить приведенное выше доказательство теоремы: против равных углов в треугольнике лежат равные стороны (теорема 26).

В геометрии также применяют способы, зависящие от самого содержания геометрических истин. Геометрические истины относятся к геометрическим протяжениям. Эти протяжения обладают определенными свойствами, подлежащим внешним чувствам. Геометрическое протяжение может рассматриваться как целое, доступное наблюдению внешними чувствами. Убедительности доказательства содействует и самое чувственное созерцание. Обойтись без него в геометрии невозможно.

К числу приемов, имеющих место в геометрии, принадлежат: способ наложения, способ пропорциональности и способ пределов .

Способ наложения состоит в том, что одну геометрическую величину накладывают на другую . Этим способом убеждаются в равенстве или неравенстве геометрических протяжений, смотря по тому, совмещаются или не совмещаются ни при наложении.

Способ пропорциональности состоит в применении к геометрическим протяжениям свойств пропорций . Этот способ применяется при доказательстве теорем, относящихся к подобным фигурам и к пропорциональным отрезкам.

Способ пределов состоит в том, что вместо данных протяжений рассматривают свойства протяжений близких по своим свойствам к данному, и выводы, получаемые из рассмотрения одних, применяют к другим сходным протяжениям.

Способы решения геометрических задач

При решении геометрических задач синтез и анализ применяют точно так же как и при доказательстве теорем.

Решая задачу синтетически, берут такую другую задачу, которую умеют решить, потом из ее решения выводят решение следующей задачи, как ее необходимое следствие, и поступают так до тех пор, пока не доходят до решения данной задачи.

Синтетический метод решения задачи обладает всеми теми же недостатками, какими обладает и синтетический метод доказательства.

Поэтому чаще и успешнее для решения задач применяют анализ.

При решении задачи анализом заменяют данную задачу новой. Эту новую задачу будем называть заменяющей .

Если две задачи находятся в таком отношении, что условия второй есть необходимые следствия условий первой, то первую задачу будем называть начальной , а вторую - производной .

При анализе существуют два способа.

Первый способ . Заменяющую задачу выбирают так, чтобы условия данной задачи вытекали как необходимое следствие условий новой заменяющей задачи, т. е. по нашей терминологии от данной задачи переходят к первой начальной задаче. Если решение этой задачи известно, то решение данной является как необходимое следствие решения начальной задачи. Если же ее решение неизвестно, то от нее переходят ко второй, третьей начальной задаче и продолжают так поступать до тех пор, пока не получат задачу, решение которой известно.

Решив эту последнюю задачу, вместе с этим последовательно доходят и до решения данной задачи.

Второй способ . Можно переходить от данной задачи к такой другой, условия которой являются следствием условий данной, т. е. от данной задачи переходят к ее производной.

Заменяя таким образом последовательно одну задачу другой ее производной, мы можем дойти до задачи, решение которой уже известно. Решение этой задачи дает иногда возможность решить и данную задачу.

Такой переход от данной задачи к ее производной применяют чаще, ибо переходить к следствию легче, нежели подыскивать основание для какой-нибудь истины.

В этом частном случае анализа обыкновенно полагают, что задача решена, и из этого предположения выводят соотношения, дающие возможность решить данную задачу.

При переходе от данной задачи к ее заменяющей весьма важно обращать внимание на то, будут ли две задачи обладать свойством взаимной обратимости. Эта взаимность в условиях двух задач является тогда, когда одна задача, будучи начальной для другой, может быть в то же время и ее производной; иначе когда две задачи находятся в таком отношении, что условия одной могут быть и необходимыми следствиями другой и наоборот.

Если две задачи, данная и новая, обладают такими свойствами, то новая задача вполне заменяет данную. В этом случае все решения одной будут и решениями другой.

Если же условия двух задач не обладают свойствами взаимной обратимости, то, заменяя данную задачу новой, мы можем найти или лишние решения или иметь некоторые из решений потерянными.

Если заменяющая задача будет производной для данной, то мы можем найти некоторые лишние решения; если же она будет начальной для данной, то мы можем найти некоторые решения потерянными.

Так как чаще от данной задачи переходят к задаче производной, то чаще приходится получать решения лишние.

Чтобы отделить лишние решения и отыскать потерянные, поверяют все найденные решения.

Поверка есть способ отделения посторонних (лишних) решений . Она дополняет анализ.

Аналитическое решение задачи указывает на то построение, которое нужно сделать для решения задачи. Совершая это построение, поступают при решении задачи способом обратным анализу, т. е. прибегают к синтетическому способу. Этот синтетический способ часто может заменить и самую поверку найденных решений.

Совместное применение синтеза и анализа дает средство избегнуть тех ошибок, которые могут получиться при применении только одного из этих методов решения.

Решим одну и ту же задачу синтетически и аналитически. Для примера может послужить следующая задача.

Задача . Разделить данный отрезок AB в крайнем и среднем отношении.

Решение . Восставим из конца отрезка AB перпендикуляр BO равный половине AB (черт. 226). Из центра O опишем окружность радиусом BO, соединим центр O с точкой A и отложим на отрезке AB отрезок AC равный AD, тогда отрезок AC или AD будет искомый.

Доказательство . Прямая AB - касательная к окружности, следовательно

откуда имеем:

(AE - AB)/AB = (AB - AD)/AD

Так как DE = AB и AD = AC, то в предыдущей пропорции имеем:

AE - AB = AE - DE = AD = AC
AB - AD = AB - AC = BC

откуда имеем пропорцию

Это решение синтетическое. В нем мы отправляемся от известной теоремы о свойствах касательной и решение данной задачи вытекало как необходимое следствие этой теоремы.

Решение аналитическое . Допустим, что задача решена, а следовательно и отрезок AC найден, тогда

AB/AC = AC/CB (1)

(AB + AC)/AB = (AC + CB)/AC

(AB + AC)/AB = AB/AC (2).

Из последней пропорции видно, что AB есть касательная, AB + AC пересекающаяся, AC ее внешний и AB внутренний отрезок.

Отсюда вытекает и само построение . Нужно из конца B восставить перпендикуляр равный ½AB, провести окружность, соединить O с A и отложить на отрезке AB часть AC = AD.

В этом аналитическом решении мы данную задачу, удовлетворяющую условию (1), заменяем задачей, удовлетворяющей условию (2).

Условие (2) указывает и путь для решения самой задачи построением.

Обыкновенно, найдя решение задачи способом аналитическим, совершают построение, в котором, применяя способ рассуждений синтетический, доказывают, что это построение действительно разрешает задачу и этим доказательством заменяют поверку, имеющую в виду устранить посторонние решения.

В данном примере между задачами, удовлетворяющим условиям (1) и (2), существует полная обратимость, ибо из условий (1) вытекают условия (2) как необходимое следствие и наоборот, поэтому здесь нет ни потерянных, ни посторонних решений.

Исследование второстепенных и вспомогательных приемов решения задач еще не достигло в своей обработке полной и совершенной законченности. Мы пока устраняемся от их подробного рассмотрения.

Тема 13. Теоремы и доказательства

В этой теме Вы ознакомитесь с отличительной особенностью математики по сравнению с физикой и другими науками – признавать только те истины или законы, которые доказаны. В связи с этим будет проанализировано понятие теоремы и рассмотрены некоторые виды теорем и методы их доказательства.

09-13-03. Отличительная особенность математики

Теория

1.1. Если сравнить математику и физику, то обе эти науки используют как наблюдения, так и доказательства. Наряду с экспериментальной физикой существует теоретическая физика, в которой некоторые утверждения, как и теоремы в математике, доказываются на основе физических законов путем последовательного выведения одних суждений из других. Однако физические законы признаются истинными лишь в том случае, когда они подтверждаются большим числом экспериментов. Эти законы со временем могут уточняться.

Математика также использует наблюдения.

Пример 1. Наблюдая, что

можно сделать предположение, что сумма первых тысячи нечетных натуральных чисел равна 1000000.

Это утверждение можно проверить, непосредственными вычислениями, затратив огромное количество времени.

Можно сделать также общее предположение, что для любого натурального числа сумма начальных нечетных чисел равна . Это утверждение непосредственными вычислениями проверить нельзя, потому что множество всех натуральных чисел бесконечно. Тем не менее сделанное предположение верно, потому что его можно доказать.

Пример 2. Мы можем измерить углы многих треугольников..gif" height="20">, является верным, если мы принимаем за аксиому пятый постулат Евклида. Это было доказано в 7 классе .

Пример 3. Подставляя в многочлен

вместо натуральные числа от 1 до 10, мы получим простые числа 43, 47, 53, 61, 71, 83, 97, 113, 131, 151. Можно высказать предположение, что при любом натуральном значение квадратного трехчлена является простым числом. Проверка показала, что это действительно так при любом натуральном от 1 до 39. Однако, при предположение неверно, так как получается составное число:

Использование доказательств, а не наблюдений для установления истинности теорем является отличительной особенностью математики.

Заключение, сделанное на основе даже многочисленных наблюдений, считается математическим законом лишь тогда, когда оно доказано .

1.2. Ограничимся интуитивным понятием доказательства, как последовательного выведения одних суждений из других, не проводя точного анализа понятия выведения или вывода. Детальнее проанализируем понятие теоремы.

Теоремой принято называть утверждение, истинность которого устанавливается путем доказательства. Понятие теоремы развивалось и уточнялось вместе с понятием доказательства.

В классическом смысле под теоремой понимают высказывание, которое доказывается путем выведения одних суждений из других. При этом должны быть выбраны некоторые начальные законы или аксиомы , которые принимаются без доказательства.

Впервые система аксиом в геометрии была построена древнегреческим математиком Евклидом в его знаменитом труде Начала. Вслед за аксиомами в Началах Евклида излагаются теоремы и задачи на построение под общим названием предложения. Теоремы расположены в строгой последовательности.

Каждая теорема сначала формулируется, затем указывается, что дано и что требуется доказать. Потом излагается доказательство со всеми ссылками на ранее доказанные предложения и аксиомы. Иногда доказательство заканчивается словами что и требовалось доказать. Переведенные на все европейские языки Начала Евклида, включающие 13 книг, оставались до 18 века единственным учебным пособием , по которому изучали геометрию в школах и университетах.

1.3. Чтобы было легче выделить, что дано и что требуется доказать, теоремы формулируются в виде если..., то.... Первая часть формулировки теоремы между если и то называется условием теоремы, а вторая часть, которая записывается после то, называется заключением теоремы.

Условие теоремы содержит описание того, что дано, а заключение – что требуется доказать.

Иногда такую запись теоремы называют логической формой теоремы, а сокращенно называют формой если - то.

Пример 4. Рассмотрим следующую теорему.

Если - четное натуральное число, то является нечетным числом.

В этой теореме условие состоит в том, что берется любое четное число ..gif" width="32 height=19" height="19"> нечетно.

Часто условие и заключение записываются при помощи других слов.

Пример 5. Теорему из примера 1 можно записать в следующей форме:

Пусть - четное натуральное число. Тогда является нечетным числом.

В этом случае вместо слова если используют слово пусть, а вместо слова то пишут слово тогда.

Пример 6. Теорему из примера 1 можно записать также в следующей форме:

Из того, что четное натуральное число, следует, что число .gif" width="13" height="15"> влечет нечетность числа .

В этом случае слово если опускается, а вместо слова то используется слово влечет.

Иногда употребляют и другие виды записи теорем.

1.4. В некоторых случаях условие теоремы в ее формулировке не записывают. Это происходит тогда, когда из текста ясно, какой вид может иметь это условие.

Пример 8. Вы знаете теорему: медианы треугольника пересекаются в одной точке.

В логической форме эта теорема может быть записана так:

Если в любом треугольнике провести все медианы, то эти медианы пересекутся в одной точке.

Пример 9. Теорема о бесконечности множества простых чисел может быть записана в виде:

Если - множество всех простых чисел, то оно бесконечно.

Для установления связей между теоремами в математике используют особый язык, который частично будет рассмотрен в последующих параграфах данной главы.

Контрольные вопросы

1. Какие примеры наблюдений в математике Вам известны?

2. Какие аксиомы геометрии Вы знаете?

3. Какую запись теоремы называют логической формой теоремы?

4. Что называется условием теоремы?

5. Что называется заключением теоремы?

6. Какие формы записи теорем Вы знаете?

Задачи и упражнения

1. Какие предположения Вы можете сделать, наблюдая:

а) произведения двух соседних натуральных чисел;

б) суммы двух соседних натуральных чисел;

в) суммы трех последовательных натуральных чисел;

г) суммы трех нечетных чисел;

д) последние цифры в десятичной записи чисел .gif" width="13 height=15" height="15">;

е) число частей, на которые плоскость разбивается различными прямыми, проходящими через одну точку;

ж) число частей, на которые плоскость разбивается различными прямыми, из которых прямых попарно параллельны и пересекают .gif" width="13" height="20">.gif" height="20"> числа вида , где - натуральное число;

г) суммы двух иррациональных чисел?

3. Какое предположение Вы можете сделать, наблюдая центры окружностей, описанных около тупоугольных треугольников?

4. Запишите в логической форме теорему:

а) сумма внутренних углов выпуклого https://pandia.ru/text/80/293/images/image017_1.gif" width="81 height=24" height="24">;

б) любые два прямоугольных равнобедренных треугольника подобны;

в) равенство выполняется для любых целых чисел и ;

г) высота равнобедренного треугольника, проведенная к его основанию, делит пополам угол при вершине этого треугольника;

д) для любых неотрицательных чисел и выполняется неравенство ;

е) сумма двух противоположных углов вписанного в окружность четырехугольника равна 180;

ж) число не является рациональны числом;

з) все простые числа, которые больше 10, нечетны;

и) у квадрата диагонали равны, перпендикулярны и в точке пересечения делятся пополам;

к) из всех четырехугольников, вписанных в заданную окружность, квадрат имеет наибольшую площадь;

л) существует четное простое число;

м) ни одно простое число не может быть представлено в виде суммы двух различных нечетных натуральных чисел;

н) сумма кубов первых натуральных чисел является квадратом некоторого натурального числа.

5.* Каждую из теорем, приведенных в предыдущей задаче, запишите в нескольких различных видах.

Ответы и указания

Задача 1. Какие предположения вы можете сделать, наблюдая:

а) произведения двух соседних натуральных чисел;

б) суммы двух соседних натуральных чисел;

в) суммы трех последовательных натуральных чисел;

г) суммы трех нечетных чисел;

д) последние цифры в десятичной записи чисел при натуральных ;

е) https://pandia.ru/text/80/293/images/image011_0.gif" width="9 height=20" height="20"> число частей, на которые плоскость разбивается https://pandia.ru/text/80/293/images/image014_1.gif" width="17" height="15"> прямых попарно параллельны и пересекают .gif" width="13 height=20" height="20"> число частей, на которые плоскость разбивается https://pandia.ru/text/80/293/images/image011_0.gif" height="20 src="> могут получаться только четыре цифры:

0, 1, 5, 6; е)https://pandia.ru/text/80/293/images/image011_0.gif" height="20 src=">.gif" width="13" height="20 src=">.gif" width="13" height="15">-угольника равна ;

б) любые два прямоугольных равнобедренных треугольника подобны;

в) равенство выполняется для любых целых чисел и ;

Работа учителя над теоремой многоэтапна. Выделим основные из этих этапов: 1)актуализация знаний, мотивация изучения теоремы; 2)формулировка теоремы и усвоение ее содержания; 3) доказательство теоремы; 4) закрепление и применение теоремы

Заметим, что в каждом конкретном случае учитель сам решает, какие этапы с какой полнотой использовать, а без каких можно обойтись. Это зависит от особенностей класса, предыдущего опыта учителя, сложности теоремы для восприятия и др.

1-ый этап – актуализация знаний (опорное повторение) и мотивация изучения теоремы.

Технология организации опорного повторения: учитель

– разбивает доказательство на максимальное число шагов;

– вычленяет все математические факты, на которые опирается доказательство;

– анализирует, все ли они и в какой степени известны учащимся;

– организует опорное повторение в форме беседы, фронтального опроса, системы подготовительных задач (чаще всего “на готовых чертежах” – см. далее).

Мотивация изучения теоремы чаще всего связывается учителем с решением практической задачи, в которой необходим факт, отраженный в теореме (см. пример на с. 30).

2-й этап – введение формулировки теоремы и усвоение ее содержания .

Опишем два основных способа введения формулировки теоремы.

1-й способ. Учитель сам формулирует теорему с предварительной мотивировкой либо без нее.

Спешить с формулировкой не следует. Только в том случае, если она проста, доходчива, можно начинать с формулировки. Если формулировка не отличается простотой, то учитель прежде всего вычерчивает фигуру, выясняет и записывает на доске условие, заключение теоремы и только после этого формулирует ее полностью.

Преимущества способа – краткость, четкость, экономия времени; недостаток – возможен формализм, догматизм.

2-й способ. Учащиеся подготавливаются к самостоятельному формулированию теоремы.

В планиметрии для этого часто используют упражнения на построение и измерение соответствующих фигур.

Пример . Для самостоятельного открытия учащимися теоремы о хордах окружности учитель предлагает следующие вопросы и задания:

– Проведите в окружности две неравные хорды.

– Установите на глаз, какая из них ближе к центру.

– Сформулируйте свой вывод.

Преимущества способа – развитие творческих способностей учеников, повышение интереса к изучению геометрии; недостатки – большие затраты времени, возможное распыление внимание на несущественные детали.

После того, как теорема сформулирована, работаем над уточнением: оговариваем терминологию, выделяем условие и заключение теоремы. Параллельно выполняется краткая запись данных и того, что требуется доказать; строится чертеж.

Требования к чертежу:

– должен быть изображен общий, а не частный случай;

– размеры чертежа должны быть оптимальны;

– данные и искомые выделяются на чертеже цветом, используются специальные метки и символы для обозначения.

3-й этап – доказательство теоремы .

Ранее (см. 3. 2) мы охарактеризовали основные логические и математические методы доказательства теорем.

Учебник во много определяет выбор метода доказательства: логического (прямое или косвенное, аналитическое, синтетическое или метод от противного) и математического (метод геометрических преобразований или метод равенства или подобия треугольников).

Учитель должен хорошо разбираться в структуре всех видов доказательства, уметь перевести синтетическое доказательство в аналитическое и наоборот ; осознанно выбрать аналитический или синтетический путь рассуждений на уроке (в зависимости от возраста и уровня подготовки учащихся, профиля класса, возможных затрат времени и др.).

Учащиеся должны понимать, что процесс доказательства заключается в построении последовательной цепочки рассуждений, обоснованных с помощью уже известных математических фактов. Заключение – последнее ее звено.

Как мы знаем, каждый шаг этой цепочки – силлогизм. В школе нет возможности, да и необходимости вводить термины “силлогизм”, “большая посылка”, “меньшая посылка”. Обычно в обучении геометрии в основной школе пользуются терминами “шаг”, “этап”: на каждом шаге доказательства указывается утверждение и его обоснование.

На первых порах для понимания структуры доказательства, после того, как оно найдено, полезно оформление его в виде двух колонок, в одной из которых – утверждения, в другой – обоснования.

Пример . Признак параллельности прямых.

Теорема: Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Наибольшая трудность – усвоение логики доказательства. Большую помощь тут могут оказать специальные карточки, которые могут применяться в качестве самостоятельной работы, домашнего задания, задания для индивидуального опроса и др. 1

Техника их изготовления проста: опуская некоторые пункты в колонках “утверждение”, “обоснование”, получаем один из вариантов индивидуальной карточки, который может быть использован как лист с печатной основой (ученик вписывает недостающие фрагменты доказательства).

Методика использования карточек: выдается карточка, предлагается заполнить пустые места; разным группам учащихся предлагаются карточки с различной насыщенностью текста, осуществляя таким образом индивидуализацию обучения математике.

Для подготовки учащихся к изучению доказательства теоремы многие учителя пользуются приемом составления плана доказательства . Обычно выделяется два этапа.

1 подход . Дается готовый план доказательства новой теоремы, учащимся предлагается самим доказать ее с помощью плана.

Пример. К теореме «Если в четырехугольнике противоположные стороны попарно равны, то он является параллелограммом» предлагается такой план:

1. Провести диагональ

2. Доказать равенство полученных треугольников

3. Доказать параллельность противоположных сторон четырехугольника

4. Сделать вывод. 

План демонстрируется классу, например, на экране с помощью интерактивной доски, мультимедиапроектора или кодоскопа. Такую новую форму задания учащиеся воспринимают с исключительным интересом. Как только план появляется на экране, они затихают – думают. Очень многие изъявляют затем желание отвечать. Чем объяснить такой повышенный интерес?

Во-первых, план разбивает доказательство теоремы на ряд простых, элементарных шагов, которые учащиеся уже могут выполнить. Если они еще не научились их выполнению, то план давать не стоит.

Во-вторых, учащиеся чувствуют, что с помощью плана они смогут доказать новую теорему. Не слушать и запоминать, а самостоятельно доказать. Это весьма импонирует им.

В-третьих, план позволяет охватить все доказательство в целом, добиться полноты понимания. Следовательно, ослабляется отрицательное влияние, когда установка на запоминание затрудняет понимание. Это приводит к уверенности, возрастает желание работать.

2-й подход . Учащихся учат составлять план уже доказанной теоремы. Сначала эта работа выполняется коллективно, а затем самостоятельно. Причем, здесь учителю приходится неоднократно показывать образцы составления плана. Учащиеся свободно воспринимают готовый план, но не сразу у них появляются умения и навыки составления плана. Очень хорошие результаты получаются в тех случаях, когда для доказательства нескольких теорем дается один общий план. Такие теоремы, объединенные общей идеей, усваиваются особенно продуктивно.

Как мы уже говорили, в учебниках планиметрии представлены краткие синтетические доказательства теорем. Учитель должен систематически учить учащихся:

1) конструировать доказательства из шагов;

2) превращать сокращенные книжные доказательства в развернутые цепочки шагов с указанием обоснований;

3) оформлять полные записи доказательства отдельных теорем.

Приведем пример полной записи доказательства теоремы по шагам.

Пример . Полное доказательство признака параллельности прямых (формулировка и краткая запись доказательства даны на предыдущей странице).

Пусть при пересечении прямых а и в секущей с имеем углы, например, 2 и 3 – вертикальные, 1 и 3 – накрест лежащие.

1. Так как 3 и 2 – вертикальные углы, то 3 = 2 (вертикальные углы равны).

2. Так как 1 = 2 и 3 = 2, то 1 = 3 (если правые части в верных равенствах равны, то равны их левые части).

3. Так как 1 и 3 – накрест лежащие углы при пересечении прямых а и в секущей с и 1 = 3, то а в (если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны).

Теорема доказана .

В процессе доказательства необходимо полностью использовать условие теоремы. Один из путей – обсуждение, на каких этапах и как применена та или другая часть условия, все ли они использованы при доказательстве.

Для обеспечения усвоения доказательства широко применяется прием двукратного доказательства : сначала обсуждается только идея, план; доказательство излагается фрагментарно. После этого доказательство излагается полностью, со всеми тонкостями и нюансами.

В опыте В.Ф. Шаталова используется сверхмногократное повторение доказательства, причем, часто на уровне идеи, плана.

4-й этап – закрепление и применение теоремы

Этап закрепления теоремы предполагает работу по выявлению, поняты ли сущность самой теоремы, идея, метод доказательства и отдельные его шаги. Приемы закрепления могут быть таковы:

– в процессе беседы с учащимися еще раз выделить основную идею, метод и шаги доказательства;

– предложить объяснить отдельные шаги доказательства;

– перечислить все аксиомы, теоремы и определения, которые используются в доказательстве;

– выяснить, где используется то или иное условие, все ли они оказались использованными;

– нет ли других способов доказательства;

– при закреплении полезно варьировать обозначения на чертеже, а также сам чертеж и т.п.

Применение теоремы организуется в процессе решения задач, в которых она используется. Нужно иметь в виду, что не всегда учебник предлагает систему задач на применение конкретной теоремы, чаще даются отдельные задачи, которые опытный учитель может дополнять. Применяются теоремы и при доказательстве других теорем последующего курса планиметрии и стереометрии.

Не только каждый школьник, но и каждый уважающий себя образованный человек должен знать, что такое теорема и доказательство теорем. Может, такие понятия и не встретятся в реальной жизни, но структурировать многие знания, а также делать умозаключения они точно помогут. Именно поэтому мы и рассмотрим в этой статье способы доказательства теорем, а также ознакомимся со столь знаменитой теоремой Пифагора.

Что же такое теорема

Если рассматривать школьный курс математики, то очень часто в нем встречаются такие научные термины, как теорема, аксиома, определение и доказательство. Для того чтобы ориентироваться в программе, нужно ознакомиться с каждым из этих определений. Сейчас же мы рассмотрим, что такое теорема и доказательство теорем.

Итак, теорема - это некое утверждение, которое требует доказательства. Рассматривать данное понятие нужно параллельно с аксиомой, так как последняя доказательства не требует. Ее определение уже является истинным, поэтому воспринимается как должное.

Сфера применения теорем

Ошибочно думать, что теоремы применяются только в математике. На самом деле это далеко не так. Например, существует просто невероятное количество теорем в физике, позволяющих подробно и со всех сторон рассмотреть некоторые явления и понятия. Сюда можно отнести теоремы Ампера, Штейнера и многие другие. Доказательства таких теорем позволяют неплохо разобраться в моментах инерции, статике, динамике, и во многих других понятиях физики.

Использование теорем в математике

Тяжело представить себе такую науку, как математика, без теорем и доказательств. Например, доказательства теорем треугольника позволяют подробно изучить все свойства фигуры. Ведь очень важно разобраться в свойствах равнобедренного треугольника и во многих других вещах.

Доказательство теоремы площади позволяет понять, как проще всего вычислять площадь фигуры, опираясь на некоторые данные. Ведь, как известно, существует большое количество формул, описывающих, как можно найти площадь треугольника. Но перед тем как их использовать, очень важно доказать, что это возможно и рационально в конкретном случае.

Как доказывать теоремы

Каждый школьник должен знать, что такое теорема, и доказательство теорем. На самом деле доказать какое-либо утверждение не так-то просто. Для этого нужно оперировать многими данными и уметь делать логические выводы. Конечно, если вы неплохо владеете информацией по определенной научной дисциплине, то доказать теорему для вас не составит особого труда. Главное - выполнять процедуру доказательства в определенной логической последовательности.

Для того чтобы научиться доказывать теоремы по таким научным дисциплинам, как геометрия и алгебра, нужно иметь неплохой багаж знаний, а также знать сам алгоритм доказательства. Если вы освоите такую процедуру, то решать математические задачи впоследствии для вас не составит особого труда.

Что нужно знать о доказательстве теорем

Что такое теорема и доказательства теорем? Это вопрос, который волнует многих людей в современном обществе. Очень важно научиться доказывать математические теоремы, это поможет вам в будущем строить логические цепочки и приходить к определенному выводу.

Итак, для того чтобы доказывать теорему правильно, очень важно сделать правильный рисунок. На нем отобразите все данные, которые были указаны в условии. Также очень важно записать всю информацию, которая предоставлялась в задаче. Это поможет вам правильно проанализировать задание и понять, какие именно величины в нем даны. И только после проведения таких процедур можно приступать к самому доказательству. Для этого вам нужно логически выстроить цепочку мыслей, используя другие теоремы, аксиомы или определения. Итогом доказательства должен быть результат, истинность которого не подлежит сомнению.

Основные способы доказательства теорем

В школьном курсе математики существует два способа, как доказать теорему. Чаще всего в задачах используют прямой метод, а также метод доказательства от противного. В первом случае просто анализируют имеющиеся данные и, опираясь на них, делают соответственные выводы. Также очень часто используется и метод от противного. В этом случае мы предполагаем противоположное утверждение и доказываем, что оно неверно. На основе этого мы получаем противоположный результат и говорим о том, что наше суждение было неверным, а значит, указанная в условии информация является правильной.

На самом деле многие математические задачи могут иметь несколько способов решения. Например, теорема Ферма доказательств имеет несколько. Конечно, некоторые рассматриваются только одним способом, но, например, в теореме Пифагора можно рассмотреть сразу несколько из них.

Что представляет собой теорема Пифагора

Конечно, каждый школьник знает о том, что теорема Пифагора касается именно прямоугольного треугольника. И звучит она так: «Квадрат гипотенузы равен сумме квадратов катетов». Несмотря на название данной теоремы, открыта она была не самим Пифагором, а еще задолго до него. Существует несколько способов доказательства данного утверждения, и мы рассмотрим некоторые из них.

Согласно научным данным, в самом начале рассматривался равносторонний прямоугольный треугольник. Затем строились квадраты на всех его сторонах. Квадрат, построенный на гипотенузе, будет состоять из четырех равных между собой треугольников. В то время как фигуры, построенные на катетах, будут состоять только из двух таких же треугольников. Такое доказательство теоремы Пифагора является самым простым.

Рассмотрим еще одно доказательство данной теоремы. В нем нужно использовать знания не только из геометрии, но также и из алгебры. Для того чтобы доказать данную теорему этим способом, нам нужно построить четыре аналогичных прямоугольных треугольника, и подписать их стороны как а, в и с.

Построить эти треугольники нужно таким образом, чтобы в результате у нас получилось два квадрата. Внешний из них будет иметь стороны (а+в), а вот внутренний - с. Для того чтобы найти площадь внутреннего квадрата, нам нужно найти произведение с*с. А вот для того чтобы найти площадь большого квадрата, нужно сложить площади маленьких квадратов и добавить площади полученных прямоугольных треугольников. Теперь, произведя некоторые алгебраические операции, можно получить такую формулу:

а 2 +в 2 =с 2

На самом деле существует огромное количество методов доказательства теорем. Перпендикуляр, треугольник, квадрат или любые другие фигуры и их свойства можно рассмотреть с помощью применения различных теорем и доказательств. Теорема Пифагора только является тому подтверждением.

Вместо заключения

Очень важно уметь формулировать теоремы, а также правильно их доказывать. Конечно, такая процедура является достаточно сложной, так как для ее осуществления необходимо не только уметь оперировать большим количеством информации, но также и выстраивать логические цепочки. Математика - это очень интересная наука, которая не имеет ни конца, ни края.

Начните ее изучать, и вы не только повысите уровень своего интеллекта, но и получите огромное количество интересной информации. Займитесь своим образованием уже сегодня. Поняв основные принципы доказательств теорем, вы сможете проводить свое время с большой пользой.

Последние материалы раздела:

Чудеса Космоса: интересные факты о планетах Солнечной системы
Чудеса Космоса: интересные факты о планетах Солнечной системы

ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

Реферат: Школьный тур олимпиады по литературе Задания
Реферат: Школьный тур олимпиады по литературе Задания

Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....