Число которое делится только на себя. Простые числа

То, что существуют числа, которые не делятся ни на какое другое число, люди знали еще в древности. Последовательность простых чисел имеет примерно следующий вид:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 …

Доказательство того, что этих чисел бесконечно много, дал еще Евклид , живший в 300 г до н.э. Примерно в те же годы другой греческий математик, Эратосфен , придумал довольно-таки простой алгоритм получения простых чисел, суть которого была в последовательном вычеркивании чисел из таблицы. Те оставшиеся числа, которые ни на что не делились, и были простыми. Алгоритм называется «решето Эратосфена» и за счет своей простоты (в нем нет операций умножения или деления, только сложение) используется в компьютерной технике до сих пор.

Видимо, уже во время Эратосфена стало ясно, что какого-либо четкого критерия, является ли число простым, не существует — это можно проверить лишь экспериментально. Существуют различные способы для упрощения процесса (например, очевидно, что число не должно быть четным), но простой алгоритм проверки не найден до сих пор, и скорее всего найден не будет: чтобы узнать, простое число или нет, надо попытаться разделить его на все меньшие числа.

Подчиняются ли простые числа каким-либо законам? Да, и они довольно любопытны.

Так, например, французский математик Мерсенн еще в 16 веке обнаружил, что много простых чисел имеет вид 2^N — 1, эти числа названы числами Мерсенна. Еще незадолго до этого, в 1588 году, итальянский математик Катальди обнаружил простое число 2 19 — 1 = 524287 (по классификации Мерсена оно называется M19). Сегодня это число кажется весьма коротким, однако даже сейчас с калькулятором проверка его простоты заняла бы не один день, а для 16 века это было действительно огромной работой.

На 200 лет позже математик Эйлер нашел другое простое число 2 31 — 1 = 2147483647. Опять же, необходимый объем вычислений каждый может представить сам. Он же выдвинул гипотезу (названную позже «проблемой Эйлера», или «бинарной проблемой Гольдбаха»), суть которой проста: каждое чётное число, большее двух, можно представить в виде суммы двух простых чисел.

Например, можно взять 2 любых четных числа: 123456 и 888777888.

С помощью компьютера можно найти их сумму в виде двух простых чисел: 123456 = 61813 + 61643 и 888777888 = 444388979 + 444388909. Интересно здесь то, что точное доказательство этой теоремы не найдено до сих пор, хотя с помощью компьютеров она была проверена до чисел с 18 нулями.

Существует и другая теорема математика Пьера Ферма , открытая в 1640 году, которая говорит о том, что если простое число имеет вид 4*k+1, то оно может быть представлено в виде суммы квадратов других чисел. Так, например, в нашем примере простое число 444388909 = 4*111097227 + 1. И действительно, с помощью компьютера можно найти, что 444388909 = 19197*19197 + 8710*8710.

Теорема была доказана Эйлером лишь через 100 лет.

И наконец Бернхардом Риманом в 1859 году была выдвинута так называемая «Гипотеза Римана» о количестве распределения простых чисел, не превосходящих некоторое число. Эта гипотеза не доказана до сих пор, она входит в список семи «проблем тысячелетия», за решение каждой из которых Математический институт Клэя в Кембридже готов выплатить награду в один миллион долларов США.

Так что с простыми числами не все так просто. Есть и удивительные факты. Например, в 1883 г. русский математик И.М. Первушин из Пермского уезда доказал простоту числа 2 61 — 1 = 2305843009213693951 . Даже сейчас бытовые калькуляторы не могут работать со столь длинными числами, а на то время это была поистине гигантская работа, и как это было сделано, не очень ясно до сих пор. Хотя действительно существуют люди, обладающие уникальными способностями мозга — так например, известны аутисты, способные находить в уме (!) 8-значные простые числа. Как они это делают, непонятно.

Современность

Актуальны ли простые числа сегодня? Еще как! Простые числа являются основой современной криптографии, так что большинство людей пользуются ими каждый день, даже не задумываясь об этом. Любой процесс аутентификации, например, регистрация телефона в сети, банковские платежи и прочее, требуют криптографических алгоритмов.

Суть идеи тут крайне проста и лежит в основе алгоритма RSA , предложенного еще в 1975 году. Отправитель и получатель совместно выбирают так называемый «закрытый ключ», который хранится в надежном месте. Этот ключ представляет собой, как, наверное, читатели уже догадались, простое число. Вторая часть — «открытый ключ», тоже простое число, формируется отправителем и передается в виде произведения вместе с сообщением открытым текстом, его можно опубликовать даже в газете. Суть алгоритма в том, что не зная «закрытой части», получить исходный текст невозможно.

К примеру, если взять два простых числа 444388979 и 444388909, то «закрытым ключом» будет 444388979, а открыто будут передано произведение 197481533549433911 (444388979*444388909). Лишь зная вторую половинку, можно вычислить недостающее число и расшифровать им текст.

В чем тут хитрость? А в том, что произведение двух простых чисел вычислить несложно, а вот обратной операции не существует — если не знать первой части, то такая процедура может быть выполнена лишь перебором. И если взять действительно большие простые числа (например, в 2000 символов длиной), то декодирование их произведения займет несколько лет даже на современном компьютере (к тому времени сообщение станет давно неактуальным).

Гениальность данной схемы в том, что в самом алгоритме нет ничего секретного — он открыт и все данные лежат на поверхности (и алгоритм, и таблицы больших простых чисел известны). Сам шифр вместе с открытым ключом можно передавать как угодно, в любом открытом виде. Но не зная секретной части ключа, которую выбрал отправитель, зашифрованный текст мы не получим. Для примера можно сказать, что описание алгоритма RSA было напечатано в журнале в 1977 году, там же был приведен пример шифра. Лишь в 1993 году при помощи распределенных вычислений на компьютерах 600 добровольцев, был получен правильный ответ.

Так что простые числа оказались вовсе не столь просты, и их история на этом явно не заканчивается.

Перебор делителей. По определению число n является простым лишь в том случае, если оно не делится без остатка на 2 и другие целые числа, кроме 1 и самого себя. Приведенная выше формула позволяет удалить ненужные шаги и сэкономить время: например, после проверки того, делится ли число на 3, нет необходимости проверять, делится ли оно на 9.

  • Функция floor(x) округляет число x до ближайшего целого числа, которое меньше или равно x.

Узнайте о модульной арифметике. Операция "x mod y" (mod является сокращением латинского слова "modulo", то есть “модуль”) означает "поделить x на y и найти остаток". Иными словами, в модульной арифметике по достижении определенной величины, которую называют модулем , числа вновь "превращаются" в ноль. Например, часы отсчитывают время с модулем 12: они показывают 10, 11 и 12 часов, а затем возвращаются к 1.

  • Узнайте о подводных камнях малой теоремы Ферма. Все числа, для которых не выполняются условия теста, являются составными, однако остальные числа лишь вероятно относятся к простым. Если вы хотите избежать неверных результатов, поищите n в списке "чисел Кармайкла" (составных чисел, которые удовлетворяют данному тесту) и "псевдопростых чисел Ферма" (эти числа соответствуют условиям теста лишь при некоторых значениях a ).

    Если удобно, используйте тест Миллера-Рабина. Хотя данный метод довольно громоздок при вычислениях вручную, он часто используется в компьютерных программах. Он обеспечивает приемлемую скорость и дает меньше ошибок, чем метод Ферма. Составное число не будет принято за простое, если провести расчеты для более ¼ значений a . Если вы случайным способом выберете различные значения a и для всех них тест даст положительный результат, можно с достаточно высокой долей уверенности считать, что n является простым числом.

  • Для больших чисел используйте модульную арифметику. Если у вас под рукой нет калькулятора с функцией mod или калькулятор не рассчитан на операции с такими большими числами, используйте свойства степеней и модульную арифметику, чтобы облегчить вычисления. Ниже приведен пример для 3 50 {\displaystyle 3^{50}} mod 50:

    • Перепишите выражение в более удобном виде: mod 50. При расчетах вручную могут понадобиться дальнейшие упрощения.
    • (3 25 ∗ 3 25) {\displaystyle (3^{25}*3^{25})} mod 50 = mod 50 mod 50) mod 50. Здесь мы учли свойство модульного умножения.
    • 3 25 {\displaystyle 3^{25}} mod 50 = 43.
    • (3 25 {\displaystyle (3^{25}} mod 50 ∗ 3 25 {\displaystyle *3^{25}} mod 50) mod 50 = (43 ∗ 43) {\displaystyle (43*43)} mod 50.
    • = 1849 {\displaystyle =1849} mod 50.
    • = 49 {\displaystyle =49} .
    • Думаю, что может. это сумма чисел 2 и 3. 2+3=5. 5 то же простое число. Оно делиться на себя и 1.

      Как бы это не показалось странным, но два простых числа в сумме вполне могут дать еще одно простое число. Казалось бы при сложении двух нечетных чисел должно получиться четное и таким образом уже не нечетное, но кто сказал, что простое число обязательно нечетное? Не будем забывать, что к простым числам относится и число 2, которое делится только на себя и единицу. И тогда оказывается, что если между двумя соседними простыми числами разница 2, то прибавляя к меньшему из них простому числу другое простое число 2 мы получаем большее простое число этой пары. Примеры перед вами:

      Есть и другие пары, которые несложно найти в таблице простых чисел по описанному способу.

      Подобрать простые числа можно по таблице ниже. Зная определение, что называется простым числом, можно подобрать сумму простых чисел, которые дадут тоже простое число. То есть конечная цифра (простое число)будет делиться на себя и на цифру один. Например, два плюс три равно пять. Эти три цифры стоят первыми в таблице простых чисел.

      Сумма двух простых чисел может быть простым числом только при одном условии: если одно слагаемое является простым числом большим двух, а другое равно, обязательно, цифре два.

      Конечно, ответ на этот вопрос был бы отрицательным, если бы не вездесущая двойка, которая как оказывается, тоже является простым числом.А ведь она подпадает под правило простых чисел:делится на 1 и на само себя.И вот из-за не и ответ на вопрос становится положительным.Множество простых чисел и двойки дат тоже простое число.Иначе бы все остальные в сумме давали бы число чтное, что является (кроме 2) числами не простыми.О так с 2- получаем целый ряд тоже простых чисел.

      Начиная с 2+3=5.

      И как видно из приведнных в литературе таблиц простых чисел, такую сумму с помощью двойки и простого числа можно получить не всегда, а только идт подчинение некоторому закону.

      Простым числом считается число, которое возможно разделить только на себя и на единицу. В поисках простых чисел сразу обращаем взгляд на нечетные числа, но не все из них являются простыми. Единственным простым четным числом является два.

      Итак, используя таблицу простых чисел можно попробовать составить примеры:

      2+17=19 и т.д.

      Как мы видим все простые числа нечетные, а для получения в сумме нечетного числа слагаемые должны быть четное + нечетное. Получается, что для получения в сумме двух простых чисел простого числа надо прибавить простое число к 2.

      Для начала нужно вспомнить, что простые числа это такие числа, которые могут делиться только на единицу и на саму себя без остатка. Если число имеет кроме этих двух делителей еще и другие делители, которые не оставляют остатка, то это уже не простое число. Цифра 2 тоже простое число. Сумма двух простых чисел конечно же может быть простым числом. Взять даже 2 + 3 будет 5 - простое число.

      Перед тем, как на такой вопрос ответить, нужно подумать, а не сходу отвечать. Так как многие забывают о том, что есть одно чтное число, при это оно является простым. Это число 2. И благодаря ему ответ на вопрос автора: да!, такое вполне возможно, причм примеров такого довольно много. К примеру 2+3=5, 311+2=313.

      К простым числам относятся те, которые делятся на себя и на единицу.

      прилагаю таблицу с простыми числами до числа 997

      все эти числа делятся только на два числа - на себя и на единицу, третьего делителя нет.

      к примеру число 9 уже не простое, так как имеет еще делители помимо 1 и 9, это - 3

      теперь находим сумму двух простых чисел, чтобы в итоге было тоже простое, с таблицей это сделать будет проще:

      Из школьного курса математики мы знаем. что сумма двух простых чисел также может быть простым числом. Например 5+2=7 и т.п. Простым же называется то число, которое может делиться на само себя или же ни цифру один. То есть таких чисел довольно много и всоей сумме они также могут давать простое число.

      Да, может. Если чтко знать, что именно представляет собой простое число, то это достаточно легко можно определить. Количество делителей простого числа строго ограничено - это только единица и само это число, т.е., чтобы ответить на этот вопрос, достаточно будет взглянуть на таблицу простых чисел - судя по всему, одним из слагаемых в данной сумме обязательно должно быть число 2. Пример: 41 + 2 = 43.

      Для начала вспомним, что такое простое число - это такое число, которое можно поделить на такое же и на единицу. А теперь отвечаем на вопрос - да, может. Но только в одном случае, когда одно слагаемое -любое простое число, а другое слагаемое - 2.

      Если учесть то, что простое число-которое можно поделить на само себя, на такое же и на 1.

      То-да, может.Простой пример 2+3=5 или 2+5=7

      и 5 и 7 делятся на самих себя, и на 1.

      Все очень просто, если вспомнить школьные годы.

    Еще со времен древних греков простые числа были очень привлекательны для математиков. Они постоянно ищут разные способы их нахождения, но самым эффективным способом «поимки» простых чисел, считается способ, найденный александрийским астрономом и математиком Эратосфеном. Этому способу уже около 2000 лет.

    Какие числа являются простыми

    Как же определить простое число? Многие числа делятся без остатка на другие числа. Число, на которое делится целое число, мы называем делителем.

    В данном случае мы говорим о делении без остатка. Например, число 36 можно разделить на 1, 2, 3, 4, 6, 9, 12, 18 и на само себя, то есть на 36. Значит, 36 имеет 9 делителей. Число 23 делится только на себя и на 1, то есть это число имеет 2 делителя – это число является простым.

    Числа, которые имеют только два делителя, называются простыми числами. То есть, число, которое делится без остатка только на себя и на единицу, называется простым.

    Для математиков открытие закономерностей в ряду чисел, которые потом можно использовать для построения гипотез, является очень приятным событием. Но простые числа отказываются подчиняться хоть какой-нибудь закономерности. Но есть способ определения простых чисел. Этот способ найден Эратосфеном, он называется «решетом Эратосфена». Давайте рассмотрим вариант такого «решета», представленный в виде таблицы чисел до 48 и поймем, как она составлена.

    В этой таблице все простые числа меньше 48 отмечены оранжевым цветом . Найдены они так:

    • 1 – имеет единственный делитель и поэтому не является простым числом;
    • 2 – наименьшее простое число и единственное четное, так как все остальные четные числа делятся на 2, то есть имеют не меньше 3 делителей, эти числа сведены в фиолетовую колонку ;
    • 3 – простое число, имеет два делителя, все остальные числа, которые делятся на 3, исключаются – эти числа сведены в желтую колонку . Колонка, отмеченная и фиолетовым , и желтым , содержит числа делящиеся и на 2 и на 3;
    • 5 – простое число, все числа, которые делятся на 5, исключаются – эти числа обведены зеленым овалом ;
    • 7 – простое число, все числа, которые делятся на 7, обведены красным овалом – они не являются простыми;

    Все числа не являющиеся простыми отмечены синим цветом . Далее эту таблицу можно составить самому по образу и подобию.

    • Перевод

    Свойства простых чисел впервые начали изучать математики Древней Греции. Математики пифагорейской школы (500 - 300 до н.э.) в первую очередь интересовались мистическими и нумерологическими свойствами простых чисел. Они первыми пришли к идеям о совершенных и дружественных числах.

    У совершенного числа сумма его собственных делителей равна ему самому. Например, собственные делители числа 6: 1, 2 и 3. 1 + 2 + 3 = 6. У числа 28 делители - это 1, 2, 4, 7 и 14. При этом, 1 + 2 + 4 + 7 + 14 = 28.

    Числа называются дружественными, если сумма собственных делителей одного числа равна другому, и наоборот – например, 220 и 284. Можно сказать, что совершенное число является дружественным для самого себя.

    Ко времени появления работы Евклида «Начала» в 300 году до н.э. уже было доказано несколько важных фактов касательно простых чисел. В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. Это, кстати, один из первых примеров использования доказательства от противного. Также он доказывает Основную теорему арифметики – каждое целое число можно представить единственным образом в виде произведения простых чисел.

    Также он показал, что если число 2 n -1 является простым, то число 2 n-1 * (2 n -1) будет совершенным. Другой математик, Эйлер, в 1747 году сумел показать, что все чётные совершенные числа можно записать в таком виде. По сей день неизвестно, существуют ли нечётные совершенные числа.

    В году 200 году до н.э. грек Эратосфен придумал алгоритм для поиска простых чисел под названием «Решето Эратосфена».

    А затем случился большой перерыв в истории исследования простых чисел, связанный со Средними веками.

    Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов.

    Он разработал новый метод факторизации больших чисел, и продемонстрировал его на числе 2027651281 = 44021 × 46061. Также он доказал Малую теорему Ферма: если p – простое число, то для любого целого a будет верно a p = a modulo p.

    Это утверждение доказывает половину того, что было известно как «китайская гипотеза», и датируется 2000 годами ранее: целое n является простым тогда и только тогда, если 2 n -2 делится на n. Вторая часть гипотезы оказалась ложной – к примеру, 2 341 - 2 делится на 341, хотя число 341 составное: 341 = 31 × 11.

    Малая теорема Ферма послужила основой множества других результатов в теории чисел и методов проверки чисел на принадлежность к простым – многие из которых используются и по сей день.

    Ферма много переписывался со своими современниками, в особенности с монахом по имени Марен Мерсенн. В одном из писем он высказал гипотезу о том, что числа вида 2 n +1 всегда будут простыми, если n является степенью двойки. Он проверил это для n = 1, 2, 4, 8 и 16, и был уверен, что в случае, когда n не является степенью двойки, число не обязательно получалось простым. Эти числа называются числами Ферма, и лишь через 100 лет Эйлер показал, что следующее число, 2 32 + 1 = 4294967297 делится на 641, и следовательно, не является простым.

    Числа вида 2 n - 1 также служили предметом исследований, поскольку легко показать, что если n – составное, то и само число тоже составное. Эти числа называют числами Мерсенна, поскольку он активно их изучал.

    Но не все числа вида 2 n - 1, где n – простое, являются простыми. К примеру, 2 11 - 1 = 2047 = 23 * 89. Впервые это обнаружили в 1536 году.

    Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M 19 , было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M 31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M 127 - простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров.

    В 1952 была доказана простота чисел M 521 , M 607 , M 1279 , M 2203 и M 2281 .

    К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M 25964951 , состоит из 7816230 цифр.

    Работа Эйлера оказала огромное влияние на теорию чисел, в том числе и простых. Он расширил Малую теорему Ферма и ввёл φ-функцию. Факторизовал 5-е число Ферма 2 32 +1, нашёл 60 пар дружественных чисел, и сформулировал (но не смог доказать) квадратичный закон взаимности.

    Он первым ввёл методы математического анализа и разработал аналитическую теорию чисел. Он доказал, что не только гармонический ряд ∑ (1/n), но и ряд вида

    1/2 + 1/3 + 1/5 + 1/7 + 1/11 +…

    Получаемый суммой величин, обратных к простым числам, также расходится. Сумма n членов гармонического ряда растёт примерно как log(n), а второй ряд расходится медленнее, как log[ log(n) ]. Это значит, что, например, сумма обратных величин ко всем найденным на сегодняшний день простым числам даст всего 4, хотя ряд всё равно расходится.

    На первый взгляд кажется, что простые числа распределены среди целых довольно случайно. К примеру, среди 100 чисел, идущих прямо перед 10000000, встречается 9 простых, а среди 100 чисел, идущих сразу после этого значения – всего 2. Но на больших отрезках простые числа распределены достаточно равномерно. Лежандр и Гаусс занимались вопросами их распределения. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как

    π(n) = n/(log(n) - 1.08366)

    А Гаусс – как логарифмический интеграл

    π(n) = ∫ 1/log(t) dt

    С промежутком интегрирования от 2 до n.

    Утверждение о плотности простых чисел 1/log(n) известно как Теорема о распределении простых чисел. Её пытались доказать в течение всего 19 века, а прогресса достигли Чебышёв и Риман. Они связали её с гипотезой Римана – по сию пору не доказанной гипотезой о распределении нулей дзета-функции Римана. Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном в 1896 году.

    В теории простых чисел есть ещё множество нерешённых вопросов, некоторым из которых уже многие сотни лет:

    • гипотеза о простых числах-близнецах – о бесконечном количестве пар простых чисел, отличающихся друг от друга на 2
    • гипотеза Гольдбаха: любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел
    • бесконечно ли количество простых чисел вида n 2 + 1 ?
    • всегда ли можно найти простое число между n 2 and (n + 1) 2 ? (факт, что между n и 2n всегда есть простое число, было доказан Чебышёвым)
    • бесконечно ли число простых чисел Ферма? есть ли вообще простые числа Ферма после 4-го?
    • существует ли арифметическая прогрессия из последовательных простых чисел для любой заданной длины? например, для длины 4: 251, 257, 263, 269. Максимальная из найденных длина равна 26 .
    • бесконечно ли число наборов из трёх последовательных простых чисел в арифметической прогрессии?
    • n 2 - n + 41 – простое число для 0 ≤ n ≤ 40. Бесконечно ли количество таких простых чисел? Тот же вопрос для формулы n 2 - 79 n + 1601. Эти числа простые для 0 ≤ n ≤ 79.
    • бесконечно ли количество простых чисел вида n# + 1? (n# - результат перемножения всех простых чисел, меньших n)
    • бесконечно ли количество простых чисел вида n# -1 ?
    • бесконечно ли количество простых чисел вида n! + 1?
    • бесконечно ли количество простых чисел вида n! – 1?
    • если p – простое, всегда ли 2 p -1 не содержит среди множителей квадратов простых чисел
    • содержит ли последовательность Фибоначчи бесконечное количество простых чисел?

    Самые большие близнецы среди простых чисел – это 2003663613 × 2 195000 ± 1. Они состоят из 58711 цифр, и были найдены в 2007 году.

    Самое большое факториальное простое число (вида n! ± 1) – это 147855! - 1. Оно состоит из 142891 цифр и было найдено в 2002.

    Наибольшее праймориальное простое число (число вида n# ± 1) – это 1098133# + 1.

    Последние материалы раздела:

    Анализ произведения «Бежин луг» (И
    Анализ произведения «Бежин луг» (И

    Часто понять значение художественного произведения помогает отзыв. «Бежин луг» - это произведение, которое входит в знаменитый цикл "Записок...

    Роль Троцкого в Октябрьской революции и становлении советской власти
    Роль Троцкого в Октябрьской революции и становлении советской власти

    «Лента.ру»: Когда началась Февральская революция, Троцкий находился в США. Чем он там занимался и на какие деньги жил?Гусев: К началу Первой...

    Ол взмш при мгу: отделение математики Заочные математические школы для школьников
    Ол взмш при мгу: отделение математики Заочные математические школы для школьников

    Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...