Теория магнетизма. Квантовая теория магнетизма

Книга американского ученого, перевод первого издания которой был опубликован в 1972 г., написана фактически заново и отражает все важнейшие достижения физики магнетизма за последние 12 лет. Используется единый подход, основанный на рассмотрении обобщенной восприимчивости.
Рассчитана на научных работников, а также аспирантов и студентов, занимающихся проблемами магнетизма и физики твердого тела.

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ.
Всякую систему можно характеризовать ее откликом на внешнее воздействие. Например, пресловутый «черный ящик» в электронике характеризуется напряжением на выходе, когда на его входе задан ток. Величина, называемая передаточным импедансом, содержит всю информацию, необходимую для понимания работы черного ящика. Если известно, что именно заключено в черном ящике (например, если мы знаем детальную схему включения сопротивлений, диодов и т. д.), то можно теоретически установить, каким будет передаточный импеданс.

Точно так же если рассматривать кристалл как систему зарядов и токов, то его можно характеризовать функцией отклика. Нас здесь будет интересовать в основном отклик такой системы на магнитное поле. В этом случае «выходом» служит намагниченность, а функцией отклика - магнитная восприимчивость. Точно вычислить магнитную восприимчивость фактически невозможно, поскольку система содержит примерно 1023 частиц. Поэтому обычно исходят из анализа измерений магнитной восприимчивости, по поведению которой устанавливают важнейшие процессы, протекающие в системе, а затем уже анализируют систему с учетом таких процессов. Для реализации такой программы мы должны знать, какие процессы в системе возможны и как они влияют на восприимчивость.

ОГЛАВЛЕНИЕ
От редакторов перевода
Предисловие ко второму изданию
ГЛАВА 1. МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ
1.1. Магнитный момент
1.2. Намагниченность
1.3. Обобщенная восприимчивость
1.3.1. Соотношения Крамерса - Кронига
1.3.2. Флуктуационно-диссипационная теорема
1.3.3. Соотношение Онсагера
1.4. Вторичное квантование
ГЛАВА 2. МАГНИТНЫЙ ГАМИЛЬТОНИАН
2.1. Уравнение Дирака
2.2. Источники поля
2.2.1. Однородное внешнее поле
2.2.2. Электрическое квадрупольное поле
2.2.3. Магнитное дипольное (сверхтонкое) поле
2.2.4. Другие электроны того же самого иона
2.2.5. Кристаллическое электрическое поле
2.2.6. Диполь-дипольное взаимодействие
2.2.7. Прямой обмен
2.2.8. Суперобмен
2.3. Спиновый гамильтониан
2.3.1. Ионы переходных металлов
2.3.2. Редкоземельные ионы
2.3.3. Полупроводники
ГЛАВА 3. СТАТИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ НЕВЗАИМОДЕЙСТВУЮЩИХ СИСТЕМ
3.1. Локализованные моменты
3.1.1. Диамагнетизм
3.1.2. Парамагнетизм ионов переходных металлов
3.1.3. Парамагнетизм редкоземельных ионов
3.2. Металлы
3.2.1. Диамагнетизм Ландау
3.2.2. Эффект де Гааза - Ван Альфена
3.2.3. Квантовый эффект Холла
3.2.4. Парамагнетизм Паули
3.3. Измерение восприимчивости
ГЛАВА 4. СТАТИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ ВЗАИМОДЕЙСТВУЮЩИХ СИСТЕМ
4.1. Локализованные моменты
4.1.1. Высокие температуры
4.1.2. Низкие температуры
4.1.3. Температуры вблизи Тс
4.1.4. Топология дальнего порядка
4.2. Металлы
4.2.1. Теория ферми-жидкости
4.2.2. Модель Стонера
4.2.3. Модель Хаббарда
ГЛАВА 5. ДИНАМИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ СЛАБО ВЗАИМОДЕЙСТВУЮЩИХ СИСТЕМ
5.1. Локализованные моменты
5.1.1. Уравнения Блоха
5.1.2. Форма резонансной линии
5.1.3. Измерение Т1
5.1.4. Вычисление Т1
5.2. Металлы
5.2.1. Парамагноны
5.2.2. Теория ферми-жидкости
5.3. Эффект Фарадея
ГЛАВА 6. ДИНАМИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ СИЛЬНО ВЗАИМОДЕЙСТВУЮЩИХ СИСТЕМ
6.1. Нарушенная симметрия
6.2. Диэлектрики
6.2.1. Теория спиновых волн
6.2.2. Магнитостатические моды
6.2.3. Солитоны
6.2.4. Тепловые магнонные эффекты
6.2.5. Параметрические возбуждения
6.2.6. Оптические процессы
6.2.7. Высокие температуры
6.3. Металлы
ГЛАВА 7. МАГНИТНЫЕ ПРИМЕСИ
7.1. Локальные колебания
7.2. Локальные моменты в металлах
7.2.1. Теория образования момента Андерсона
7.3. Эффект Кондо
7.4. Случайный обмен
7.4.1. РККИ-взаимодействие
7.4.2. Спиновые стекла
7.4.3. Миктомагнетизм
ГЛАВА 8. РАССЕЯНИЕ НЕЙТРОНОВ
8.1. Сечение рассеяния нейтронов
8.2. Ядерное рассеяние
8.2.1. Брэгговское рассеяние
8.2.2. Рассеяние на фононах
8.3. Магнитное рассеяние
8.3.1. Брэгговское рассеяние
8.3.2. Диффузное рассеяние
Литература
Предметный указатель.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Квантовая теория магнетизма, Уайт Р., 1985 - fileskachat.com, быстрое и бесплатное скачивание.

15:07 13/03/2018

👁 314

Мы привыкли к тому, что магнитные процессы происходят главным образом в маленьких, но важных деталях всяких технических устройств и связаны с тонкими квантово-механическими явлениями, а в статьях о них, прикидывающихся популярными, то и дело повторяется таинственное и малопонятное слово «спин». Но магнетизм бывает и в космосе, и там он выглядит совсем по-другому.

Астрономы установили, что очень многие небесные тела, например или наша - , являются гигантскими магнитами, причем размеры магнитного поля сравнимы с размерами самого небесного тела. Вещество, из которого состоит Солнце - солнечная плазма, - очень горячее, а межзвездный газ в Млечном Пути очень разреженный. Поэтому магнитное поле в них связано не с упорядочиванием спинов, как в ферромагнетиках, а с какими-то процессами, принадлежащими к области классической физики, которую, надеемся, еще проходят в средней школе.

Космические магнитные поля существенно сильнее привычных нам полей. Не стоит сравнивать непосредственно напряженности магнитного поля в DVD-плеере, сотовом телефоне и часах с полем Солнца или галактики. Для тел очень разного размера приходится выбирать соразмерные им масштабы. Нерадивый школьник прогулял занятия и, оправдываясь, говорит, что не смог дойти до школы потому, что магнитное поле около школы было слишком велико. Нетрудно предвидеть реакцию родителей… Однако для объяснения движений космических сред это объяснение вполне естественно - именно магнитное поле мешает выброшенному Солнцем облаку плазмы достичь поверхности Земли.

Магнитное поле Земли - единственный пример космического магнетизма, который можно наблюдать невооруженным глазом (рис. 1). Полярное сияние - это визуализация магнитного поля Земли заряженными частицами, подобная визуализации лазерного луча пылью в воздухе. Стрелка компаса показывает на север, потому что она сама - маленький ферромагнетик, ее свойства определяются теми самыми спинами. Но почему магнитом является сама Земля и почему ее магнитный полюс примерно совпадает с географическим?

На Земле есть месторождения железных руд, намагниченность которых кое-что вносит в геомагнитное поле, создает магнитные аномалии, например Курскую магнитную аномалию. Но они вносят небольшие искажения в общее (как говорят, главное) геомагнитное поле. Это поле формируется где-то в глубине Земли, а температура там достаточно высока для того, чтобы о ферромагнетиках не заходила и речь.

Какие процессы приводят к образованию магнитных полей небесных тел - , и галактик? Выбор невелик: мы в области классической физики, а она знает только один процесс, который в принципе может приводить к росту магнитного поля. Это - явление электромагнитной индукции. В школе рассказывают (а иногда и показывают), что при движении проводящей рамки в магнитном поле в ней начинает течь ток. Этот наведенный или индуцированный ток тоже создает магнитное поле. Может ли случиться так, что это наведенное поле сложится с исходным так, чтобы общее магнитное поле увеличилось? Почти век назад, в 1919 году, физик Джозеф Лармор понял, что именно индуцированный ток в глубинах Солнца - единственный шанс объяснить магнитное поле нашей звезды, не прибегая к фантастическим гипотезам о каких-то новых взаимодействиях (за такими гипотезами дело не стало, но все они не выдержали сопоставления с реальностью).

Короткая заметка Лармора (в ней была всего одна страница) оказалась первым шагом в изучении процесса самовозбуждения магнитного поля в движущихся проводящих средах. Начало XX века - время развития электричества, язык откликнулся популярностью новых слов, в том числе слова «динамо». Устройство, которое преобразует механическую работу в электрическую, назвали «динамо-машиной», а новый раздел физики - «теорией динамо». Именно так и принято было говорить долгие годы, так говорят и ныне - теория динамо.

Физика - наука экспериментальная: можно долго обсуждать модели физических процессов, которыми оперируют теоретики, но физики скоро начали говорить, что неплохо было бы подтвердить все эти домыслы экспериментально. А именно: надо подтвердить, что наведенное поле может сложиться с исходным. Этого подтверждения пришлось ждать почти век.

В чем проблема?

Трудность в экспериментальной проверке идеи динамо состоит вот в чем. Если нажать на выключатель и разорвать проводящий контур, по которому идет ток, свет погаснет, а заодно исчезнет магнитное поле, порожденное током. Энергия магнитного поля перейдет в тепло из-за омических потерь (и отчасти из-за излучения). Для того чтобы работало динамо, индукционный эффект должен побороть омические потери. Чтобы оценить относительную величину индукционных эффектов и омические потери, вводят так называемое безразмерное магнитное число Рейнольдса Rm = vL/νm. Числитель этой дроби содержит величины, с которыми связаны индукционные эффекты, - скорость движения рамки и ее размер, а знаменатель - коэффициент магнитной диффузии, который пропорционален удельному электрическому сопротивлению среды. Для того чтобы индукция победила омические потери, магнитное число Рейнольдса должно быть достаточно велико - расчеты показывают, что нужно достичь значения около 17.

Поиск возможной схемы динамо-эксперимента - прежде всего борьба за высокое магнитное число Рейнольдса. Возможности лабораторной физики здесь не слишком велики - движущихся хорошо проводящих сред не так много. Если мы хотим моделировать планетарные и космические эффекты, то речь не идет о твердых проводниках. В космосе твердые тела редкость, а те, что есть - твердые оболочки Земли, например, - заведомо не создают интересных индукционных эффектов. Проводящие газы - это плазма. Из нее в огромном большинстве состоят небесные тела. Не исключено, что в будущем нас ждут и лабораторные динамо-эксперименты с плазмой, но сейчас эти возможности еще в стадии обсуждения.

Среди жидкостей выбор тоже невелик. У электролитов проводимость плохая, остаются жидкие металлы. Ртуть дорогая, опасная, очень тяжелая и плохой проводник. Чтобы разогнать большое количество ртути до необходимых скоростей, нужна огромная энергия. В лабораторных экспериментах по изучению течений жидких металлов широко используется галлий - он вдвое легче ртути и плавится при 29°C (а его сплавы даже при 17°C), но галлий тоже дорогой и не так хорошо, как хотелось бы, проводит электрический ток. Большая плотность и слабая проводимость - недостатки и других низкотемпературных сплавов (например, широко известного сплава Вуда). Следующий кандидат, натрий, взрывоопасен, и его придется нагревать до сотни градусов. Но он дешевый, проводит ток лучше галлия и очень легкий. Есть еще эвтектический сплав натрия с галлием, который плавится при 12°C, правда, он очень агрессивен, как и литий.

Итак, мы определились с возможным веществом для динамо-экспериментов: это натрий, разумный компромисс требуемых физических свойств и опасности. Выбор был ясен уже в самом начале пути, полвека назад.

Что касается скорости движений, то возможности лабораторной физики явно проигрывают возможностям космической среды. Однако главное преимущество космосу дают огромные размеры. Лабораторная установка размером в 10 метров, в которой среда движется со скоростью 10 м/сек, - зрелище циклопическое, а для космоса это очень скромные цифры.

В итоге для Солнца магнитное число Рейнольдса достигает миллионов, а для современной лаборатории сотня - предел мечтаний, результат многолетнего упорного труда. Тем не менее это уже больше заветных 17, так что шансы есть.

Однако не все так просто с самим механизмом динамо. На Солнце, да и в Земле нет металлических рамок с током - их работу должны воспроизводить потоки среды. Организовать нужное движение потока жидкости значительно сложнее, чем двигать нужным образом провод. Однако гораздо хуже то, что простые течения заведомо не могут работать как динамо. Про это тоже рассказывают в школе: согласно правилу Ленца, магнитное поле, возникшее в проводящей рамке за счет явления электромагнитной индукции, направлено противоположно исходному магнитному полю и не усиливает его, а ослабляет. Поэтому движение одной рамки не может привести к самовозбуждению в ней магнитного поля.

Умный Ленца обойдет

И все же физики нашли лазейку в правиле Ленца. Рассмотрим две рамки, движущиеся в магнитном поле. Индукционный эффект в первой рамке ослабляет магнитное поле в этой же самой рамке, но может усиливать его во второй, если она подходящим образом расположена. Это правилу Ленца не противоречит. Теперь можно добиться того, чтобы индукционный эффект во второй рамке усиливал магнитное поле в первой, но, конечно, ослаблял его во второй. Можно надеяться, что совместная работа двух рамок приведет к тому, что в каждой из них индукция станет больше потерь и магнитное поле начнет лавинообразно нарастать.

Конечно, в принципе можно надеяться на все, что прямо не запрещено законами природы, но от надежды до уверенности расстояние заметное. Его удалось преодолеть в 60-е годы прошлого века, и сделал это Ю. Б. Пономаренко. Он придумал такое конкретное течение проводящей жидкости, которое оказалось достаточно сложным для того, чтобы в нем генерировалось магнитное поле, но достаточно простым, чтобы уравнение индукции, которое описывает поведение магнитного поля, можно было решить точно.

Судьба первопроходцев в науке часто бывает трудной. Работа Пономаренко - одна из наиболее известных работ, посвященных динамо. Этого совсем нельзя сказать о самом Пономаренко - его биография совершенно исчезла из памяти научного сообщества. Честно говоря, мы могли бы лучше помнить своих героев.

Течение, придуманное Пономаренко, - это бесконечная вращающаяся струя проводящей жидкости, окруженная проводящей средой (рис. 2). Такое течение удобно воспроизводить в лаборатории, и у него самое низкое из известных критическое магнитное число Рейнольдса, так что идея Пономаренко стала одной из основных в динамо-экспериментах.

Сейчас экспериментально подтверждено, что течение, примерно так и устроенное, действительно генерирует магнитное поле. Однако на самом деле оно генерирует его не очень хорошо, и поле растет медленно. В то же время астрономические наблюдения показывают, что, скажем, на Солнце магнитные поля изменяются быстро. Каждый цикл солнечной активности, то есть каждые 11 лет, солнечный магнитный диполь меняет знак на противоположный - для звезд это очень быстрые изменения. Ничего подобного динамо Пономаренко обеспечить не может. Причина в том, что в работе динамо Пономаренко магнитная диффузия не только вызывает омические потери, но и обеспечивает работу одного из контуров, в которых происходит индукция магнитного поля. Это еще один тонкий эффект в нашей науке: векторная величина, то есть магнитное поле, диффундирует не так, как скалярная величина, то есть температура.

Для того чтобы магнитное поле изменялось быстро, так, как это бывает в солнечном цикле, необходим более сложный механизм, чем динамо Пономаренко. Такой механизм предложил в 1955 году Юджин Паркер. Представим себе поле магнитного диполя, направленного вдоль оси вращения Солнца. Поскольку солнечная плазма - относительно хороший проводник, то магнитные линии двигаются вместе с солнечной плазмой. Но Солнце вращается не как твердое тело - разные его слои вращаются с различной угловой скоростью, это называется дифференциальным вращением. В результате одни частицы солнечного вещества обгоняют другие, магнитные линии вытягиваются в азимутальном направлении, а из дипольного поля получается магнитное поле, которое наматывается на некоторый тор внутри Солнца - его так и называют тороидальным. Это - индукционный эффект в первом контуре. Он достаточно прост, и в нем сомнений нет.

Для того чтобы динамо заработало, нужно как-то превратить тороидальное магнитное поле в поле магнитного диполя (его называют полоидальным). Этого нельзя сделать простыми течениями. Паркер догадался, что для этого течения должны быть зеркально-асимметричными. В северном полушарии течения должны содержать больше вихрей, вращающихся в правую (по ходу общего движения вихря) сторону, а в южном полушарии - в левую. Оказывается, что именно так обстоит дело во вращающемся теле, в котором есть конвективные потоки и переменная плотность. Тогда в одном полушарии вихри действительно вращаются в основном вправо, а в другом - влево. И если эта среда проводящая, то возникает магнитное поле, направленное по электрическому току (а не перпендикулярно к нему, как обычно), а это, в свою очередь, приводит к искомому превращению тороидального поля в полоидальное (рис. 3).

Рис. 3. Полоидальное и тороидальное магнитные поля. На основном рисунке показано, как выглядят магнитные линии магнита, находящегося внутри сферы, - полоидальное магнитное поле. На белом поле показано, как по наблюдениям солнечных пятен визуализируется тороидальное магнитное поле

На рис. 3 изображены магнитные линии магнита, находящегося внутри сферы, - полоидальное магнитное поле, то, которое рисуют в школьных учебниках. На белом прямоугольнике показано, как по наблюдениям солнечных пятен визуализируется тороидальное магнитное поле. Это поле непосредственно не наблюдаемо, поскольку сосредоточено под поверхностью Солнца. Зато на поверхность Солнца в виде групп солнечных пятен выплывают отдельные магнитные трубки, отделяющиеся от тороидального поля. Показано, как в ходе солнечного цикла (11 лет) меняются широты тех мест, куда выплывают группы пятен (по горизонтальной оси - время, по вертикальной - широта). Видно, что пятна образуют кластеры, находящиеся в разных полушариях. Темным и светлым показаны кластеры с группами пятен противоположной полярности, а отдельные точки - те немногие пятна, для которых использованный метод разделения кластеров дал ненадежные результаты. Видно, что тороидальное магнитное поле дрейфует в ходе цикла солнечной активности от средних широт к солнечному экватору, оно антисимметрично по отношению к экватору и меняет знак каждый цикл. Это правило полярности Хейла.

Паркер аргументировал свои мысли с помощью аналогии с циклонами на Земле. Такая аргументация выглядела не очень убедительно, хотя сейчас мы знаем, что он правильно угадал нужные уравнения и характер их решения. Подвести под эти соображения базу в виде продуманных уравнений, вытекающих из уравнений Максвелла, а не из аналогий, удалось десятилетием позже, в замечательной работе Макса Штеенбека, Фрица Краузе и Карла Хайнца Рэдлера.

Альфа-эффект приходит в динамо

Макс Штеенбек вообще был колоритным человеком. В молодости ведущий инженер фирмы «Сименс», он изобрел массу занятных вещей, например торпеду, которая взрывается не при первом контакте с корпусом корабля, как все нормальные торпеды, а когда проникнет внутрь корпуса. Разрушения при этом возрастают многократно. Изобретение произвело такое впечатление на противников Германии во Второй мировой войне, что десять лет после ее окончания ему пришлось провести в специальном закрытом институте («шарашке») в Сухуми. Как, кстати, и многим другим немецким физикам и инженерам. Потом его отпустили в ГДР и сделали президентом Академии наук этой страны. Сделали заслуженно: обсуждаемая работа - наиболее яркое достижение физики ГДР. Младшие соавторы Штеенбека вспоминают, что он - заядлый курильщик - говорил им, куря сигару: «Вы живете как свиньи, те тоже не курят!»

Работа была написана тяжелым языком, конечно, по-немецки, символы физических величин набраны готическим шрифтом, и опубликована в малоизвестном журнале. Однако ее быстро перевели на английский язык, и она стала популярной среди специалистов. При переводе все символы были последовательно обозначены буквами греческого алфавита, а процесс преобразования тороидального магнитного поля в полоидальное получил название «альфа-эффект». Говорят, что у истории есть своя логика, но иногда она несколько странная.

Роль альфа-эффекта подтверждается математическими выкладками, но одними выкладками физиков убедить трудно. Ясную физическую картину того, как можно без участия магнитной диффузии генерировать магнитное поле, дал Я.Б. Зельдович. Поскольку он был одним из создателей атомной и водородной бомб, за рубеж его выпускали очень редко, и каждая поездка за границу была для него большим событием. Поэтому на симпозиуме в Кракове, уже в 70-х, он был в состоянии легкой эйфории и, отвечая на вопрос, как же может работать динамо - ведь для этого нужно на месте, где была одна магнитная линия, получить две, а эти линии приклеены к жидкости, - проделал следующий трюк. Он попросил одного из слушателей, сидевшего в первом ряду, дать ему брючный ремень и показал на этом ремне, как течение сначала вытягивает магнитную петлю (это делает дифференциальное вращение), а потом сворачивает ее в восьмерку и складывает вдвое (здесь уже нужен альфа-эффект - ведь надо сделать зеркально-асимметричную операцию). История умалчивает о том, что стало с брючным ремнем и его хозяином, но эту иллюстрацию усвоили все специалисты, а ее автор не нашел нужным описать ее в какой-нибудь специальной работе. Видимо, ему казалось, что этого замечания достаточно.

Забавно, что все эти эпизоды были совершенно независимы - немецкие физики не читали Паркера и так далее. Наука может развиваться совершенно алогично, люди придумывают решения еще не написанных уравнений, делают все для того, чтобы их идеи не стали достоянием публики, но из всего этого со временем вырастает последовательная наука.

У альфа-эффекта есть и еще одна важная черта. В окружающем нас мире почти нет явлений, связанных с зеркально-асимметричными средами, пожалуй, только закон Бэра в географии (о том, какой берег подмывает река в данном полушарии), да то, что органические молекулы в живом веществе имеют только одну ориентацию, напоминают нам о роли зеркальной асимметрии. В последнее время физики стали делать зеркально-асимметричные заполнения волноводов и пробуют извлечь из этого интересные эффекты. Совершенно по-другому обстоит дело в микромире - есть реакции между элементарными частицами, которые идут иначе после отражения в зеркале. Оказывается, что и в физике космических сред, как и в микрофизике, зеркальная асимметрия тоже играет роль. В современной физике любят говорить о том, что космология смыкается с микрофизикой. При изучении динамо такое смыкание тоже, как мы видим, происходит, но каким-то неожиданным образом.

Видимо, сказанного достаточно для того, чтобы читатель почувствовал: изучение динамо полно совершенно нестандартными идеями, которые диковато выглядят для человека, не соприкасающегося близко с этой областью физики. При этом список нестандартных идей из теории динамо легко продолжить, но ограничение объема статьи удерживает нас от этого.

Эксперимент

Конечно, нет никакой надежды, что люди до конца поверят в нестандартные идеи, если их не поддержать хоть какими-то экспериментами. Это было понятно уже в 60-х годах, когда Макс Штеенбек, вероятно используя служебное положение, договорился с советскими физиками о постановке первого динамо-эксперимента. Магнитная гидродинамика, к которой по своему смыслу должен был принадлежать этот эксперимент, была одной из сильных областей советской физики. Эта область науки пользовалась вниманием правительства, оно нашло время принять специальное решение о том, что центром исследований в области магнитной гидродинамики должна была стать Латвийская ССР, а именно Институт физики Латвийской ССР в Саласпилсе под Ригой.

С тех пор прошло много лет, теперь Рига - далекое зарубежье. Латвийские физики подружились с немецкими физиками и за несколько дней до конца прошлого тысячелетия впервые получили самовозбуждение магнитного поля в потоке жидкого натрия. Это был действительно циклопический эксперимент. Тонны натрия прокачивались мощными насосами через систему труб и емкостей, занимавших трехэтажное здание. Немало времени ушло на решение самых разнообразных технических проблем, хотя бы на устранение пробок при течении натрия. Тем не менее успех был достигнут, и работа нашла мировое признание. Через несколько дней самовозбуждение магнитного поля было получено в другом динамо-эксперименте, на этот раз чисто немецком, который проводили в Карлсруэ. Эта работа тоже приобрела мировую известность.

Российским физикам пришлось начинать с нуля. Некоторый задел был у физиков Института механики сплошных сред в Перми, и на исходе 90-х приняли решение начать там экспериментальные работы по магнитной гидродинамике жидких металлов при больших магнитных числах Рейнольдса, ориентированные на изучение процесса динамо.

При планировании динамо-эксперимента в Перми было ясно, что в обозримом будущем не удастся соревноваться с зарубежными физиками в размерах установки, то есть в том самом L, которое входит в магнитное число Рейнольдса, - просто не хватит денег. К счастью, удалось найти свежий подход к задаче. Прежние установки создавали течение, которое в принципе можно поддерживать неопределенно долгое время. Насосы разгоняют жидкий натрий, и это требует больших затрат энергии - вязкость натрия маленькая, так что турбинами разогнать его нелегко.

Идея пермской установки в другом: ее действие импульсное, а быстрое течение возникает лишь на короткое время. Берется тороидальная емкость и долго разгоняется сравнительно маломощным мотором, а потом быстро тормозится мощными тормозами. При этом жидкость внутри емкости продолжает свое движение - вязкость-то маленькая, - а стоящие в канале диверторы формируют нужный профиль потока. Конечно, такой поток довольно быстро теряет скорость, но за это время многое удается померить (рис. 4).

Лаборатория начинала работу тогда, когда самовозбуждение магнитного поля еще не было достигнуто нигде в мире, но после успехов в Риге и в Карлсруэ стало ясно, что нужно искать новые ориентиры. Это же пришлось делать и другим группам, работающим с динамо-экспериментами, в частности нашим французским коллегам из Лиона.

Рис. 4. Сравнительно небольшая установка пермского эксперимента имеет внушительные размеры. На фото один из участников эксперимента, профессор С. Ю. Хрипченко, за сборкой установки

При решении этой стратегической проблемы было важно увидеть, что динамо-эксперименты в чем-то родственны разнообразным работам по электротехнике и электронике. Во всех этих случаях речь идет о построении сложного прибора, который обеспечивает желаемое поведение электромагнитного поля. При этом возникает два типа задач. Одни задачи - как сделать из известных материалов то, что хочется, и как оно будет себя вести, а другие - каковы свойства различных материалов и почему они такие. В физике это два разных класса задач. Никому не приходит в голову одновременно разрабатывать телевизор и выяснять, почему медь - хороший проводник и какова ее электропроводность. В астрофизике по многим причинам эти две области деятельности практически не разделены, так что во многих теоретических работах по динамо одновременно вычисляли, скажем, альфа-эффект и выясняли, какие конфигурации магнитного поля генерируются в солнечной плазме с таким альфа-эффектом. Возникающие при этом трудности легко вообразить, представив себе команду разработчиков нового телевизора, если они заодно ставят разные материаловедческие эксперименты с материалами, из которых сделаны схемные элементы - лампы, транзисторы, резисторы и т. д.

Командам, работающим в области динамо-экспериментов, удалось достичь разумного разделения труда в этой области. Лионские физики научились воспроизводить на своей установке разнообразные режимы работы динамо, которые моделируют поведение магнитного поля на Солнце и на Земле. В этих небесных телах временное поведение магнитных полей очень различно, и оба типа поведения им удалось воспроизвести в Лионе. В Перми же пошли по другому пути - стали измерять разнообразные коэффициенты переноса магнитного поля в турбулентном потоке. Впервые в мире удалось измерить сам альфа-эффект, то есть основную величину, с которой связана генерация магнитного поля. Этот результат тоже общепризнан в кругу специалистов. Специалисты разных стран, работающие в области динамо-эксперимента, сотрудничают друг с другом. Пермские физики ездят в Лион, французские физики бывают в Перми, вместе с пермскими коллегами проводят измерения на пермских установках, публикуют совместные работы. Наша область еще находится в начале своего развития. Пройдены лишь первые рубежи, достигнуты первые результаты, пережиты первые разочарования. Однако мы уже знаем, откуда берется то, что двигает стрелочку компаса.

Научное сообщество с нетерпением ожидает результатов запланированного эксперимента,информацию о котором недавно опубликовали в Physical Review Letters .

«Мы также ожидаем детального понимания общей динамики потоков металлов, находящихся в жидком состоянии под воздействием магнитных полей», – считают ученые.

Исследование, недавно опубликованное в Physical Review Letters , сообщает о шансах эксперимента на успех.
Подобно динамо-велосипеду, преобразующему движение в электричество, движущиеся жидкости могут генерировать магнитные поля. Так называемое магнитное число Рейнольдса в первую очередь определяет, действительно ли генерируется магнитное поле.

Во время эксперимента ученые из команды Фрэнка Стефани в Институте HZDR стремятся достичь критического значения, необходимого для возникновения эффекта динамо. С этой целью стальной цилиндр диаметром 2 метра, содержащий восемь тонн жидкого натрия, будет вращаться вокруг одной оси до 10 раз в секунду и один раз в секунду вокруг другой оси, которая наклонена относительно первой.

«Наш эксперимент на новом объекте DRESDYN призван продемонстрировать, что прецессия, как естественный драйвер потока, достаточна для создания магнитного поля», – говорит Андре Гиеске, ведущий автор исследования.

Центр Земли состоит из твердого ядра, окруженного слоем расплавленного железа. «Расплавленный металл индуцирует электрический ток, который, в свою очередь, генерирует магнитное поле», – объясняет Гизеке. Однако роль, которую играет прецессия в формировании магнитного поля Земли, до сих пор остается неясной.

Ось Земли наклонена на 23,5 градуса от ее орбитальной плоскости и меняет положение в течение примерно 26 000 лет. Это прецессивное движение считается одним из возможных источников энергии. Миллионы лет назад на также было мощное магнитное поле, о чем свидетельствуют образцы горных пород из миссий «Аполлон». По мнению экспертов, прецессия могла быть основной причиной.

Ожидается, что эксперименты с жидким натрием в HZDR начнутся в 2020 году. В отличие от предыдущих лабораторных экспериментов в 1999 году в стальном барабане не будет пропеллера, как это было использовано в первом эксперименте в Риге, Латвия, в 1999 году, в котором ученые HZDR принимали участие. Этот и другие эксперименты в Карлсруэ, Германия и Кадараше, Франция, дали новаторские исследования для лучшего понимания геодинамики.

«В принципе, мы можем определить три разных параметра для экспериментов на DRESDYN: вращение, прецессию и угол между двумя осями», – говорит Гизеке. Он и его коллеги ожидают получить ответы на фундаментальный вопрос о том, действительно ли прецессия создает магнитное поле в проводящей жидкости.

Заряженные тела способны создавать кроме электрического еще один вид поля. Если заряды движутся, то в пространстве вокруг них создается особый вид материи, называемый магнитным полем . Следовательно, электрический ток, представляющий собой упорядоченное движение зарядов, тоже создает магнитное поле. Как и электрическое поле, магнитное поле не ограничено в пространстве, распространяется очень быстро, но все же с конечной скоростью. Его можно обнаружить только по действию на движущиеся заряженные тела (и, как следствие, токи).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности E электрического поля. Такой характеристикой является вектор B магнитной индукции. В системе единиц СИ за единицу магнитной индукции принят 1 Тесла (Тл). Если в магнитное поле с индукцией B поместить проводник длиной l с током I , то на него будет действовать сила, называемая силой Ампера , которая вычисляется по формуле:

где: В – индукция магнитного поля, I – сила тока в проводнике, l – его длина. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику.

Для определения направления силы Ампера обычно используют правило «Левой руки» : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы Ампера, действующей на проводник (см. рисунок).

Если угол α между направлениями вектора магнитной индукции и тока в проводнике отличен от 90°, то для определения направления силы Ампера надо взять составляющую магнитного поля, которая перпендикулярна направлению тока. Решать задачи этой темы нужно так же как и в динамике или статике, т.е. расписав силы по осям координат или складывая силы по правилам сложения векторов.

Момент сил, действующих на рамку с током

Пусть рамка с током находится в магнитном поле, причём плоскость рамки перпендикулярна полю. Силы Ампера будут сжимать рамку, а их равнодействующая будет равна нулю. Если поменять направление тока, то силы Ампера поменяют своё направление, и рамка будет не сжиматься, а растягиваться. Если линии магнитной индукции лежат в плоскости рамки, то возникает вращательный момент сил Ампера. Вращательный момент сил Ампера равен:

где: S - площадь рамки, α - угол между нормалью к рамке и вектором магнитной индукции (нормаль - вектор, перпендикулярный плоскости рамки), N – количество витков, B – индукция магнитного поля, I – сила тока в рамке.

Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I , находящийся в магнитном поле B может быть выражена через силы, действующие на отдельные носители заряда. Эти силы называют силами Лоренца . Сила Лоренца, действующая на частицу с зарядом q в магнитном поле B , двигающуюся со скоростью v , вычисляется по следующей формуле:

Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика (как и сила Ампера). Вектор магнитной индукции нужно мысленно воткнуть в ладонь левой руки, четыре сомкнутых пальца направить по скорости движения заряженной частицы, а отогнутый большой палец покажет направление силы Лоренца. Если частица имеет отрицательный заряд, то направление силы Лоренца, найденное по правилу левой руки, надо будет заменить на противоположное.

Сила Лоренца направлена перпендикулярно векторам скорости и индукции магнитного поля. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает . Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору индукции магнитного поля, то частица будет двигаться по окружности, радиус которой можно вычислить по следующей формуле:

Сила Лоренца в этом случае играет роль центростремительной силы. Период обращения частицы в однородном магнитном поле равен:

Последнее выражение показывает, что для заряженных частиц заданной массы m период обращения (а значит и частота, и угловая скорость) не зависит от скорости (следовательно, и от кинетической энергии) и радиуса траектории R .

Теория о магнитном поле

Если по двум параллельным проводам идёт ток в одном направлении, то они притягиваются; если в противоположных направлениях, то отталкиваются. Закономерности этого явления были экспериментально установлены Ампером. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I 1 и I 2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

где: μ 0 – постоянная величина, которую называют магнитной постоянной . Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно:

μ 0 = 4π ·10 –7 H/A 2 ≈ 1,26·10 –6 H/A 2 .

Сравнивая приведенное только что выражение для силы взаимодействия двух проводников с током и выражение для силы Ампера нетрудно получить выражение для индукции магнитного поля создаваемого каждым из прямолинейных проводников с током на расстоянии R от него:

где: μ – магнитная проницаемость вещества (об этом чуть ниже). Если ток протекает по круговому витку, то в центре витка индукция магнитного поля определяется по формуле:

Силовыми линиями магнитного поля называют линии, по касательным к которым располагаются магнитные стрелки. Магнитной стрелкой называют длинный и тонкий магнит, его полюса точечны. Подвешенная на нити магнитная стрелка всегда поворачивается в одну сторону. При этом один её конец направлен в сторону севера, второй - на юг. Отсюда название полюсов: северный (N ) и южный (S ). Магниты всегда имеют два полюса: северный (обозначается синим цветом или буквой N ) и южный (красным цветом или буквой S ). Магниты взаимодействуют так же, как и заряды: одноименные полюса отталкиваются, а разноименные – притягиваются. Невозможно получить магнит с одним полюсом. Даже если магнит разломать, то у каждой части будет по два разных полюса.

Вектор магнитной индукции

Вектор магнитной индукции - векторная физическая величина, являющаяся характеристикой магнитного поля, численно равная силе, действующей на элемент тока в 1 А и длиной 1 м, если направление силовой линии перпендикулярно проводнику. Обозначается В , единица измерения - 1 Тесла. 1 Тл - очень большая величина, поэтому в реальных магнитных полях магнитную индукцию измеряют в мТл.

Вектор магнитной индукции направлен по касательной к силовым линиям, т.е. совпадает с направлением северного полюса магнитной стрелки, помещённой в данное магнитное поле. Направление вектора магнитной индукции не совпадает с направлением силы, действующей на проводник, поэтому силовые линии магнитного поля, строго говоря, силовыми не являются.

Силовая линия магнитного поля постоянных магнитов направлена по отношению к самим магнитам так, как показано на рисунке:

В случае магнитного поля электрического тока для определения направления силовых линий используют правило «Правой руки» : если взять проводник в правую руку так, чтобы большой палец был направлен по току, то четыре пальца, обхватывающие проводник, показывают направление силовых линий вокруг проводника:

В случае прямого тока линии магнитной индукции - окружности, плоскости которых перпендикулярны току. Вектора магнитной индукции направлены по касательной к окружности.

Соленоид - намотанный на цилиндрическую поверхность проводник, по которому течёт электрический ток I подобно полю прямого постоянного магнита. Внутри соленоида длиной l и количеством витков N создается однородное магнитное поле с индукцией (его направление также определяется правилом правой руки):

Линии магнитного поля имеют вид замкнутых линий - это общее свойство всех магнитных линий. Такое поле называют вихревым. В случае постоянных магнитов линии не оканчиваются на поверхности, а проникают внутрь магнита и замыкаются внутри. Это различие электрического и магнитного полей объясняется тем, что, в отличие от электрических, магнитных зарядов не существует.

Магнитные свойства вещества

Все вещества обладают магнитными свойствами. Магнитные свойства вещества характеризуются относительной магнитной проницаемостью μ , для которой верно следующее:

Данная формула выражает соответствие вектора магнитной индукции поля в вакууме и в данной среде. В отличие от электрического, при магнитном взаимодействии в среде можно наблюдать и усиление, и ослабление взаимодействия по сравнению с вакуумом, у которого магнитная проницаемость μ = 1. У диамагнетиков магнитная проницаемость μ немного меньше единицы. Примеры: вода, азот, серебро, медь, золото. Эти вещества несколько ослабляют магнитное поле. Парамагнетики - кислород, платина, магний - несколько усиливают поле, имея μ немного больше единицы. У ферромагнетиков - железо, никель, кобальт - μ >> 1. Например, у железа μ ≈ 25000.

Магнитный поток. Электромагнитная индукция

Явление электромагнитной индукции было открыто выдающимся английским физиком М.Фарадеем в 1831 году. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину:

где: B – модуль вектора магнитной индукции, α – угол между вектором магнитной индукции B и нормалью (перпендикуляром) к плоскости контура, S – площадь контура, N – количество витком в контуре. Единица магнитного потока в системе СИ называется Вебером (Вб).

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции ε инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум возможным причинам.

  1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
  2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре.

При решении задач важно сразу определить за счет чего меняется магнитный поток. Возможно три варианта:

  1. Меняется магнитное поле.
  2. Меняется площадь контура.
  3. Меняется ориентация рамки относительно поля.

При этом при решении задач обычно считают ЭДС по модулю. Обратим внимание также внимание на один частный случай, в котором происходит явление электромагнитной индукции. Итак, максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S , вращающемся с угловой скоростью ω в магнитном поле с индукцией В :

Движение проводника в магнитном поле

При движении проводника длиной l в магнитном поле B со скоростью v на его концах возникает разность потенциалов, вызванная действием силы Лоренца на свободные электроны в проводнике. Эту разность потенциалов (строго говоря, ЭДС) находят по формуле:

где: α - угол, который измеряется между направлением скорости и вектора магнитной индукции. В неподвижных частях контура ЭДС не возникает.

Если стержень длиной L вращается в магнитном поле В вокруг одного из своих концов с угловой скоростью ω , то на его концах возникнет разность потенциалов (ЭДС), которую можно рассчитать по формуле:

Индуктивность. Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Собственный магнитный поток Φ , пронизывающий контур или катушку с током, пропорционален силе тока I :

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется Генри (Гн).

Запомните: индуктивность контура не зависит ни от магнитного потока, ни от силы тока в нем, а определяется только формой и размерами контура, а также свойствами окружающей среды. Поэтому при изменении силы тока в контуре индуктивность остается неизменной. Индуктивность катушки можно рассчитать по формуле:

где: n - концентрация витков на единицу длины катушки:

ЭДС самоиндукции , возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна:

Итак ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Энергия W м магнитного поля катушки с индуктивностью L , создаваемого током I , может быть рассчитана по одной из формул (они следуют друг из друга с учётом формулы Φ = LI ):

Соотнеся формулу для энергии магнитного поля катушки с её геометрическими размерами можно получить формулу для объемной плотности энергии магнитного поля (или энергии единицы объёма):

Правило Ленца

Инерция – явление, происходящее и в механике (при разгоне автомобиля мы отклоняемся назад, противодействуя увеличению скорости, а при торможении отклоняемся вперёд, противодействуя уменьшению скорости), и в молекулярной физике (при нагревании жидкости увеличивается скорость испарения, самые быстрые молекулы покидают жидкость, уменьшая скорость нагревания) и так далее. В электромагнетизме инерция проявляется в противодействии изменению магнитного потока, пронизывающего контур. Если магнитный поток нарастает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать нарастанию магнитного потока, а если магнитный поток убывает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать убыванию магнитного потока.

На этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Следующее большое открытие произошло почти случайно. Ханс Кристиан Эрстед (1777-1851), профессор физики Копенгагенского университета, готовился к лекции об электричестве и магнетизме; для этого он принес в аудиторию батарею, чтобы продемонстрировать действие электрического тока. Рядом с батареей он положил компас — для демонстрации магнитных сил. Прежде он уже заме-чал, что между электричеством и магнетизмом существует некоторая связь: например, стрелка компаса беснуется во время грозы.

    До начала лекции оставалось немного времени, и профессор решил провести небольшой опыт. Эрстед положил компас рядом с проводом, по которому тек электрический ток, и его подозрения подтвердились: под действием тока стрелка компаса начала двигаться. Таким образом, два отдельных феномена, электричество и магнетизм, которые до этого рассматривались совершенно раздельно, в действительности оказались связаны друг с другом. Эрстед продолжил свои исследования и опубликовал результаты в 1820 году.
    Новость об открытии Эрстеда распространилась очень быстро. Через несколько лет его статья была зачитана на собрании Французской академии наук. На этом собрании был и Ампер, который тут же начал работать над объяснением явления, обнаруженного Эрстедом. Теория была готова через неделю и послужила основой для объединения электричества и магнетизма в теорию электромагнетизма.
    Андре Мари Ампер (17751836) родился недалеко от Лиона. Его отец, состоятельный купец, занимавший должность мирового судьи в Лионе, был казнен во время Французской революции. Теперь дом Ампера превращен в музей и открыт для посещения. В детстве Ампер не ходил в школу, а приобрел свои знания путем чтения книг. Вот эпизод, говорящий о его прекрасной памяти и способностях к обучению. Будучи еще маленьким мальчиком, он отправился в Лионскую библиотеку и попросил книги знаменитых математиков — Эйлера и Бернулли. Библиотекарь объяснил мальчику, что это сложные математические книги, которые ему будет трудно понять, к тому же — они написаны на латинском языке. Новость о латинском языке смутила Ампера, но он решил, что незнание латинского языка не должно мешать ему. Спустя несколько недель он вернулся в библиотеку, уже зная латынь, и начал читать эти книги.
    Ампер женился в 24 года и содержал семью, работая школьным учителем. В 1808 году он был назначен инспектором школ и на этой должности оставался всю жизнь. Кроме того, он работал профессором в Париже. К 1820 году, когда Ампер заинтересовался электромагнетизмом, он был уже широко известен своими трудами по математике и химии. Этот разносторонний ученый начинал как профессор математики, затем стал профессором философии, а позднее — профессором астрономии! Начиная с 1824 года Ампер был уже профессором физики Коллеж де Франс.

    Ампер не удовлетворился только лишь объяснением результатов Эрстеда и начал свои исследования.

    Например, он показал, что, смотав электрический провод в виток, можно создать искусственный магнит — электромагнит, который действует точно так же, как естественные магниты. Ампер смело, но совершенно верно предположил, что естественные магниты содержат внутри себя небольшие витки непрерывного тока, которые действуют вместе и создают естественный магнетизм.
    Ампер сразу же понял важность феномена электромагнетизма в передаче информации. Включая и выключая ток, можно привести в движение стрелку компаса, находящегося довольно далеко. Послание может быть передано с такой скоростью, с какой распространяется электрический ток. Вскоре началось производство телеграфных аппаратов, работающих по этому принципу. Одна из первых телеграфных линий была протянута в 1834 году в Геттингене между лабораторией Вильгельма Вебера и астрономической обсерваторией Карла Фридриха Гаусса. В том же году первую коммерческую телеграфную линию, соединившую Вашингтон и Балтимор (США), наладил Сэмюэл Морзе, изобретатель азбуки Морзе.
    Другим ученым, сразу же оценившим огромное значение открытия Эрстеда, стал англичанин Майкл Фарадей. Он был сыном кузнеца и получил минимальное образование. В13 лет он стал подмастерьем переплетчика. Переплетая книги, он их читал. Один из клиентов дал ему бесплатный абонемент на посещение публичных лекций Гемфри Дэви (17781829). Фарадей сделал аккуратный конспект лекций, красиво переплел его и послал Дэви с запиской, в которой спрашивал, нет ли у Дэви работы для него. Каково же было удивление Фарадея, когда Дэви пригласил его к себе. Конспект был написан очень аккуратно и произвел на Дэви хорошее впечатление. В 1820 году он предложил мальчику должность своего ассистента в Королевском институте в Лондоне. Так началась одна из наиболее знаменитых карьер в науке. Говорили, что самым большим открытием Дэви был Фарадей.


    Фарадей учился у самого Дэви. Когда Дэви отправился в полуторагодичный тур на континент, он взял с собой Фарадея, который познакомился там, среди прочих, с Ампером и Вольтой. Когда Дэви работал в Париже с Луи ГейЛ юсе а ком, изучая новый химический элемент — йод, им помогал Фарадей. Впрочем, и дома в его служебные обязанности входило проведение химических опытов.
    Если не считать временного интереса к электромагнетизму, вызванного открытием Эрстеда, Фарадей до 1830 года был профессиональным химиком. В 1833 году он стал профессором химии в Королевском институте. Но к этому моменту его научные интересы уже поменялись. Фарадей был убежден, что если электрический ток может быть причиной возникновения магнитных сил, то и магнит должен быть способен создавать электрический ток. Это мнение разделяли многие, среди которых был и Ампер, не сумевший, однако, подтвердить эту захватывающую идею.
    В течение ю лет Фарадей проводил различные опыты по электромагнетизму. В 1831 году он вложил одну катушку внутрь другой. Когда по одной из катушек пускали ток, она становилась электромагнитом. Фарадей хотел выяснить, способен ли магнит вызвать появление электрического тока во второй катушке. Действительно, ток возникал, но лишь на мгновение — только при включении или выключении электромагнита. Это привело Фарадея к важному открытию: изменение магнита — например, изменение силы магнита или его вращение — генерирует электрический ток в соседней катушке. Ключевым моментом здесь было изменение магнита.
    Это позволило Фарадею сконструировать электрический генератор — простое динамо, ставшее в будущем основой электротехники. Однажды он демонстрировал свое открытие Уильяму Гладстону, который в то время был министром финансов, и тот спросил: «Ну и как же это можно использовать?» Фарадей ответил: «Вполне возможно, сэр, что когда-нибудь вы сможете обложить это налогом».

    Одним из основных препятствий для развития более завершенной и согласованной теории электрических феноменов явилась преувеличенная значимость, придаваемая сходству между статическим электричеством и электрическим током. Такой подход породил ошибочную веру в то, что в оба вида феноменов входит лишь одна сущность – электрический заряд. Тот же вид ошибки, только более полным и категоричным образом проявился и в нынешнем взгляде на магнетизм. Настаивая на том, что электростатические и электрические феномены – это просто два аспекта одного и того же, современное научное мнение признает, что между ними существует достаточное различие, оправдывающее отдельную категорию электростатики в теоретических аспектах статических феноменов. Если магнитостатика (соответствующая ветвь магнетизма) и упоминается во всех современных физических текстах, обычно от нее отмахиваются как от “старого подхода”, ныне вышедшего из моды. Строго статические концепции, такие как магнитные полюса, чаще всего вводятся с извинениями.

    Дробление отдельных физических сфер изучения на все больше и больше подразделений являлось характерной чертой научной деятельности на протяжении всей ее истории. В ситуации с магнитостатикой у нас имеется обратный процесс, случай, когда основное подразделение физики умерло благодаря каннибализму. Магнитостатику проглотил связанный с ней, но совсем другой феномен – электромагнетизм . Между этими двумя видами магнитных явлений есть много сходства, как и между двумя видами электричества. По существу, величины, в терминах которых выражается магнитостатика, определяются в основном электромагнитными отношениями. Но это ни в коей мере не оправдывает нынешнюю веру в то, что в процесс вовлечена лишь одна сущность. Подчиненный статус, который традиционная физика часто приписывает магнитным явлениям, иллюстрируется следующим комментарием К. У. Форда:

    “Как считают физики-теоретики, магнетизм в нашем мире – это просто побочный продукт электричества; он существует лишь как результат движения электрически заряженных частиц”.

    Такое утверждение подразумевает, что сделанные допущения установлены разумно и прочно . Однако на самом деле допущение, что магнетизм существует лишь как результат движения заряженных частиц, основывается на целиком и полностью незначимых допущениях. Истинная ситуация точнее описывается следующей цитатой из физического учебника:

    “Лишь за прошедшие тридцать лет были созданы модели, объединяющие два источника магнетизма (магниты и магнитостатику). Даже сегодня модели далеки от совершенства, но, по крайней мере, они убедили людей, что имеется лишь один источник магнитных полей: все магнитные поля возникают за счет движущихся электрических зарядов”.

    По существу, этот отрывок свидетельствует о том, что практически идея разработана не так уж и хорошо, но, тем не менее, большинство голосует за нее. Видный американский астроном Дж. Н. Бакелл указывал на то, что “часто мы создаем серьезные научные проблемы шумным одобрением, а не наблюдением” . Некритичное принятие “далеких от совершенства” моделей магнетизма – достойный пример такой ненаучной практики.

    Странной характеристикой существующей ситуации является то, что, придя к выводу, что магнетизм – это просто побочный продукт электричества, одним из видов деятельности физиков является поиск магнитного аналога подвижного электрического заряда – электрона. И вновь, цитируя К. У. Форда:

    “Электрическая частица создает электрическое поле. Когда оно движется, оно создает магнитное поле как вторичный эффект. В целях симметрии должны быть магнитные частицы, создающие магнитные поля, движение которых создает электрические поля так же, как движущиеся электрические частицы создают магнитные поля”.

    Автор признает, что “и до сих пор магнитный монополь смущает всех исследователей. Экспериментаторы потерпели поражение в обнаружении любого признака частицы”. Этот блуждающий огонек продолжает преследоваться с рвением, вызывающим такие ехидные комментарии, как:

    “Удивительно, что отсутствие экспериментального свидетельства существования магнитных монополей не уменьшает рвения искателей”.

    Точка зрения Форда такова: “Очевидное отсутствие существования монопольных частиц приводит современных физиков к парадоксу, они не могут все бросить до тех пор, пока не найдут объяснения” . Но он же (ненамеренно) предлагает ответ на парадокс, которым завершает обсуждение ситуации с монополем:

    “Физиков волнует вызов симметрии и всех известных законов – магнитная частица до сих пор не создана и не обнаружена”.

    Всякий раз, когда наблюдаемые факты “бросают вызов известным законам” и нынешнему пониманию связи отношений симметрии с любой данной ситуацией, можно с уверенностью говорить, что нынешнее понимание симметрии и, по крайней мере, некоторых “известных законов” неверное. В данном случае любой критический подход быстро укажет не только на то, что ряд допущений, на основе которых делается вывод о существовании магнитных монополей, выведен из чистых допущений без фактической поддержки, но и на то, что между двумя ключевыми допущениями имеется определенное противоречие.

    Как объяснял Форд, магнитный монополь, который так усердно ищут физики, - это частица, “создающая магнитные поля; то есть магнитный заряд”. Если бы такая частица существовала, она бы, конечно, оказывала магнитные влияния благодаря заряду. Но это напрямую противоречит допущению, что магнетизм является “побочным продуктом электричества”. Физики не могут сидеть одновременно на двух стульях. Если магнетизм – это побочный продукт электричества (то есть, электрических зарядов), тогда не может быть магнитного заряда (источника магнитных эффектов), аналогичного электрическому заряду - источнику электрических эффектов . С другой стороны, если бы частица с магнитным зарядом (магнитный монополь) существовала, тогда базовая теория магнетизма, приписывающая все магнитные эффекты электричеству, неверна .

    Из положений теоретического развития вселенной движения очевидно, что упущенная информация – это понимание физической природы магнетизма. До тех пор, пока магнетизм считается побочным продуктом электричества, а электричество рассматривается как данная характеристика природы, не поддающаяся объяснению, ничто не направит теорию в надлежащие русла . Но как только осознается, что магнитостатические явления возникают за счет магнитных зарядов, и что такой заряд является видом движения (вибрацией вращения), ситуация проясняется почти автоматически. Конечно, магнитные заряды существуют. Точно так же, как имеются электрические заряды, являющиеся одномерными вибрациями вращения, действующими противоположно одномерным вращениям, существуют и магнитные заряды – двумерные вибрации вращения, действующие противоположно двумерным вращениям . Феномены, возникающие за счет зарядов такой природы, относятся к магнитостатике. Электромагнетизм – это еще один двумерный феномен, включающий движение непрерывной, а не вибрационной природы.

    Двухмерность – вот ключ к пониманию магнитных отношений . Отсутствие осознания базовой характеристики магнетизма – одна из основных причин, создающих путаницу, существующую во многих сферах магнитной теории. Два измерения магнитного заряда и электромагнетизма являются, конечно, скалярными измерениями . Движение компонентов во втором измерении не возможно представить напрямую в традиционной пространственной системе отсчета, но они обладают наблюдаемыми косвенными влияниями, особенно на действующие величины. Значительный вклад в путаницу вносит и отсутствие осознания вибрационной природы электростатических и магнитостатических движений, которая резко отличает их от непрерывных движений, вовлеченных в электрический ток и электромагнетизм. Магнитостатика похожа на электромагнетизм тем, что определяющим фактором является ряд действующих измерений. Она похожа на электростатику тем, что определяющим фактором является вибрационный характер движения.

    Наши открытия показывают, что отсутствие магнитных монополей – это не “вызов симметрии”. Симметрия существует, но для ее осознания требуется лучшее понимание природы электричества и магнетизма. В электрических и магнитных отношениях есть симметрия, и в некоторых смыслах именно такой вид симметрии предвидели Форд и его коллеги. Один вид магнитного поля действительно создается так же, как электрическое поле, как и полагает Форд в объяснении рассуждения, лежащего в основе гипотезы магнитного монополя. Но электрическое поле создает не “электрическая частица”; это определенный вид движения – вибрация вращения. Магнитное поле создается подобной вибрацией вращения. Магнитное поле создает электрический ток, поступательное движение частицы (незаряженного электрона) в проводнике. Поступательное движение магнитного поля аналогично создает электрический ток в проводнике. И вновь, симметрия существует, но не тот вид симметрии, который призывался бы для магнитного монополя.

    Уравнение магнитной силы, выражение для силы между двумя магнитными зарядами, идентично уравнению Кулона, за исключением коэффициента t/s, введенного в магнитный заряд вторым скалярным измерением движения. Традиционная форма уравнения F = MM’/d². Как и в других первичных уравнениях силы, термины M’ и d² не обладают размерностями. На основе общих принципов, применяемых к уравнениям силы, что определялось во вселенной движения, упущенный термин в магнитном уравнении аналогичен 1/s в уравнении Кулона, - это 1/t. Тогда пространственно-временные размерности магнитного уравнения - F = t²/s² x 1/t = t/s².

    Подобно движению, составляющему электрический заряд, и по тем же причинам, движение, составляющее магнитный заряд, обладает скалярным направлением наружу. Но поскольку в материальном секторе магнитное вращение обязательно положительное (смещение во времени), все устойчивые магнитные заряды в данном секторе обладают смещением в пространстве (отрицательным), и отсутствует независимое магнитное явление, соответствующее отрицательному* электрическому заряду . В данном случае нет установленного использования, препятствующего применению обозначений, согласующихся с терминологией вращения. Поэтому мы будем относить магнитный заряд к отрицательным зарядам, а не пользоваться положительным* обозначением, как в случае электрического заряда.

    Хотя в материальном окружении отсутствуют положительные магнитные заряды, кроме как под влиянием внешних сил в ситуации, которая будет обсуждаться позже, двумерный характер магнитного заряда вносит влияние ориентации, не присутствующее в электрических феноменах. Все одномерные (электрические) заряды похожи; они не обладают отличительными характеристиками, по которым их можно было бы подразделить на разные виды классов. Но двумерный (магнитный) заряд состоит из вибрации вращения в измерении системы отсчета и еще одного скалярного измерения, независимого от первого, и, следовательно, перпендикулярного к нему в геометрическом представлении. Вращение, с которым связана вторая вибрация вращения, делит атом на две половины, которые могут определяться отдельно. На одной стороне от разделительной линии наблюдаемое вращение происходит по часовой стрелке. Скалярное направление магнитного заряда на этой стороне – направление наружу от вращения по часовой стрелке. Подобный заряд на противоположной стороне – это движение наружу от вращения против часовой стрелки.

    Единица магнитного заряда относится лишь к одной из двух вращающихся систем. Следовательно, атом обретает два заряда, занимающих положения, описанные в предыдущем параграфе, и направленных противоположно. Поэтому каждый атом магнитной или намагниченной субстанции обладает двумя полюсами или центрами магнитного влияния. На Земле имеются аналоги магнитных полюсов, соответственно они называются северным полюсом и южным полюсом.

    Полюса представляют собой точки скалярного отсчета. Действующее направление вибрации вращения, составляющее заряд, находящийся на северном полюсе, - это движение наружу от северной точки отсчета; действующее направление заряда, центрированного в южном полюсе, - это движение наружу от южной точки отсчета. Следовательно, взаимодействие двух магнитно заряженных атомов следует тому же паттерну, что и взаимодействие электрических зарядов. Как показано на рисунке 22, два северных полюса (линия а) движутся наружу от северных точек отсчета и, следовательно, наружу друг от друга. Два южных полюса (линия с) тоже движутся наружу друг от друга. Но, как показано на линии b, северный полюс, движущийся наружу от северной точки отсчета, движется по направлению к южному полюсу, который движется наружу от южной точки отсчета. Таким образом, одноименные полюса отталкиваются, а разноименные притягиваются.

    На этом основании, когда два магнитно заряженных атома сближаются друг с другом, северный полюс одного атома притягивается к южному полюсу другого атома. Результирующая структура – линейная комбинация северного полюса, нейтральная комбинация обоих полюсов и южный полюс. Прибавление третьего магнитно заряженного атома превращает южный полюс в нейтральную комбинацию, но оставляет новый южный полюс на новом конце структуры. Могут происходить и дальнейшие прибавления такого рода, ограниченные лишь температурными и другими разрушительными силами. Подобную стрелу атомов с северным и южным полюсами на противоположных концах можно создавать введением атомов намагниченной материи между магнитно заряженными атомами двухатомной комбинации. Разделение подобной структуры в любой точке ломает нейтральную комбинацию и оставляет северный и южный полюса на концах каждого сегмента. Следовательно, на сколько частей не делился бы намагниченный материал, в каждом фрагменте материала всегда имеются северный и южный полюса .

    Благодаря направленному характеру магнитных сил они подвергаются экранированию так же, как электрические силы. С другой стороны, гравитационная сила не может экранироваться или модифицироваться никоим образом. Многие наблюдатели сочли это указанием на то, что гравитационная сила должна обладать абсолютно другой природой. Такое впечатление усугубляется трудностью обнаружения подходящего места гравитации в основной физической теории. Основная цель теоретиков, работающих над проблемой построения “общей теории” или “единой теории” физики – найти место гравитации в своей теоретической структуре.

    Сейчас развитие теории вселенной движения показывает, что гравитация, статическое электричество и магнитостатика – явления одного и того же рода. Они отличаются друг от друга лишь числом действующих скалярных измерений . Благодаря симметрии пространства и времени в этой вселенной каждый вид силы (движения) обладает противоположно направленным партнером. Гравитация не исключение, она имеет место, как во времени, так и в пространстве . Следовательно, она подвергается тому же дифференцированию между положительным и отрицательным, что и дифференциация, которую мы обнаруживаем в электрических силах. Но в материальном секторе вселенной итоговое гравитационное влияние всегда происходит в пространстве, то есть, отсутствует действующая отрицательная гравитация . В космическом секторе оно всегда происходит во времени. Поскольку гравитация трехмерна, не может быть любой пространственной дифференциации вида, который мы обнаруживаем в магнетизме.

    В результате отсутствия понимания истинной связи между электромагнитными и гравитационными феноменами, традиционная физическая наука не способна сформулировать теорию, относящуюся к обеим сферам. Ее подход к проблеме – допускать, что электричество фундаментально, и воздвигать структуру физической теории на этом основании. Чтобы привести наблюдения и измерения в соответствие с теорией, основанной на электричестве, требуются дальнейшие допущения. Таким образом, гравитации присвоили статус необъяснимой аномалии. Так случилось из-за способа построения теорий, а не из-за какой-либо особенности гравитации . Если бы подход изменился, физическая теория строилась бы на основании допущения, что гравитация фундаментальна, а “не усвоенными” пунктами оказались бы электричество и магнетизм. Единую теорию, которую пытаются построить исследователи, можно создать лишь посредством развития, такого как представленного в данной работе. Оно покоится на прочном фундаменте понимания, где каждому из трех базовых феноменов отводится свое надлежащее место.

    Помимо влияний разницы в числе скалярных измерений, свойства вибрации вращения, составляющей магнитный заряд, совпадают со свойствами вибрации вращения, составляющей электрический заряд. Отсюда в надлежащих материалах можно индуцировать магнитные заряды. Материалы, в которых индуцируются магнитные заряды, ведут себя как постоянные магниты . По существу, некоторые материалы становятся постоянными магнитами, когда в них индуцируются магнитные заряды. Однако лишь относительно небольшое число элементов способно намагничиваться в значительной степени; то есть, обладать свойством, известным как ферромагнетизм .

    Традиционные теории магнетизма не имеют объяснения ограничению намагничивания элементов. Конечно, эти теории подразумевали бы, что оно должно быть общим свойством материи. На основании ранее упомянутых допущений электроны, которые традиционная теория рассматривает как составляющие атомов, являются миниатюрными электромагнитами и создают магнитные поля. В большинстве случаев допускается, что магнитные поля атомов ориентированы случайно и отсутствует итоговая магнитная результирующая. “Однако имеется несколько элементов, в атомах которых поля, созданные разными электронами, взаимно уничтожаются не полностью. Такие атомы обладают итоговым магнитным полем. У некоторых материалов… магнитные поля атомов выстраиваются в линию друг с другом” . Допускается, что такие материалы обладают магнитными свойствами. А вот почему эти несколько элементов должны обретать свойство, которым не обладает большинство элементов, не уточняется .

    В целях объяснения в терминах вселенной движения нам потребуется рассмотреть природу атомного движения. Если к трехмерной комбинации движений, составляющих атом, прибавляется двумерная, положительная вибрация вращения, это меняет величины движений. Результат – не один и тот же атом с магнитным зарядом, а атом другого вида . Как отдельная сущность магнитный заряд может существовать лишь в атоме, составленном так, что имеется часть атомной структуры, способная вибрировать двумерно и независимо от основного тела атома. Если нас волнует магнитное вращение, требование удовлетворяется тогда, когда вращение асимметрично; то есть, в одном из двух магнитных измерений имеется n единиц смещения, а в другом – n + 1.

    На этом основании симметричные элементы, обладающие магнитными вращениями 1-1, 2-2, 3-3 и 4-4, исключаются. Хотя магнитный заряд не обладает третьим измерением, электрическое вращение, с которым он связан в трехмерном движении атома, не должно зависеть от вращения, связанного с оставшейся частью атома. Следовательно, электрическое смещение вращения должно превышать 7, так чтобы одна полная единица (7 единиц смещения плюс уровень первичной единицы) могла оставаться с основным телом магнитного вращения, в то время как избыток относится к магнитному вращению. Более того, электрическое смещение должно быть положительным, поскольку система отсчета не может вмещать два разных отрицательных смещения (движение во времени) в одной и той же атомной структуре. Следовательно, полностью исключаются электроотрицательные смещения. Влияние всех исключений ограничивает магнитные заряды до небольшого числа элементов.

    Первым элементом, способным принимать магнитный заряд в обычном состоянии, является железо . Такое положение №1 особенно благоприятно для намагничивания, поэтому железо до сих пор остается самым магнитным из элементов. Два следующих элемента, кобальт и никель , тоже магнитные, поскольку их электрическое смещение обычно положительное. В особых условиях смещения хрома (6) и магния (7) увеличиваются соответственно до 8 и 9 с помощью переориентации относительно новой нулевой точки, что объяснялось в томе 1 книги Д. Ларсона. Тогда эти элементы тоже способны принимать магнитные заряды.

    Согласно предыдущему объяснению атомных характеристик, требующихся для приема магнитного заряда, другими магнитными элементами являются лишь члены Деления II Группы 4А. Теоретическое ожидание совпадает с наблюдением, но имеются пока необъяснимые различия между магнитным поведением этих элементов и элементов Группы 3А. В Группе 4А магнитная сила меньше. Лишь один из элементов этой группы, гадолиний, магнитен при комнатной температуре, и он не занимает того же положения в группе, что и железо - самый магнитный элемент Группы 3А. Однако самарий, находящийся в положении железа, не играет важной роли во многих магнитных сплавах. Гадолиний находится на два положения выше в атомных сериях, что может указывать на то, что он подвергается модификации, подобной модификации, присущей низшим элементам Группы 3А, но противоположно направленной.

    Если на основании поведения в некоторых сплавах мы приписываем некоторые магнитные свойства ванадию, все элементы Деления II Групп 3А и 4А обладают степенью намагничиваться при надлежащих условиях. Большее число магнитных элементов в Группе 4А – это отражение большего размера 32-х элементов группы, который помещает эти элементы в деление II. В связи с магнитными свойствами редкоземельных элементов Группы 4А имеется ряд еще необъяснимых особенностей в положениях элементов в атомных сериях. Возможно, они связаны с другими еще необъяснимыми отклонениями в поведении этих элементов, которые были замечены при обсуждениях других физических свойств. Магнитные способности элементов деления II и сплавов переносятся в некоторые соединения. Но такие простые соединения как бинарные хлориды, окиси и так далее – не магнитные; то есть, не способны принимать магнитные заряды ферромагнитного типа.

    ЭЛЕКТРОМАГНЕТИЗМ

    Термины “электрический” и “магнитный” введены в работах Д. Ларсона с пониманием того, что они используются как синонимы для соответственно “скалярно одномерного” и “скалярно двумерного”, а не ограничивались относительно узким значением, которое они имеют в повседневной практике. Здесь они используются в тех же смыслах, хотя расширенный объем определений не так очевиден, потому что сейчас мы в основном имеем дело с феноменами, которые обычно называются “электрическими” или “магнитными”. Мы определили одномерное движение незаряженных электронов как электрический ток, одномерную вибрацию вращения – как электрический заряд, двумерную вибрацию вращения – как магнитный заряд . Конкретнее, магнитный заряд – это двумерное вращательно распределенное скалярное движение вибрационного характера .

    Сейчас мы готовы исследовать движения, не являющиеся зарядами, но обладающие некоторыми первичными характеристиками магнитного заряда, то есть они являются двумерными направленными распределенными скалярными движениями.

    Давайте рассмотрим короткий отрезок проводника, по которому будем пропускать электрический ток. Материя, из которой состоит проводник, подвергается действию гравитации - трехмерно распределенному скалярному движению вовнутрь. Как мы видели, ток – это движение пространства (электронов) в материи проводника, эквивалентное скалярному движению материи в пространстве наружу. Таким образом, одномерное движение тока противодействует части скалярного движения гравитации вовнутрь, действующей в скалярном измерении пространственной системы отсчета.

    В этом примере давайте предположим, что два противоположных движения в отрезке проводника равны по величине. Тогда итоговое скалярное измерение равно нулю. От начального трехмерного гравитационного движения остается вращательно распределенное скалярное движение в двух других скалярных измерениях . Поскольку оставшееся движение скалярное и двумерное, оно магнитное и известно как электромагнетизм . Обычно гравитационное движение в измерении тока лишь частично нейтрализуется потоком тока, но это не меняет природы результата, а просто уменьшает величину магнитного влияния.

    Из вышеприведенного объяснения видно, что электромагнетизм – это остаток гравитационного движения, который остается после того, как все или часть движения в одном из трех гравитационных измерений нейтрализуется противоположно направленным движением электрического тока . Следовательно, двумерное скалярное движение перпендикулярно потоку тока . Поскольку гравитационное движение в двух измерениях не подвергается влиянию движения электрического тока наружу, оно обладает скалярным направлением вовнутрь.

    Во всех случаях магнитный эффект проявляется намного больше, чем гравитационный, который убирается, если рассматривается в контексте нашей гравитационно связанной системы отсчета. Это не означает, что ток создает нечто. Происходит следующее. Определенные движения преобразуются в другие виды движений, более сконцентрированных в системе отсчета. И чтобы удовлетворить требованиям новой ситуации, привносится энергия извне. Как указывалось, разница, которую мы наблюдаем между величинами движений с разными числами действующих измерений, - это искусственный результат нашего расположения в гравитационно связанной системе, расположения, сильно увеличивающего размер . С точки зрения естественной системы отсчета, системы, к которой реально приспосабливается вселенная, основные единицы не зависят от измерений; то есть 1³ = 1² = 1. Но благодаря нашему асимметричному расположению во вселенной, естественная единица скорости, s/t, принимает бо льшую величину, 3x10 10 см/сек. Она становится коэффициентом измерения, который входит в каждое соотношение между величинами разных измерений .

    Например, термин c² (квадрат 3x10 10) в уравнении Эйнштейна для отношения между массой и энергией отражает коэффициент, относящийся к двум скалярным измерениям, отделяющим массу (t³/s³) от энергии (t/s). Аналогично, разница в одно измерение между двумерным магнитным влиянием и трехмерным гравитационным влиянием делает магнитное влияние в 3x10 10 раза больше (если выражено в системе сгс). Магнитное влияние меньше, чем одномерное электрическое влияние на тот же самый коэффициент. Из этого следует, что магнитная единица заряда или электромагнитная единица, определенная магнитным эквивалентом закона Кулона, в 3x10 10 раз больше, чем электрическая единица или электростатическая единица. Электрическая единица 4,80287x10 -10 электростатических единиц эквивалентна 1,60206x10 -20 электромагнитных единиц.

    Относительные скалярные направления сил между элементами тока противоположны направлениям сил, создаваемых электрическими и магнитными зарядами, как показано на рисунке 23, который следует сравнить с рисунком 22. Электромагнитные движения вовнутрь направлены к нулевым точкам, из которых движения зарядов направлены наружу. Два проводника, несущие ток в том же направлении, AB или A’B, аналогично одноименным зарядам, движутся друг к другу, как показано линией (а) на схеме, а не отталкиваются друг от друга, как это делают одноименные заряды. Два проводника, несущие ток в направлении BA или B’A, как показано на линии (с), тоже движутся друг к другу. Но проводники, несущие ток в противоположных направлениях, AB’ и BA’, аналогично разноименным зарядам, отталкиваются друг от друга, как указано на линии (b).

    Такие различия в возникновении и скалярном направлении между двумя видами магнетизма проявляются и другими способами. В нашем исследовании данных тем будет удобнее рассматривать отношения силы с другой точки зрения. До сих пор наше обсуждение вращательно распределенных скалярных движений – гравитационного, электрического и магнитного – проходило в терминах сил, оказываемых отдельными объектами, по существу, точечными источниками рассматриваемых влияний. Сейчас, в электромагнетизме, мы имеем дело с протяженными источниками. На самом деле они являются протяженными совокупностями дискретных источников, поскольку все физические феномены существуют в форме дискретных единиц. Следовательно, было бы возможно работать с электромагнитными влияниями так же, как с влияниями, возникающими за счет легче определяемых точечных источников, но такой подход к протяженным источникам сложен и труден. Значительное упрощение достигается введением концепции поля.

    Такой подход применим и к более простым гравитационным и электрическим феноменам. Конечно, сейчас это модный способ иметь дело со всеми (видимыми) взаимодействиями, хотя к дискретным источникам лучше подходит альтернативный подход. Исследуя базовую природу полей, мы можем рассмотреть ситуацию с гравитацией, которая во многих отношениях является самым простым из феноменов. Как мы знаем, масса А обладает движением АБ по направлению к массе Б, находящейся поблизости. Это движение неотъемлемо неотличимо от движения БА атома Б. В той степени, в какой реальному движению массы А препятствует инерция, движение объекта А появляется в системе отсчета как движение объекта Б, составляющее прибавление к реальному движению этого объекта.

    Величина гравитационного движения массы А, приписанного массе Б, определяется как произведение масс А и Б, деленное на расстояние между двумя массами, поскольку является движением массы Б, если скалярное движение АБ рассматривается как движение обоих объектов. Из этого следует, что каждому пространственному положению вблизи от объекта А можно присвоить величину и направление, указывая способ, каким масса размером в единицу двигалась бы под влиянием гравитационной силы объекта А, если бы занимала это расположение. Соединение расположений и соответствующих векторов сил составляет гравитационное поле объекта А . Аналогично, распределение движения электрических или магнитных зарядов определяет электрическое или магнитное поле в пространстве, окружающем заряд.

    Математическое выражение объяснения поля массы или заряда идентично тому, которое появляется в ныне принятой физической теории, но его концептуальная основа совсем другая . Традиционная точка зрения такова. Поле – это “нечто физически реальное в пространстве” вокруг возбуждающего объекта, а сила физически передается от одного объекта другому этим “нечто”. Однако после критического анализа ситуации П. У Бриджмен пришел к выводу об отсутствии свидетельства, оправдывающего допущение, что это “нечто” реально существует. Мы находим, что поле – это не “нечто физическое” . Это просто математическое следствие неспособности традиционной системы отсчета представлять истинный характер скалярного движения. Но осознание истинного статуса как математического приема не лишает его полезности. Полевой подход остается самым простым и наиболее удобным способом математически иметь дело с магнетизмом.

    Поле магнитного заряда определяется в терминах силы, действующей на пробный магнит. Поле магнитного полюса, например, одного конца длинного стержневого магнита, радиально. Как можно видеть из описания возникновения магнетизма в предыдущих параграфах, поле провода, несущего электрический ток, тоже было бы радиальным (в двух измерениях), если бы определялось в терминах силы, действующей на элемент тока в параллельном проводнике. Привычно определять магнитное поле на основе электростатики: то есть, силой, действующей на магнит или электромагнит в форме катушки, соленоид, который создает радиальное поле так же, как стержневой магнит посредством геометрической компоновки. Если поле несущего ток провода определяется именно так, оно окружает провод, а не растягивается радиально. Тогда сила, действующая на пробный магнит перпендикулярна полю и направлению потока тока.

    Это прямой вызов физической теории, очевидное нарушение повсеместно применяемых физических принципов. Физика никогда не встречалась с таким вызовом. Физики не способны даже выдвинуть правдоподобную гипотезу. Поэтому они просто отмечают аномалию, “странную” характеристику магнитного эффекта. “Магнитная сила обладает странно направленным характером, - говорит Ричард Фейнман. - В каждом примере, сила всегда пребывает под прямыми углами к вектору скорости” . Однако перпендикулярная связь между направлением движения тока и направлением силы не казалась бы странной, если бы взаимодействовали магниты с магнитами и токи с токами . В этом случае магнитное влияние тока на ток все еще пребывало бы “под прямыми углами к вектору скорости”, но в направлении поля, а не перпендикулярно к нему, поскольку поле определялось бы в терминах действия тока на ток . В случае взаимодействия тока с магнитом результирующая сила перпендикулярна магнитному полю, то есть, вектору напряженности поля . Пробный магнит в электромагнитном поле не движется в направлении поля, как можно было бы ожидать, а в перпендикулярном направлении.

    “Заметьте, какое странное направление силы. Оно не совпадает ни с полем, ни с направлением тока. Вместо этого сила перпендикулярна и току и линиям поля”.

    Использование слова “странный” в данном утверждении – это неявное признание, что причина перпендикулярного направления не понята в контексте современной физической теории. И вновь, развитие вселенной движения предлагает упущенную информацию. Ключ к пониманию ситуации – осознание разницы между скалярным направлением движения (силой) магнитного заряда наружу и электромагнитным движением вовнутрь .

    Очевидно, что движение электрического тока происходит в одном из скалярных измерений, отличного от измерения, представленного в пространственной системе отсчета, поскольку направление потока тока обычно не совпадает с направлением движения проводника. Следовательно, магнитный остаток состоит из движения в другом ненаблюдаемом измерении и в измерении системы отсчета. Если магнитное влияние одного тока взаимодействует с магнитным влиянием другого, измерение движения тока А, параллельного измерению системы отсчета, совпадает с соответствующим измерением тока Б. Результат – единая сила, сила взаимного притяжения или отталкивания, уменьшающая или увеличивающая расстояние между А и Б. Но если взаимодействие происходит между током А и магнитом В, измерения, параллельные системе отсчета, не могут совпадать, поскольку движение (и соответствующая сила) тока А происходит в скалярном направлении вовнутрь, а движение магнита В происходит в скалярном направлении наружу.

    Можно поинтересоваться, почему движения вовнутрь и наружу не могут сочетаться на положительном или отрицательном основании с итоговой результирующей, равной разности. Причина в том, что движение вовнутрь проводника А к магниту В является одновременно движением В к А, поскольку скалярное движение – это обоюдный процесс . Движение магнита наружу похоже на движение В от А и движение А от В. Из этого следует, что два отдельных движения обоих объектов, одно вовнутрь, другое наружу, не являются комбинацией движения вовнутрь одного объекта и движением наружу другого объекта. Из этого следует, что два движения должны происходить в разных скалярных измерениях . Поэтому сила, действующая на элемент тока в магнитном поле (силовой аспект движения в измерении системы отсчета), перпендикулярна полю .

    Эти отношения показаны на рисунке 24. Слева находится один конец стержневого магнита. Магнит создает магнитостатическое (МС) поле, существующее в двух скалярных измерениях. Одно измерение любого скалярного движения должно быть ориентировано так, чтобы совпадать с измерением системы отсчета. Мы будем называть наблюдаемое измерение МС движения - А, пользуясь большой буквой, чтобы продемонстрировать наблюдаемый статус, и представляя МС поле жирной линией. Ненаблюдаемое измерение движение обозначается буквой b и представляется тонкой линией.

    Сейчас мы вводим электрический ток в третье скалярное измерение. Как указывалось выше, его ориентация совпадает с измерением системы отсчета и обозначается буквой С. Ток создает электромагнитное (ЭМ) поле в измерениях а и b, перпендикулярных С. Поскольку МС движение обладает скалярным направлением наружу, в то время как ЭМ движение направлено вовнутрь, скалярные измерения движений, совпадающие с измерением системы отсчета, не могут быть одними и теми же. Поэтому измерениями ЭМ движения являются В и а; то есть, наблюдаемый результат взаимодействия между двумя видами магнитного движения находится в измерении В, перпендикулярном к МС полю и току С.

    Последние материалы раздела:

    Чудеса Космоса: интересные факты о планетах Солнечной системы
    Чудеса Космоса: интересные факты о планетах Солнечной системы

    ПЛАНЕТЫ В древние времена люди знали только пять планет: Меркурий, Венера, Марс, Юпитер и Сатурн, только их можно увидеть невооруженным глазом....

    Реферат: Школьный тур олимпиады по литературе Задания
    Реферат: Школьный тур олимпиады по литературе Задания

    Посвящается Я. П. Полонскому У широкой степной дороги, называемой большим шляхом, ночевала отара овец. Стерегли ее два пастуха. Один, старик лет...

    Самые длинные романы в истории литературы Самое длинное литературное произведение в мире
    Самые длинные романы в истории литературы Самое длинное литературное произведение в мире

    Книга длинной в 1856 метровЗадаваясь вопросом, какая книга самая длинная, мы подразумеваем в первую очередь длину слова, а не физическую длину....