Сохранить минимальные погрешности результатов измерений. Как рассчитать погрешность прямых измерений? Измерения и их классификация

Истинное значение физической величины – значение физической величины, которое идеальным образом отражало бы в количественном и качественном отношениях соответствующее свойство объекта.

Результат любого измерения отличается от истинного значения физической величины на некоторое значение, зависящее от точности средств и методов измерения, квалификации оператора, условий, в которых проводилось измерение, и т. д. Отклонение результата измерения от истинного значения физической величины называется погрешностью измерения .

Поскольку определить истинное значение физической величины в принципе невозможно, так как это потребовало бы применения идеально точного средства измерений, то на практике вместо понятия истинного значения физической величины применяют понятие действительного значения измеряемой величины , которое настолько точно приближается к истинному значению, что может быть использовано вместо него. Это может быть, например, результат измерения физической величины образцовым средством измерения.

Абсолютная погрешность измерения (Δ) – это разность между результатом измерения х и действительным (истинным) значением физической величины х и:

Δ = х х и. (2.1)

Относительная погрешность измерения (δ) – это отношение абсолютной погрешности к действительному (истинному) значению измеряемой величины (часто выраженное в процентах):

δ = (Δ / х и)·100 % (2.2)

Приведенная погрешность (γ) – это выраженное в процентах отношение абсолютной погрешности к нормирующему значению Х N – условно принятому значению физической величины, постоянному во всем диапазоне измерений:

γ = (Δ /Х N )·100 % (2.3)

Для приборов с нулевой отметкой на краю шкалы нормирующее значение Х N равно конечному значению диапазона измерений. Для приборов с двухсторонней шкалой, т. е. с отметками шкалы, расположенными по обе стороны от нуля значение Х N равно арифметической сумме модулей конечных значений диапазона измерения.

Погрешность измерения (результирующая погрешность ) является суммой двух составляющих: систематической и случайной погрешностей.

Систематическая погрешность – это составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины. Причинами появления систематической погрешности могут являться неисправности средств измерений, несовершенство метода измерений, неправильная установка измерительных приборов, отступление от нормальных условий их работы, особенности самого оператора. Систематические погрешности в принципе могут быть выявлены и устранены. Для этого требуется проведение тщательного анализа возможных источников погрешностей в каждом конкретном случае.

Систематические погрешности подразделяются на:

    методические;

    инструментальные;

    субъективные.

Методические погрешности происходят от несовершенства метода измерения, использования упрощающих предположений и допущений при выводе применяемых формул, влияния измерительного прибора на объект измерения. Например, измерение температуры с помощью термопары может содержать методическую погрешность, вызванную нарушением температурного режима объекта измерения вследствие внесения термопары.

Инструментальные погрешности зависят от погрешностей применяемых средств измерения. Неточность градуировки, конструктивные несовершенства, изменения характеристик прибора в процессе эксплуатации и т. д. являются причинами основных погрешностей инструмента измерения.

Субъективные погрешности вызываются неправильными отсчетами показаний прибора человеком (оператором). Например, погрешность от параллакса, вызванная неправильным направлением взгляда при наблюдении за показаниями стрелочного прибора. Использование цифровых приборов и автоматических методов измерения позволяет исключить такого рода погрешности.

Во многих случаях систематическую погрешность в целом можно представить как сумму двух составляющих: аддитивной ( а) и мультипликативной ( м).

Если реальная характеристика средства измерения смещена относительно номинальной так, что при всех значениях преобразуемой величины Х выходная величина Y оказывается больше (или меньше) на одну и ту же величину Δ, то такая погрешность называется аддитивной погрешностью нуля (рис. 2.1).

Мультипликативная погрешность – это погрешность чувствительности средства измерения.

Такой подход позволяет легко скомпенсировать влияние систематической погрешности на результат измерения путем введения раздельных поправочных коэффициентов для каждой из этих двух составляющих.

Рис. 2.1. К пояснению понятий аддитивной

и мультипликативной погрешностей

Случайная погрешность ( с) – это составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Наличие случайных погрешностей выявляется при проведении ряда измерений постоянной физической величины, когда оказывается, что результаты измерений не совпадают друг с другом. Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения.

Во многих случаях влияние случайных погрешностей можно уменьшить путем выполнения многократных измерений с последующей статистической обработкой полученных результатов.

В некоторых случаях оказывается, что результат одного измерения резко отличается от результатов других измерений, выполненных при тех же контролируемых условиях. В этом случае говорят о грубой погрешности (промахе измерения). Причиной могут послужить ошибка оператора, возникновение сильной кратковременной помехи, толчок, нарушение электрического контакта и т. д. Такой результат, содержащий грубую погрешность необходимо выявить, исключить и не учитывать при дальнейшей статистической обработке результатов измерений.

Причины возникновения погрешностей измерений

Имеется ряд слагаемых погрешностей, которые являются доминирующими в общей погрешности измерений. К ним относятся:

    Погрешности, зависящие от средств измерений . Нормируемую допустимую погрешность средства измерения следует рассматривать как погрешность измерения при одном из возможных вариантов использования этого средства измерения.

    Погрешности, зависящие от установочных мер. Установочные меры могут быть универсальными (концевые меры) и специальными (изготовленными по виду измеряемой детали). Погрешность измерения будет меньшее, если установочная мера будет максимально подобна измеряемой детали о конструкции, массе, материалу, его физическим свойствам, способу базирования и т. д. Погрешности от концевых мер длины возникают из-за погрешности изготовления или погрешности аттестации, а также из-за погрешности их притирки.

    Погрешности, зависящие от измерительного усилия . При оценке влияния измерительного усилия на погрешность измерения необходимо выделить упругие деформации установочного узла и деформации в зоне контакта измерительного наконечника с деталью.

    Погрешности, происходящие от температурных деформаций . Погрешности возникают из-за разности температур объекта измерения и измерительного средства. Существует два основных источника, обуславливающих погрешность от температурных деформаций: отклонение температуры воздуха от 20 °С и кратковременные колебания температуры воздуха в процессе измерения.

    Погрешности, зависящие от оператора (субъективные погрешности). Возможны четыре вида субъективных погрешностей:

    погрешность отсчитывания (особенно важна, когда обеспечивается погрешность измерения, не превышающая цену деления);

    погрешность присутствия (проявляется в виде влияния теплоизлучения оператора на температуру окружающей среды, а тем самым и на измерительное средство);

    погрешность действия (вносится оператором при настройке прибора);

    профессиональные погрешности (связаны с квалификацией оператора, с отношением его к процессу измерения).

    Погрешности при отклонениях от правильной геометрической формы .

    Дополнительные погрешности при измерении внутренних размеров .

При характеристике погрешностей средств измерений часто пользуются

понятием предела допускаемой погрешности средств измерений.

Предел допускаемой погрешности средства измерений – это наибольшая, без учета знака, погрешность средства измерений, при котором оно может быть признано и допущено к применению. Определение применимо к основной и дополнительной погрешности средств измерений.

Учет всех нормируемых метрологических характеристик средств измерений является сложной и трудоемкой процедурой. На практике такая точность не нужна. Поэтому для средств измерений, используемых в повседневной практике, принято деление на классы точности , которые дают их обобщенную метрологическую характеристику.

Требования к метрологическим характеристикам устанавливаются в стандартах на средства измерений конкретного типа.

Классы точности присваиваются средствам измерений с учетом результатов государственных приемочных испытаний.

Класс точности средства измерений – обобщенная характеристика средства измерений, определяемая пределами допускаемых основных и дополнительных погрешностей. Класс точности может выражаться одним числом или дробью (если аддитивная и мультипликативная погрешности сопоставимы – например, 0,2/0,05 – адд./мульт.).

Обозначения классов точности наносятся на циферблаты, щитки и корпуса средств измерений, приводятся в нормативно-технических документах. Классы точности могут обозначаться буквами (например, М, С и т. д.) или римскими цифрами (I, II, III и т. д.). Обозначение классов точности по ГОСТу 8.401-80 может сопровождаться дополнительными условными знаками:

Примеры обозначения классов точности приведены на рис. 2.2.

Рис. 2.2. Лицевые панели приборов:

а – вольтметра класса точности 0,5; б – амперметра класса точности 1,5;

в – амперметра класса точности 0,02/0,01;

г – мегомметра класса точности 2,5 с неравномерной шкалой

Метрологическая надежность средств измерения

В процессе эксплуатации любого средства измерения может возникнуть неисправность или поломка, называемые отказом .

Метрологическая надежность средств измерения – это свойство средств измерений сохранять установленные значения метрологических характеристик в течение определенного времени при нормальных режимах и рабочих условиях эксплуатации. Она характеризуется интенсивностью отказов, вероятностью безотказной работы и наработкой на отказ.

Интенсивность отказов определяется выражением:

где L – число отказов; N – число однотипных элементов; ∆t – промежуток времени.

Для средств измерения, состоящего из n типов элементов, интенсивность отказов рассчитывается как

где m i – количество элементов i -го типа.

Вероятность безотказной работы :

(2.3)

Наработка на отказ :

Для внезапного отказа, интенсивность отказов которого не зависит от времени работы средства измерения:

(2.5)

Межповерочный интервал , в течение которого обеспечивается заданная вероятность безотказной работы, определяется по формуле:

где P мо – вероятность метрологического отказа за время между поверками; P (t ) – вероятность безотказной работы.

В процессе эксплуатации может производиться корректировка межповерочного интервала.

Поверка средств измерения

В основе обеспечения единообразия средств измерений лежит система передачи размера единицы измеряемой величины. Технической формой надзора за единообразием средств измерений является государственная (ведомственная) поверка средств измерений , устанавливающая их метрологическую исправность.

Поверка – определение метрологическим органом погрешностей средства измерений и установление его пригодности к применению.

Пригодным к применению в течение определенного межповерочного интервала времени признают те СИ, поверка которых подтверждает их соответствие метрологическим и техническим требованиям к данному СИ.

Средства измерений подвергают первичной, периодической, внеочередной, инспекционной и экспертной поверкам.

Первичной поверке подвергаются СИ при выпуске из производства или ремонта, а также СИ, поступающие по импорту.

Периодической поверке подлежат СИ, находящиеся в эксплуатации или на хранении через определенные межповерочные интервалы, установленные с расчетом обеспечения пригодности к применению СИ на период между поверками.

Инспекционную поверку производят для выявления пригодности к применению СИ при осуществлении госнадзора и ведомственного метрологического контроля за состоянием и применением СИ.

Экспертную поверку выполняют при возникновении спорных вопросов по метрологическим характеристикам (MX), исправности СИ и пригодности их к применению.

Достоверная передача размера единиц во всех звеньях метрологической цепи от эталонов или от исходного образцового средства измерений к рабочим средствам измерений производится в определенном порядке, приведенном в поверочных схемах.

Поверочная схема – это утвержденный в установленном порядке документ, регламентирующий средства, методы и точность передачи размера единицы физической величины от государственного эталона или исходного образцового средства измерений рабочим средствам.

Различают государственные, ведомственные и локальные поверочные схемы органов государственной или ведомственных метрологических служб.

Государственная поверочная схема распространяется на все средства измерений данной ФВ, имеющиеся в стране. Устанавливая многоступенчатый порядок передачи размера единицы ФВ от государственного эталона, требования к средствам и методам поверки, государственная поверочная схема представляет собой структуру метрологического обеспечения определённого вида измерений в стране. Эти схемы разрабатываются главными центрами эталонов и оформляются одним ГОСТом ГСИ.

Локальные поверочные схемы распространяются на средства измерений, подлежащие поверке в данном метрологическом подразделении на предприятии, имеющем право поверки средств измерений, и оформляются в виде стандарта предприятия. Ведомственные и локальные поверочные схемы не должны противоречить государственным и должны учитывать их требования применительно к специфике конкретного предприятия.

Ведомственная поверочная схема разрабатывается органом ведомственной метрологической службы, согласовывается с главным центром эталонов – разработчиком государственной поверочной схемы средств измерений данной ФВ и распространяется только на средства измерений, подлежащие внутриведомственной поверке.

Поверочная схема устанавливает передачу размера единиц одной или нескольких взаимосвязанных величин. Она должна включать не менее двух ступеней передачи размера. Поверочную схему для СИ одной и той же величины, существенно отличающихся по диапазонам измерений, условиям применения и методам поверки, а также для СИ нескольких ФВ допускается подразделять на части. На чертежах поверочной схемы должны быть указаны:

    наименования СИ и методов поверки;

    номинальные значения ФВ или их диапазоны;

    допускаемые значения погрешностей СИ;

    допускаемые значения погрешностей методов поверки. Правила расчета параметров поверочных схем и оформления чертежей поверочных схем приведены в ГОСТ 8.061-80 "ГСИ. Поверочные схемы. Содержание и построение" и в рекомендациях МИ 83-76 "Методика определения параметров поверочных схем".

Калибровка средств измерения

Калибровка средства измерений – это совокупность операций, выполняемых калибровочной лабораторией с целью определения и подтверждения действительных значений метрологических характеристик и (или) пригодности средства измерений к применению в сферах, не подлежащих государственному метрологическому контролю и надзору в соответствии с установленными требованиями.

Результаты калибровки средств измерений удостоверяются калибровочным знаком , наносимым на средства измерений, или сертификатом о калибровке, а также записью в эксплуатационных документах .

Поверку (обязательная госповерка) может выполнять, как правило, орган государственной метрологической службы, а калибровку – любая аккредитованная и неаккредитованная организация.

Поверка обязательна для средств измерений, применяемых в сферах, подлежащих государственному метрологическому контролю (ГМК), калибровка же – процедура добровольная, поскольку относится к средствам измерений, не подлежащим ГМК. Предприятие вправе самостоятельно решать вопрос о выборе форм и режимов контроля состояния средств измерений, за исключением тех областей применения средств измерений, за которыми государства всего мира устанавливают свой контроль – это здравоохранение, безопасность труда, экология и др.

Освободившись от государственного контроля, предприятия попадают под не менее жёсткий контроль рынка. Это означает, что свобода выбора предприятия по «метрологическому поведению» является относительной, все равно необходимо соблюдать метрологические правила.

В развитых странах устанавливает и контролирует исполнение этих правил негосударственная организация, именуемая «национальной калибровочной службой». Эта служба берёт на себя функции регулирования и разрешения вопросов, связанных со средствами измерений, не подпадающими под контроль государственных метрологических служб.

Желание иметь конкурентоспособную продукцию побуждает предприятия иметь измерительные средства, дающие достоверные результаты.

Внедрение системы сертификации продукции дополнительно стимулирует поддержание измерительных средств на соответствующем уровне. Это согласуется с требованиями систем качества, регламентируемыми стандартами ИСО серии 9000.

Построение Российской системы калибровки (РСК) основывается на следующих принципах:

    добровольность вступления;

    обязательность получения размеров единиц от государственных эталонов;

    профессионализм и компетентность персонала;

    самоокупаемость и самофинансирование.

Основное звено РСК – калибровочная лаборатория. Она представляет собой самостоятельное предприятие или подразделение в составе метрологической службы предприятия, которое может осуществлять калибровку средств измерений для собственных нужд или для сторонних организаций. Если калибровка проводится для сторонних организаций, то калибровочная лаборатория должна быть аккредитована органом РСК. Аккредитацию осуществляют государственные научные метрологические центры или органы Государственной метрологической службы в соответствии со своей компетенцией и требованиями, установленными в ГОСТе 51000.2-95 «Общие требования к аккредитующему органу».

Порядок аккредитации метрологической службы утвержден постановлением Госстандарта РФ от 28 декабря 1995 г. № 95 «Порядок аккредитации метрологических служб юридических лиц на право проведения калибровочных работ».

Методы поверки (калибровки) средств измерения

Допускается применение четырех методов поверки (калибровки) средств измерений:

    непосредственное сличение с эталоном;

    сличение с помощью компаратора;

    прямые измерения величины;

    косвенные измерения величины.

Метод непосредственного сличения поверяемого (калибруемого) средства измерения с эталоном соответствующего разряда широко применяется для различных средств измерений в таких областях, как электрические и магнитные измерения, для определения напряжения, частоты и силы тока. В основе метода лежит проведение одновременных измерений одной и той же физической величины поверяемым (калибруемым) и эталонным приборами. При этом определяют погрешность как разницу показаний поверяемого и эталонного средств измерений, принимая показания эталона за действительное значение величины. Достоинства этого метода в его простоте, наглядности, возможности применения автоматической поверки (калибровки), отсутствии потребности в сложном оборудовании.

Метод сличения с помощью компаратора основан на использовании прибора сравнения, с помощью которого сличаются поверяемое (калибруемое) и эталонное средства измерения. Потребность в компараторе возникает при невозможности сравнения показаний приборов, измеряющих одну и ту же величину, например, двух вольтметров, один из которых пригоден для постоянного тока, а другой – переменного. В подобных ситуациях в схему поверки (калибровки) вводится промежуточное звено – компаратор. Для приведенного примера потребуется потенциометр, который и будет компаратором. На практике компаратором может служить любое средство измерения, если оно одинаково реагирует на сигналы как поверяемого (калибруемого), так и эталонного измерительного прибора. Достоинством данного метода специалисты считают последовательное во времени сравнение двух величин.

Метод прямых измерений применяется, когда имеется возможность сличить испытуемый прибор с эталонным в определенных пределах измерений. В целом этот метод аналогичен методу непосредственного сличения, но методом прямых измерений производится сличение на всех числовых отметках каждого диапазона (и поддиапазонов, если они имеются в приборе). Метод прямых измерений применяют, например, для поверки или калибровки вольтметров постоянного электрического тока.

Метод косвенных измерений используется, когда действительные значения измеряемых величин невозможно определить прямыми измерениями либо когда косвенные измерения оказываются более точными, чем прямые. Этим методом определяют вначале не искомую характеристику, а другие, связанные с ней определенной зависимостью. Искомая характеристика определяется расчетным путем. Например, при поверке (калибровке) вольтметра постоянного тока эталонным амперметром устанавливают силу тока, одновременно измеряя сопротивление. Расчетное значение напряжения сравнивают с показателями калибруемого (поверяемого) вольтметра. Метод косвенных измерений обычно применяют в установках автоматизированной поверки (калибровки).

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т.д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т.е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от с до
с. Таким образом, измеряемая величина всегда содержит в себе некоторую погрешность
, где и X – соответственно истинное и измеренное значения исследуемой величины. Величина
называется абсолютной погрешностью (ошибкой) измерения, а выражение
, характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т.д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т.д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т.п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2 . Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна
мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙10 3 кг/м 3 , то абсолютная погрешность в этом случае равна
кг/м 3 .

Некоторые особенности в расчете приборных погрешностей электроизмерительных приборов будут рассмотрены ниже.

При определении систематической (приборной) погрешности косвенных измерений функциональной величины
используется формула

, (1)

где - приборные ошибки прямых измерений величины , - частные производные функции по переменной .

В качестве примера, получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным d и h будут равны

,
.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с (2. ..) имеет следующий вид

,

где
и
приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

Ля подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса) , выведенный из следующих эмпирических положений.

    погрешности измерений могут принимать непрерывный ряд значений;

    при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

    чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

, (2)

где
- функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки
, σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где - результат i -го измерения; - среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде
.

Интервал значений от
до
, в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

. (4)

Распределение вероятностей этой величины не зависит от σ 2 , а существенно зависит от числа опытов n . С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

Таблица 1.

Пользуясь данными таблицы, можно:

    определить доверительный интервал, задаваясь определенной вероятностью;

    выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений
рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

. (8)


.

.

    Определяется суммарная погрешность

    Оценивается относительная погрешность результата измерений

.

    Записывается окончательный результат в виде

, с α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины , являющейся функцией других независимых величин
, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется
, а затем определяется среднее арифметическое из всех значений y i

. (9)

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений. В этом случае величина рассчитывается по средним значениям . В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y . Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y . Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Порядок выполнения работы

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

№ измерения

;

Абсолютная погрешность

;
.

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

, Е = 0,5%.

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование, интегрирование, решение уравнения и др.

Рафики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т.е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

Документ

От конкретных условий, требований и возможностей оценки погрешности результатов измерений . Согласно общим положениям информационной теории...

  • Погрешности измерений

    Документ

    В.И.Ивероновой. М., Наука, 1967. 4. П.В.Новицкий, И.А.Зограф. Оценка погрешностей результатов измерений . Л., Энергоатомиздат, 1991. 5. Лабораторные работы по...

  • Методические указания по определению погрешностей при измерениях в лабораторном практикуме по физике

    Методические указания

    ... измерения искомой вели­чины в обязательном порядке входит оценка погрешности полу­ченного результата . Без такой оценки результат ... значение абсолютной погрешности и сам результат измерений . Как правило, точность оценки погрешности оказывается очень...

  • Погрешности измерений физических величин

    1.Введение(измерения и погрешности измерений)

    2.Случайные и систематические погрешности

    3.Абсолютные и относительные погрешности

    4.Погрешности средств измерений

    5.Класс точности электроизмерительных приборов

    6.Погрешность отсчета

    7.Полная абсолютная погрешность прямых измерений

    8.Запись окончательного результата прямого измерения

    9.Погрешности косвенных измерений

    10.Пример

    1. Введение(измерения и погрешности измерений)

    Физика как наука родилась более 300 лет назад, когда Галилей по сути создал научный изучения физических явлений: физические законы устанавливаются и проверяются экспериментально путем накопления и сопоставления опытных данных, представляемых набором чисел, формулируются законы языком математики, т.е. с помощью формул, связывающих функциональной зависимостью числовые значения физических величин. Поэтому физика- наука экспериментальная, физика- наука количественная.

    Познакомимся с некоторыми характерными особенностями любых измерений.

    Измерение- это нахождение числового значения физической величины опытным путем с помощью средств измерений (линейки, вольтметра, часы и т.д.).

    Измерения могут быть прямыми и косвенными.

    Прямое измерение- это нахождение числового значения физической величины непосредственно средствами измерений. Например, длину - линейкой, атмосферное давление- барометром.

    Косвенное измерение- это нахождение числового значения физической величины по формуле, связывающей искомую величину с другими величинами, определяемыми прямыми измерениями. Например сопротивление проводника определяют по формуле R=U/I, где U и I измеряются электроизмерительными приборами.

    Рассмотрим пример измерения.



    Измерим длину бруска линейкой (цена деления 1 мм). Можно лишь утверждать, что длина бруска составляет величину между 22 и 23 мм. Ширина интервала “неизвестности составляет 1мм, те есть равна цене деления. Замена линейки более чувствительным прибором, например штангенциркулем снизит этот интервал, что приведет к повышению точности измерения. В нашем примере точность измерения не превышает 1мм.

    Поэтому измерения никогда не могут быть выполнены абсолютно точно. Результат любого измерения приближенный. Неопределенность в измерении характеризуется погрешностью - отклонением измеренного значения физической величины от ее истинного значения.

    Перечислим некоторые из причин, приводящих к появлению погрешностей.

    1. Ограниченная точность изготовления средств измерения.

    2. Влияние на измерение внешних условий (изменение температуры, колебание напряжения...).

    3. Действия экспериментатора (запаздывание с включением секундомера, различное положение глаза...).

    4. Приближенный характер законов, используемых для нахождения измеряемых величин.

    Перечисленные причины появления погрешностей неустранимы, хотя и могут быть сведены к минимуму. Для установления достоверности выводов, полученных в результате научных исследований существуют методы оценки данных погрешностей.

    2. Случайные и систематические погрешности

    Погрешности, возникаемые при измерениях делятся на систематические и случайные.

    Систематические погрешности- это погрешности, соответствующие отклонению измеренного значения от истинного значения физической величины всегда в одну сторону (повышения или занижения). При повторных измерениях погрешность остается прежней.

    Причины возникновения систематических погрешностей:

    1) несоответствие средств измерения эталону;

    2) неправильная установка измерительных приборов (наклон, неуравновешенность);

    3) несовпадение начальных показателей приборов с нулем и игнорирование поправок, которые в связи с этим возникают;

    4) несоответствие измеряемого объекта с предположением о его свойствах (наличие пустот и т.д).

    Случайные погрешности- это погрешности, которые непредсказуемым образом меняют свое численное значение. Такие погрешности вызываются большим числом неконтролируемых причин, влияющих на процесс измерения (неровности на поверхности объекта, дуновение ветра, скачки напряжения и т.д.). Влияние случайных погрешностей может быть уменьшено при многократном повторении опыта.

    3. Абсолютные и относительные погрешности

    Для количественной оценки качества измерений вводят понятия абсолютной и относительной погрешностей измерений.

    Как уже говорилось, любое измерение дает лишь приближенное значение физической величины, однако можно указать интервал, который содержит ее истинное значение:

    А пр - D А < А ист < А пр + D А

    Величина D А называется абсолютной погрешностью измерения величины А. Абсолютная погрешность выражается в единицах измеряемой величины. Абсолютная погрешность равна модулю максимально возможного отклонения значения физической величины от измеренного значения. А пр - значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений.

    Но для оценки качества измерения необходимо определить относительную погрешность e . e = D А/А пр или e= (D А/А пр)*100%.

    Если при измерении получена относительная погрешность более 10%, то говорят, что произведена лишь оценка измеряемой величины. В лабораториях физического практикума рекомендуется проводить измерения с относительной погрешностью до 10%. В научных лабораториях некоторые точные измерения (например определение длины световой волны), выполняются с точностью миллионных долей процента.

    4. Погрешности средств измерений

    Эти погрешности называют еще инструментальными или приборными. Они обусловлены конструкцией измерительного прибора, точностью его изготовления и градуировки. Обычно довольствуются о допустимых инструментальных погрешностях, сообщаемых заводом изготовителем в паспорте к данному прибору. Эти допустимые погрешности регламентируются ГОСТами. Это относится и к эталонам. Обычно абсолютную инструментальную погрешность обозначают D иА.

    Если сведений о допустимой погрешности не имеется (например у линейки), то в качестве этой погрешности можно принять половину цены деления.

    При взвешивании абсолютная инструментальная погрешность складывается из инструментальных погрешностей весов и гирь. В таблице приведены допустимые погрешности наиболее часто

    встречающихся в школьном эксперименте средств измерения.

    Средства измерения

    Предел измерения

    Цена деления

    Допустимаяпогрешность

    линейка ученическая

    линейка демонстрационная

    лента измерительная

    мензурка

    гири 10,20, 50 мг

    гири 100,200 мг

    гири 500 мг

    штангенциркуль

    микрометр

    динамометр

    весы учебные

    Секундомер

    1с за 30 мин

    барометр-анероид

    720-780 мм рт.ст.

    1 мм рт.ст

    3 мм рт.ст

    термометр лабораторный

    0-100 градусов С

    амперметр школьный

    вольтметр школьный

    5. Класс точности электроизмерительных приборов

    Стрелочные электроизмерительные приборы по допустимым значениям погрешностям делятся на классы точности, которые обозначены на шкалах приборов числами 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности g пр прибора показывает, сколько процентов составляет абсолютная погрешность от всей шкалы прибора.

    g пр = (D и А/А макс)*100% .

    Например абсолютная инструментальная погрешность прибора класса 2,5 составляет 2,5% от его шкалы.

    Если известен класс точности прибора и его шкала, то можно определить абсолютную инструментальную погрешность измерения

    D иА=( g пр * А макс)/100.

    Для повышения точности измерения стрелочным электроизмерительным прибором надо выбирать прибор с такой шкалой, чтобы в процессе измерения располагались во второй половине шкалы прибора.

    6. Погрешность отсчета

    Погрешность отсчета получается от недостаточно точного отсчитывания показаний средств измерений.

    В большинстве случаев абсолютную погрешность отсчета принимают равной половине цены деления. Исключения составляют измерения стрелочными часами (стрелки передвигаются рывками).

    Абсолютную погрешность отсчета принято обозначать D оА

    7. Полная абсолютная погрешность прямых измерений

    При выполнении прямых измерений физической величины А нужно оценивать следующие погрешности: D иА, D оА и D сА (случайную). Конечно, иные источники ошибок, связанные с неправильной установкой приборов, несовмещение начального положения стрелки прибора с 0 и пр. должны быть исключены.

    Полная абсолютная погрешность прямого измерения должна включать в себя все три вида погрешностей.

    Если случайная погрешность мала по сравнению с наименьшим значением, которое может быть измерено данным средством измерения (по сравнению с ценой деления), то ее можно пренебречь и тогда для определения значения физической величины достаточно одного измерения. В противном случае теория вероятностей рекомендует находить результат измерения как среднее арифметическое значение результатов всей серии многократных измерений, погрешность результата вычислять методом математической статистики. Знание этих методов выходит за пределы школьной программы.

    8. Запись окончательного результата прямого измерения

    Окончательный результат измерения физической величины А следует записывать в такой форме;

    А=А пр + D А, e= (D А/А пр)*100%.

    А пр - значение физической величины, полученное экспериментально, если измерение проводилось многократно, то среднее арифметическое этих измерений. D А- полная абсолютная погрешность прямого измерения.

    Абсолютную погрешность обычно выражают одной значащей цифрой.

    Пример: L=(7,9 + 0,1) мм, e=13%.

    9. Погрешности косвенных измерений

    При обработке результатов косвенных измерений физической величины, связанной функционально с физическими величинами А, В и С, которые измеряются прямым способом, сначала определяют относительную погрешность косвенного измерения e= D Х/Х пр, пользуясь формулами, приведенными в таблице (без доказательств).

    Абсолютную погрешность определяется по формуле D Х=Х пр *e,

    где e выражается десятичной дробью, а не в процентах.

    Окончательный результат записывается так же, как и в случае прямых измерений.

    Вид функции

    Формула

    Х=А+В+С

    Х=А-В


    Х=А*В*С



    Х=А n

    Х=А/В

    Пример: Вычислим погрешность измерения коэффициента трения с помощью динамометра. Опыт заключается в том, что брусок равномерно тянут по горизонтальной поверхности и измеряют прикладываемую силу: она равна силе трения скольжения.

    С помощью динамометра взвесим брусок с грузами: 1,8 Н. F тр =0,6 Н

    μ=0,33.Инструментальная погрешность динамометра (находим по таблице) составляет Δ и =0,05Н, Погрешность отсчета (половина цены деления)

    Δ о =0,05Н.Абсолютная погрешность измерения веса и силы трения 0,1 Н.

    Относительная погрешность измерения (в таблице 5-я строчка)

    , следовательно абсолютная погрешность косвенного измерения μ составляет0,22*0,33=0,074

    Погрешности средств измерений и измерительных каналов средств автоматизации могут быть выражены двумя различными способами: с помощью точечных оценок и с помощью интервальных. К точечным оценкам относится математическое ожидание погрешности и среднеквадратическое отклонение. В качестве интервальной оценки используют интервал погрешности, который охватывает все возможные значения погрешности измерений с вероятностью . Эта вероятность называется доверительной или надежностью оценки погрешности.

    Предел допускаемой погрешности можно рассматривать как точечную оценку или как интервальную для доверительной вероятности , равной единице.

    Интервальная оценка является более гибкой, поскольку она позволяет указать погрешность измерений в зависимости от того, какая требуется вероятность реализации этой погрешности для конкретных условий эксплуатации средства измерений.

    Смысл интервальной оценки погрешности иллюстрируется рис. 4.3 . Здесь использованы следующие обозначения: - погрешность измерения; - плотность распределения погрешностей ; - функция распределения погрешностей, . Для нормального закона распределения погрешностей (закона Гаусса) плотность распределения центрированной случайной величины описывается функцией , где - среднеквадратическая погрешность.

    Если погрешность измерения находится внутри интервала , то вероятность этого события вычисляется как

    Здесь использовано свойство симметрии функции распределения для закона Гаусса.

    Таким образом, если задан интервал , который содержит в себе погрешность измеряемого параметра , то вероятность того, что погрешность не выходит за границы интервала, можно найти по формуле (4.36) для нормального закона распределения. Вероятность называют также надежностью оценки погрешности и обозначают символом :

    .

    Для вычисления функции распределения удобно использовать пакеты MathCAD, Matlab. С их помощью из формулы (4.37) несложно найти величину доверительного интервала , если задана величина надежности .

    Для доверительная вероятность =68,3%; для =95,3%; для =99,7% и для = 99,994%.

    Для увеличения надежности оценки погрешности измерений или для сужения доверительного интервала при заданной надежности можно использовать усреднение результатов многократных измерений . Поскольку оценка среднеквадратической погрешности результата усреднения равна (см. (3.2)), где - среднеквадратическая погрешность средства измерений, - количество однократных измерений, то, подставив в (4.37) вместо величину , получим

    .

    Эта формула позволяет найти количество однократных измерений , которое необходимо усреднить для получения требуемого доверительного интервала при заданной надежности или требуемой надежности при заданном доверительном интервале . Поскольку формула (4.38) задана в неявном виде, для нахождения требуемых неизвестных следует воспользоваться математическими пакетами для компьютерных вычислений.

    Следует иметь в виду, что повышение точности путем усреднения результатов многократных измерений имеет множество ограничений (см. п. "Многократные измерения").

    Проблемой использования интервального метода оценки погрешности является необходимость знания закона распределения погрешностей.

    Отметим, что доверительные интервалы, полученные из рассеяния множества измерений, никак не учитывают систематическую погрешность измерений. Интересные примеры из истории определения расстояния до Солнца, заряда электрона и др. приводятся в книге . Ученые, которые делали эти выдающиеся измерения, указывали доверительные вероятности для оценки точности своих измерений. Однако ни одна из этих оценок не выдержала испытания временем: каждое новое, более точное измерение не укладывается в предсказанный ранее доверительный интервал. Это связано с тем, что систематическую погрешность или наличие ошибки в постановке эксперимента, в учете факторов, о существовании которых мы не знаем, оценить невозможно, не имея более точного измерительного прибора.

    4.1.6. Погрешность метода измерений

    Для выполнения автоматизированных измерений используют датчики и измерительные преобразователи, измерительные модули ввода аналоговых сигналов, обработку результатов измерений на компьютере или в контроллере. При этом на погрешность результата измерений оказывают влияние следующие факторы:

    • сопротивление кабелей;
    • соотношение между входным импедансом средства измерений и выходным импедансом датчика;
    • качество экранирования и заземления, мощность источников помех;
    • погрешность метода косвенных, совместных или совокупных измерений;
    • наличие внешних влияющих факторов, если они не учтены в дополнительной погрешности средства измерений;
    • погрешность обработки результатов измерений программным обеспечением.

    Все погрешности, которые не могут быть учтены в процессе сертификационных испытаний и внесены в паспорт средства измерений, а появляются в конкретных условиях применения, относятся к методическим. В отличие от них, инструментальные погрешности нормируются в процессе производства измерительного прибора и заносятся в его эксплуатационную документацию. Таким образом, если в состав смонтированной автоматизированной измерительной системы входят средства измерений с нормированными погрешностями, то погрешность, вызванная перечисленными выше факторами, является методической. Если же выполняется сертификация всей измерительной системы, то методические погрешности могут быть учтены в погрешности всей системы и тогда они переходят в разряд инструментальных.

    Для расчета или измерения методической погрешности трудно дать общие рекомендации. Каждый конкретный случай требует отдельного рассмотрения.

    4.1.7. Погрешность программного обеспечения

    Погрешность программного обеспечения (ПО) [МИ , МИ ] оценивается как разность между результатами измерений, полученных данным ПО и эталонным ПО. Под эталонным понимается программное обеспечение, высокая точность которого доказана многократными испытаниями и тестированием. Понятие эталонного ПО является условным и определяется соглашением между заказчиком аттестации и исполнителем. В качестве эталонного может быть использовано ранее аттестованное ПО.

    К основным источниками погрешностей ПО относятся:

    • ошибки записи исходного текста программы и ошибки трансляции программы в объектный код;
    • ошибки в алгоритме решения измерительной задачи;
    • ошибки в таблицах для линеаризации нелинейных характеристик преобразования;
    • применение неустойчивых или медленно сходящихся алгоритмов при решении плохо обусловленных измерительных задач;
    • ошибки преобразования форматов данных;
    • ошибки округления и др.

    Надежность (достоверность) ПО обеспечивается средствами защиты от несанкционированных изменений, которые могут явиться причиной появления не учтенных при аттестации погрешностей.

    4.1.8. Достоверность измерений

    В процессе выполнения измерений могут появиться грубые ошибки (промахи), которые делают измерения недостоверными несмотря на применение очень точных измерительных приборов. Здесь под достоверностью понимается степень доверия к полученным результатам. Достоверность может быть низкая при наличии погрешностей, о существовании которых экспериментатор не догадывается. Достоверность при использовании автоматизированных измерительных систем снижается с ростом их сложности и существенно зависит от квалификации персонала проектирующей и монтажной организации.

    Главным методом обеспечения достоверности является сопоставление результатов измерения одной и той же величины разными, не связанными друг с другом способами. Например, после монтажа системы измерения температуры в силосе элеваторе следует сравнить показания автоматизированной системы и автономного контрольного термометра, чтобы убедиться в правильности показаний автоматизированной системы.

    Приведем несколько примеров, иллюстрирующих случаи, когда, несмотря на применение точных средств измерений, получаются совершенно ошибочные данные, вводящие человека в заблуждение.

    Пример 1. Для измерения температуры воздуха в теплице использован датчик температуры с погрешностью ±0,5 ºС. Однако датчик установлен таким образом, что в некоторые часы на него падают прямые лучи солнца, которые нагревают датчик, но не изменяют температуру воздуха. При этом погрешность измерения температуры воздуха может составить +5 ºС, что позволяет квалифицировать результат измерения как недостоверный.

    Пример 2. Для измерения температуры в силосах элеватора установлены точные датчики и сделан тщательный монтаж, но расположенный на крыше элеватора ретранслятор сотовой связи оказался незамеченным и не было принято достаточных мер для защиты от помех. При этом погрешность измерения температуры может составить ±10 ºС вследствие помех, наведенных передатчиком на сигнальных кабелях системы.

    Пример 3. В автоматизированной системе для измерения параметров продукции использован модуль ввода с погрешностью ±0,05%, однако при наладке системы программист по ошибке установил частоту помехоподавляющего режекторного фильтра не 50, а 60 Гц. Объем проведенных приемо-сдаточных испытаний системы не позволил выявить эту ошибку. В результате погрешность измерений вследствие наведенной помехи с частотой 50 Гц может повыситься до ±10% вместо ожидаемых ±0,05%.

    Пример 4. Во время выполнения измерений ваш коллега разговаривал по сотовому телефону. Наводка сигнала от передатчика сотового телефона может повысить погрешность измерений в несколько раз.

    Пример 5. При монтаже системы заземлили экран сигнального кабеля с двух сторон. Объем проведенных приемо-сдаточных испытаний не позволил выявить эту ошибку. Погрешность может увеличиться в несколько раз по сравнению с ожидаемой.

    Пример 6. В процессе эксплуатации системы нарушился контакт в цепи заземления, что привело к эпизодическому повышению уровня помех в измерительной цепи. В статье [Burleson ] приводится пример, когда плохо затянутый болт в цепи заземления приводил к сбоям системы автоматики, причину которого искали несколько лет.

    Пример 7. При расчете погрешности средств измерений была проигнорирована динамическая погрешность, поскольку исходные данные для ее расчета не были указаны в эксплуатационной документации на средство измерения и не были выявлены в процесс приемосдаточных испытаний ввиду сложности постановки эксперимента, отсутствия времени и приборов для контроля величины погрешности. Во время эксплуатации системы фактическая погрешность в несколько раз превышает расчетную.

    В приведенных примерах сложно обнаружить наличие погрешности в процессе сдачи системы в эксплуатацию или она появляется в процессе эксплуатации. Это приводит к снижению достоверности измерений несмотря на высокую инструментальную точность использованных технических средств.

    Общий подход к решению проблемы заключается в применении второй, независимой системы или методики измерений для обнаружения ошибок. Можно использовать также целый комплекс мер, включая подбор персонала, соблюдение графика поверки, тщательность выполнения типовых и сертификационных испытаний системы, соблюдение методики измерений и обслуживания измерительной системы.

    Термин "достоверность " иногда используется во втором его значении - для указания вероятности того, что измеренное значение находится в заданном доверительном интервале [Новицкий ] при условии, что все промахи и ошибки измерительной системы и методики измерений исключены. Количественным выражением достоверности в данном случае является доверительная вероятность . Следует различать эти два значения одного и того же термина.

    Термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов . При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность . Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал , доверительная вероятность, стандартная ошибка).

    В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».

    Определение погрешности

    В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

    • Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
    • Средняя квадратическая погрешность:
    • Средняя квадратическая погрешность среднего арифметического:

    Классификация погрешностей

    По форме представления

    • Абсолютная погрешность - ΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины X m e a s . При этом равенство:

    ΔX = | X t r u e X m e a s | ,

    где X t r u e - истинное значение, а X m e a s - измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина X m e a s распределена по нормальному закону , то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение . Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

    • Относительная погрешность - отношение абсолютной погрешности к тому значению, которое принимается за истинное:

    Относительная погрешность является безразмерной величиной, либо измеряется в процентах .

    • Приведенная погрешность - относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

    где X n - нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

    Если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то X n определяется равным верхнему пределу измерений;
    - если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

    Приведенная погрешность - безразмерная величина (может измеряться в процентах).

    По причине возникновения

    • Инструментальные / приборные погрешности - погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
    • Методические погрешности - погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
    • Субъективные / операторные / личные погрешности - погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

    В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.

    Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.

    Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.

    По характеру проявления

    • Случайная погрешность - погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т.п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
    • Систематическая погрешность - погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
    • Прогрессирующая (дрейфовая) погрешность - непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
    • Грубая погрешность (промах) - погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора, если произошло замыкание в электрической цепи).

    По способу измерения

    • Погрешность прямых измерений
    • Погрешность косвенных измерений - погрешность вычисляемой (не измеряемой непосредственно) величины:

    Если F = F (x 1 ,x 2 ...x n ) , где x i - непосредственно измеряемые независимые величины, имеющие погрешность Δx i , тогда:

    См. также

    • Измерение физических величин
    • Система автоматизированного сбора данных со счетчиков по радиоканалу

    Литература

    • Лабораторные занятия по физике. Учебное пособие/Гольдин Л. Л., Игошин Ф. Ф., Козел С. М. и др.; под ред. Гольдина Л. Л. - М.: Наука. Главная редакция физико-математичекой литературы, 1983. - 704 с.

    Wikimedia Foundation . 2010 .

    Последние материалы раздела:

    Ол взмш при мгу: отделение математики Заочные математические школы для школьников
    Ол взмш при мгу: отделение математики Заочные математические школы для школьников

    Для учащихся 6-х классов: · математика, русский язык (курс из 2-х предметов) - охватывает материал 5-6 классов. Для учащихся 7–11 классов...

    Интересные факты о физике
    Интересные факты о физике

    Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

    Дмитрий конюхов путешественник биография
    Дмитрий конюхов путешественник биография

    Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...