Кристаллы их свойства. Изучение кристаллов с помощью цифрового микроскопа

Теория решётчатого строения кристаллов была создана в середине 19 века французским кристаллографом О. Бравэ, а затем русский кристаллограф академик Е. С. Фёдоров и немецкий учёный А. Шенфлис завершили математическую разработку этой теории. При создании и разработке теории решетчатого строения кристаллов Бравэ, Фёдоров и др. кристаллографы основывались исключительно на некоторых важных свойствах кристаллического вещества.

Основными свойствами кристаллов являются их однородность, анизотропность, способность самоограняться и симметричность.

Однородным обычно называют тело, которое обнаруживает одинаковые свойства во всех своих частях. Кристаллическое тело однородно, т. к. различные участки его имеют одинаковое строение, т. е. одинаковую ориентировку слагающих частиц, принадлежащих одной и той же пространственной решётке. Однородность кристалла следует отличать от однородности жидкости или газа, которая имеет статистический характер.

Анизотропным называется такое однородное тело, которое обладает неодинаковыми свойствами по непараллельным направлениям. Кристаллическое тело анизотропно, т. к. строение пространственной решётки, а значит и самого кристалла, в общем случае неодинаково по непараллельным направлениям. По параллельным же направлениям частицы слагающие кристалл, как и узлы его пространственной решётки, расположены строго одинаковым образом, поэтому и свойства кристалла по таким направлениям должны быть одними и теми же.

Характерный пример резко выраженной анизотропности представляет слюда, кристаллы которой легко расщепляются лишь по одному определённому направлению. В качестве другого яркого примера анизотропности можно привести минерал дистен (AlOAl), у кристаллов которого боковые грани имеют сильно различающиеся значения твердости в продольном и поперечном направлениях. Если из кристалла каменной соли, имеющего форму куба, вырезать стерженьки по разным направлениям, то для разрыва этих стерженьков потребуются разные усилия. Стерженёк, перпендикулярный граням куба, разорвётся при усилии около 570 Г/мм 2 ; для стерженька, параллельного гранным диагоналям, разрывающее усилие составит 1150 Г/мм 2 , а разрыв стерженька, параллельного телесной диагонали куба, произойдет при усилии 2150 Г/мм 2 .

Приведенные примеры, конечно, исключительны по своей характерности. Однако точными исследованиями установлено, что абсолютно все кристаллы в том или ином отношении обладают анизотропностью.

Однородностью и в некоторой степени анизотропностью могут обладать также и аморфные тела. Но ни при каких условиях аморфные вещества не могут сами по себе принимать форму многогранников. Образовываться в виде плоскостных многогранников могут лишь кристаллические тела. В способности самоограняться , т. е. принимать многогранную форму, проявляется наиболее характерный внешний признак кристаллического вещества.

Правильная геометрическая форма кристаллов с давних пор привлекала внимание человека, и её загадочность вызывала в прошлом у людей различные суеверия. Кристаллы таких веществ, как алмаз, изумруд, рубин, сапфир, аметист, топаз, бирюза, гранат и др., ещё в 18 в. считались носителями сверхъестественных сил и использовались не только как драгоценные украшения, но и как талисманы или средство от многих болезней и укусов ядовитых змей.

На самом же деле способность самоограняться, как и первые два свойства, является следствием правильного внутреннего строения кристаллического вещества. Внешние границы кристаллов как бы отражают эту правильность их внутреннего строения, ибо каждый кристалл можно рассматривать как часть его пространственной решётки, ограниченной плоскостями (гранями).

Необходимо вместе с тем отметить, что способность кристаллического вещества самоограняться проявляется не всегда, а только при особо-благоприятных условиях, когда внешняя окружающая среда не мешает образованию и свободному росту кристаллов. При отсутствии таких условий получаются или совершенно неправильные или частично деформированные кристаллы. Несмотря на это они сохраняют все свои внутренние свойства, в том числе и причины, заставляющие кристаллы принимать форму многогранника. Поэтому, если кристаллическое зерно неправильной формы поместить в определённые условия, в которых кристалл сможет свободно расти, то оно примет через некоторое время форму плоскостного многогранника, присущую данному веществу.

Симметрия кристаллов также является отражением их закономерного внутреннего строения. Все кристаллы в той или иной степени симметричны, т. е. состоят из закономерно повторяющихся равных частей, так как их строение выражается пространственной решёткой, которая по своей природе всегда симметрична.

Открытие мюнхенским физиком М. Лауэ в 1912 г. явления дифракции рентгеновских лучей при их прохождении через кристалл явилось первым экспериментальным подтверждением правильности теории решетчатого строения кристаллического вещества. С этого момента стало возможным, с одной стороны, посредством кристаллов исследовать рентгеновские лучи, а с другой - с помощью рентгеновских лучей исследовать внутреннее строение кристаллов. Таким путём было доказано, что абсолютно все кристаллы состоят из частиц, расположенных друг относительно друга закономерно, наподобие узлов пространственной решётки.

После опытов Лауэ теория решетчатого строения кристаллов перестала быть только лишь умозрительным построением и приобрела форму закона.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Общие свойства кристаллов

Введение

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц.

В основе физики твердого тела лежит представление о кристалличности вещества. Все теории физических свойств кристаллических твердых тел основываются на представлении о совершенной периодичности кристаллических решеток. Используя это представление и вытекающие из него положения о симметрии и анизотропии кристаллов, физики разработали теорию электронной структуры твердых тел. Эта теория позволяет дать строгую классификацию твердых тел, определяя их тип и макроскопические свойства. Однако она позволяет классифицировать только известные, исследованные вещества и не позволяет предопределить состав и структуру новых сложных веществ, которые обладали бы заданным комплексом свойств. Эта последняя задача является особо важной для практики, так как ее решение позволило бы создавать материалы по заказу для каждого конкретного случая. При соответствующих внешних условиях свойства кристаллических веществ определяются их химическим составом и типом кристаллической решетки. Изучение зависимости свойств вещества от его химического состава и кристаллической структуры обычно разбивается на следующие отдельные этапы 1) общее изучение кристаллов и кристаллического состояния вещества 2) построение теории химических связей и ее применение к изучению различных классов кристаллических веществ 3) изучение общих закономерностей изменения структуры кристаллических веществ при изменении их химического состава 4) установление правил, позволяющих предопределять химический состав и структуру веществ, обладающих определенным комплексом физических свойств.

Основные свойства кристаллов - анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления.

1. Анизотропность

кристалл анизотропность самоогоранение

Анизотропность - выражается она в том, что физические свойства кристаллов неодинаковы по разным направлениям. К физическим величинам можно отнести такие параметры - прочность, твердость, теплопроводность, скорость распространения света, электропроводность. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки слюды - легко расщепляются лишь по плоскостям. В поперечных же направлениях расщепить пластинки этого минерала значительно труднее.

Примером анизотропности-является кристалл минерала дистена. В продольном направлении, у дистена твердость равняется 4,5, в поперечном - 6. Минерал дистен (Al 2 O), отличающийся резко различной твердостью по неодинаковым направлениям. Вдоль удлинения кристаллы дистена легко царапаются лезвием ножа, в направлении перпендикулярном удлинению, нож не оставляет никаких следов.

Рис. 1 Кристалл дистена

Минерал кордиерит (Mg 2 Al 3 ). Минерал, алюмосиликат магния и железа. Кристалл кордиерита по трем различным направлениям представляется различно окрашенным. Если из такого кристалла вырезать куб с гранями, то можно заметить следующее. Перпендикулярными этим направлениям, то по диагонали куба (от вершины к вершине наблюдается серовато-синяя окраска, в направлении вертикальном - индигово-синяя окраска, и в направлении поперек куба - желтая.

Рис. 2 Куб, вырезанный из кордиерита.

Кристалл поваренной соли, которая имеет форму куба. Из такого кристалла можно вырезать стерженьки по различным направлениям. Три из них перпендикулярно граням куба, параллельно диагонали

Каждый из примеров исключительны по своей характерности. Но путём точных исследований, ученым пришли к такому выводу, что все кристаллы в том или ином отношении обладают анизотропностью. Так же твёрдые аморфные образования могут быть и однородными и даже анизотропными (анизотропность, к примеру, может наблюдаться при растягивании или сдавливании стёкол), но аморфные тела не могут сами по себе принимать многогранную форму, ни при каких условиях.

Рис. 3 Выявление анизотропии теплопроводности на кварце (а) и ее отсутствия на стекле (б)

В качестве примера (рис. 1) анизотропных свойств кристаллических веществ прежде всего следует упомянуть про механическую анизотропность, которая заключается в следующем. Все кристаллические вещества раскалываются не одинаково вдоль различных направлений (слюда, гипс, графит и др.). Аморфные же вещества-во всех направлениях раскалываются одинаково, потому что аморфность характеризуются изотропностью (равносвойственностью) - физические свойства по всем направлениям проявляются одинаково.

Анизотропию теплопроводности легко пронаблюдать на следующем простом опыте. На грань кристалла кварца нанести слой цветного воска и поднести к центру грани накаленную на спиртовке иголку. Образовавшийся талый круг воска вокруг иголки примет форму эллипса на грани призмы или же форму неправильного треугольника на одной из граней головки кристалла. На изотропном же веществе, например, стекле - форма талого воска всегда будет правильным кругом.

Анизотропность проявляется и в том, что при взаимодействии на кристалл какого-либо растворителя, скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении в итоге приобретает свои характерные формы.

В конечном итоге причиной анизотропности кристаллов - является то, что при упорядоченном расположении ионов, молекул или атомов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, электропроводность или поляризуемость) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул, хотелось бы отметить что все аминокислоты, кроме простейшей - глицина, асимметричны.

Любая частичка кристалла имеет строго определенный химический состав. Это свойство кристаллических веществ используется для получения химически чистых веществ. Например, при замораживании морской воды она становится пресной и пригодной для питья. Теперь угадайте, морской лед пресный или соленый?

2. Однородность

Однородность - выражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело. Однородным считается тело, в котором на конечных расстояниях от любой его точки найдутся другие, эквивалентные ей не только в физическом отношении, но и геометрическом. Другими словами, находятся в таком же окружении, как и исходные, поскольку размещением материальных частиц в кристаллическом пространстве «управляет» пространственная решетка, можно считать, что грань кристалла - это материализованная плоская узловая решетка, а ребро - материализованный узловой ряд. Как правило, хорошо развитые грани кристалла определяются узловыми сетками с наибольшей густотой расположения узлов. Точка, в которой сходятся три и более граней, называется вершиной кристалла.

Однородность присуща не только кристаллическим телам. Твердые аморфные образования также могут быть однородными. Но аморфные тела не могут сами по себе принимать многогранную форму.

Ведутся разработки, которые могут повысить коэффициент однородности кристаллов.

Это изобретение запатентовано нашими русскими учеными. Изобретение относится к сахарной промышленности, в частности к получению утфелей. Изобретение обеспечивает повышение коэффициента однородности кристаллов в утфеле, а также способствует увеличениею скорости роста кристаллов на завершающем этапе наращивания за счет постепенного роста коэффициента пересыщения.

Недостатками известного способа являются низкий коэффициент однородности кристаллов в утфеле первой кристаллизации, значительная длительность получения утфеля.

Технический результат изобретения заключается в повышении коэффициента однородности кристаллов в утфеле первой кристаллизации и интенсификации процесса получения утфеля.

3. Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.

К механическим свойствам кристаллов относятся свойства, связанные с такими механическими воздействиями на них, как удар, сжатие, растяжение и прочее - (спайность, пластическая деформация, излом, твердость, хрупкость).

Способность самоограняться, т.е. при определенных условиях принимать естественную многогранную форму. В этом также проявляется его правильное внутреннее строение. Именно это свойство отличает кристаллическое вещество от аморфного. Иллюстрацией этому служит пример. Два выточенных из кварца и стекла шарика опускают в раствор кремнезема. В результате шарик кварца покроется гранями, а стеклянный останется круглым.

Кристаллы одного и того же минерала могут иметь разную форму, величину и число граней, но углы между соответствующими гранями всегда будут постоянными (рис. 4 а-г) - это закон постоянства гранных углов в кристаллах. При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры. Углы между гранями кристаллов измеряются при помощи гониометра (угломера). Закон постоянства гранных углов объясняется тем, что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.

Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу.

У идеально образованных кристаллов наблюдается симметрия, которая у природных кристаллов встречается чрезвычайно редко из-за опережающего роста граней (рис. 4 д).

Рис. 4 закон постоянства гранных углов в кристаллах (а-г) и рост опережающих граней 1,3 и 5 растущего на стенке полости кристалла (д)

Спайностью называется такое свойство кристаллов при котором раскалываться или расщепляться по определенным кристаллографическим направлениям в итоге образовываются ровные гладкие плоскости, называемые плоскостями спайности.

Плоскости спайности ориентированы параллельно действительным или возможным граням кристаллов. Это свойство всецело зависит от внутреннего строения минералов и проявляется в тех направлениях, в которых силы сцепления между материальными частицами кристаллических решеток наименьшие.

Можно выделить в зависимости от степени совершенства несколько видов спайности:

Весьма совершенная - минерал легко расщепляется на отдельные тонкие пластинки или листочки, расколоть его в другом направлении очень трудно (слюды, гипс, тальк, хлорит).

Рис. 5 Хлорит (Mg, Fe) 3 (Si, Al) 4 O 10 (OH) 2 ·(Mg, Fe) 3 (OH) 6)

Совершенная - минерал сравнительно легко раскалывается преимущественно по плоскостям спайности, причем отбитые кусочки часто напоминают отдельные кристаллы (кальцит, галенит, галит, флюорит).

Рис. 6 Кальцит

Средняя - при раскалывании образуются как плоскости спайности, так и неровные изломы по случайным направлениям (пироксены, полевые шпаты).

Рис. 7 Полевые шпаты ({К, Na, Ca, иногда Ba} {Al 2 Si 2 или AlSi 3 } О 8))

Несовершенная - минералы раскалываются по произвольным направлениям с образованием неровных поверхностей излома, отдельные плоскости спайности обнаруживаются с трудом (самородная сера, пирит, апатит, оливин).

Рис. 8 Кристаллы апатита (Са 5 3 (F, Cl, ОН))

У некоторых минералов при раскалывании образуются только неровные поверхности, в этом случае говорят о весьма несовершенной спайности или отсутствии ее (кварц).

Рис. 9 Кварц(SiO 2)

Спайность может проявляться в одном, двух, трех, редко более направлениях. Для более детальной характеристики ее указывают направление, в котором проходит спайность, например по ромбоэдру - у кальцита, по кубу - у галита и галенита, по октаэдру - у флюорита.

Плоскости спайности нужно отличать от граней кристаллов: Плоскость, как правило, обладает более сильным блеском, образуют ряд параллельных друг другу плоскостей и в отличие от граней кристаллов на которых мы не можем наблюдать штриховки.

Таким образом, спайность может прослеживаться по одному (слюды), двум (полевые шпаты), трем (кальцит, галит), четырем (флюорит) и шести (сфалерит) направлениям. Степень совершенства спайности зависит от строения кристаллической решетки каждого минерала, так как разрыв по некоторым плоскостям (плоским сеткам) этой решетки из-за более слабых связей происходит гораздо легче, чем по другим направлениям. В случае одинаковых сил сцепления между частицами кристалла, спайность отсутствует (кварц).

Излом - способность минералов раскалываться не по плоскостям спайности, а по сложной неровной поверхности

Отдельность - свойство некоторых минералов раскалываться с образованием параллельных, хотя чаще всего не совсем ровных плоскостей, не обусловленных строением кристаллической решетки, которое иногда принимают за спайность. В отличие от спайности отдельность - свойство лишь некоторых отдельных экземпляров данного минерала, а не минерального вида в целом. Главным отличием отдельности от спайности является то, что получившиеся выколки невозможно расщеплять далее на более мелкие обломки с ровными параллельными сколами.

Симметрия - наиболее общая закономерность, связанная со строением и свойствами кристаллического вещества. Она является одним из обобщающих фундаментальных понятий физики и естествознания в целом. «Симметрия есть свойство геометрических фигур повторять свои части, или, выражаясь точнее, свойство их в различных положениях приходить в совмещение с первоначальным положением». Для удобства изучения пользуются моделями кристаллов, передающих формы идеальных кристаллов. Для описания симметрии кристаллов необходимо определить элементы симметрии. Таким образом, симметричным является такой объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями (рисунок 10).

1. Плоскость симметрии - это воображаемая плоскость, которая делит кристалл на две равные части, причем одна из частей является как бы зеркальным отражение другой. В кристалле может быть несколько плоскостей симметрии. Плоскость симметрии обозначается латинской буквой Р.

2. Ось симметрии - это линия, при вращении вокруг которой на 360° кристалл n-ое количество раз повторяет свое начальное положение в пространстве. Обозначается буквой L. n - определяет порядок оси симметрии, которые в природе могут быть только 2, 3, 4 и 6-го порядка, т.е. L2, L3, L4 и L6. Осей пятого и выше шестого порядка в кристаллах нет, а оси первого порядка не учитываются.

3. Центр симметрии - воображаемая точка, расположенная внутри кристалла, в которой пересекаются и делятся пополам линии, соединяющие соответствующие точки на поверхности кристалла1. Центр симметрии обозначается буквой С.

Все многообразие встречающихся в природе кристаллических форм объединяется в семь сингоний (систем): 1) кубическую; 2) гексагональную; 3) тетрагональную (квадратную); 4) тригональную; 5) ромбическую; 6) моноклинальную и 7) триклинную.

4. Постоянная температура плавления

Плавление - переход вещества из твердого состояния в жидкое.

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Причиной этого явления, считается что основная часть энергия нагревателя, подводимая к твердому телу, идет на уменьшение связей между частицами вещества, т.е. на разрушение кристаллической решетки. При этом возрастает энергия взаимодействия между частицами. Расплавленное вещество обладает большим запасом внутренней энергии, чем в твердом состоянии. Оставшаяся часть теплоты плавления расходуется на совершение работы по изменению объема тела при его плавлении. Температура, при которой начинается плавление, называется температурой плавления.

При плавлении объем большинства кристаллических тел увеличивается (на 3-6%), а при отвердевании уменьшается. Но, существуют вещества, у которых при плавлении объем уменьшается, а при отвердевании - увеличивается.

К ним относятся, например, вода и чугун, кремний и некоторые другие. Именно поэтому лёд плавает на поверхности воды, а твердый чугун - в собственном расплаве.

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления (янтарь, смола, стекло).

Рис. 12 Янтарь

Количество теплоты, необходимой для плавления вещества, равно произведению удельной теплоты плавления на массу данного вещества.

Удельная теплота плавления показывает, какое кол теплоты необходимо для полного превращения 1 кг вещества из твердого состояния в жидкое, взятого при темп плавления.

Единицей удельной теплоты плавления в СИ служит 1Дж/кг.

В процессе плавления температура кристалла остается постоянной. Эта температура называется температурой плавления. У каждого вещества своя температура плавления.

Температура плавления для данного вещества зависит от атмосферного давления.

У кристаллических тел при температуре плавления можно наблюдать вещество одновременно в твердом и жидком состояниях. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.

Список литературы

1. Справочник химика 21 «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ» стр. 10 (http://chem21.info/info/1737099/)

2. Справочник по геологии (http://www.geolib.net/crystallography/vazhneyshie-svoystva-kristallov.html)

3. «УрФУ имени первого Президента России Б.Н. Ельцина», раздел Геометрическая кристаллография (http://media.ls.urfu.ru/154/489/1317/)

4. Глава 1. Кристаллография с основами кристаллохимии и минералогия (http://kafgeo.igpu.ru/web-text-books/geology/r1-1.htm)

5. Заявка: 2008147470/13, 01.12.2008; МПК C13F1/02 (2006.01) C13F1/00 (2006.01). Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (RU) (http://bd.patent.su/2371000-2371999/pat/servl/servlet939d.html)

6. Тульский государственный педагогический университет им Л.Н. Толстого Кафедра экологии Голынская Ф.А. «Понятие о минералах как о кристаллических веществах» (http://tsput.ru/res/geogr/geology/lec2.html)

7. Компьютерный обучающий курс «Общая геология» Курс лекций. Лекция 3 (http://igd.sfu-kras.ru/sites/igd.institute.sfu-kras.ru/files/kurs-geologia/%D0% BB % D0% B5% D0% BA % D1% 86% D0% B8% D0% B8/%D0% BB % D0% B5% D0% BA % D1% 86% D0% B8% D1% 8F_3.htm)

8. Класс физика (http://class-fizika.narod.ru/8_11.htm)

Подобные документы

    Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат , добавлен 26.04.2010

    Жидкие кристаллы как фазовое состояние, в которое переходят некоторые вещества при определенных условиях, их основные физические свойства и факторы, на них влияющие. История исследования, типы, использование жидких кристаллов в производстве мониторов.

    контрольная работа , добавлен 06.12.2013

    Особенности и свойства жидкокристаллического состояния вещества. Структура смектических жидких кристаллов, свойства их модификаций. Сегнетоэлектрические характеристики. Исследование геликоидальной структуры смектика C* методом молекулярной динамики.

    реферат , добавлен 18.12.2013

    История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.

    учебное пособие , добавлен 14.12.2010

    Рассмотрение истории открытия и направлений применения жидких кристаллов; их классификация на смектические, нематические и холестерические. Изучение оптических, диамагнитных, диэлектрических и акустооптических свойств жидкокристаллических веществ.

    курсовая работа , добавлен 18.06.2012

    Определение жидких кристаллов, их сущность, история открытия, свойства, особенности, классификация и направления использования. Характеристика классов термотропных жидких кристаллов. Трансляционные степени свободы колончатых фаз или "жидких нитей".

    реферат , добавлен 28.12.2009

    Кристаллы - реальные твердые тела. Термодинамика точечных дефектов в кристаллах, их миграция, источники и стоки. Исследование дислокации, линейного дефекта кристаллической структуры твёрдых тел. Двумерные и трехмерные дефекты. Аморфные твердые тела.

    доклад , добавлен 07.01.2015

    презентация , добавлен 29.09.2013

    Понятие и основные черты конденсированного состояния вещества, характерные процессы. Кристаллические и аморфные тела. Сущность и особенности анизотропии кристаллов. Отличительные черты поликристаллов и полимеров. Тепловые свойства и структура кристаллов.

    курс лекций , добавлен 21.02.2009

    Оценка вязкостно-температурных свойств (масел). Зависимость температуры вспышки от давления. Дисперсия, оптическая активность. Лабораторные методы перегонки нефти и нефтепродуктов. Теплота плавления и сублимации. Удельная и молекулярная рефракция.

Основные свойства кристаллов – анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления определяются их внутренним строением.

Рис. 1. Пример анизотропности — кристалл минерала дистена. В продольном направлении его твердость равна 4,5, в поперечном – 6. © Parent Géry

Это свойство называется еще неравносвойственностью. Выражается она в том, что физические свойства кристаллов (твердость, прочность, теплопроводность, электропроводность, скорость распространения света) неодинаковы по разным направлениям. Частицы, образующие кристаллическую структуру по непараллельным направлениям, отстоят друг от друга на разных расстояниях, вследствие чего и свойства кристаллического вещества по таким направлениям должны быть различными. Характерным примером вещества с ярко выраженной анизотропностью является слюда. Кристаллические пластинки этого минерала легко расщепляются лишь по плоскостям, параллельным его пластинчастости. В поперечных же направлениях расщепить пластинки слюды значительно труднее.

Анизотропность проявляется и в том, что при воздействии на кристалл какого-либо растворителя скорость химических реакций различна по различным направлениям. В результате каждый кристалл при растворении приобретает свои характерные формы, носящие название фигур вытравливания.

Аморфные вещества характеризуются изотропностью (равносвойственностью) – физические свойства по всем направлениям проявляются одинаково.

Однородность

Выражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело.

Однородность присуща не только кристаллическим телам. Твердые аморфные образования также могут быть однородными. Но аморфные тела не могут сами по себе принимать многогранную форму.

Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями. Эта особенность связана с кристаллической структурой. Стеклянный же шарик, например, такой особенностью не обладает.

Кристаллы одного и того же вещества могут отличаться друг от друга своей величиной, числом граней, ребер и формой граней. Это зависит от условий образования кристалла. При неравномерном росте кристаллы получаются сплющенными, вытянутыми и т.д. Неизменными остаются углы между соответственными гранями растущего кристалла. Эта особенность кристаллов известна как закон постоянства гранных углов . При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры.

Закон постоянства гранных углов было установлен в конце XVII века датским ученым Стено (1699) на кристаллах железного блеска и горного хрусталя, впоследствии этот закон был подтвержден М.В. Ломоносовым (1749) и французским ученым Роме де Лиллем (1783). Закон постоянства гранных углов получил название первого закона кристаллографии.

Закон постоянства гранных углов объясняется тем, что все кристаллы одного вещества тождественны по внутреннему строению, т.е. имеют одну и ту же структуру.

Согласно этому закону кристаллы определенного вещества характеризуются своими определенными углами. Поэтому измерением углов можно доказать принадлежность исследуемого кристалла к тому или иному веществу. На этом основан один из методов диагностики кристаллов.

Для измерения у кристаллов двугранных углов были изобретены специальные приборы – гониометры.

Постоянная температура плавления

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки. Температура, при которой начинается плавление, называется температурой плавления.

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления. На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую. По этому признаку легко отличить кристаллические вещества от аморфных.

Кристаллы и их свойства

В зависимости от внутреннего строения различают кристаллические и аморфные твердые тела.
Кристаллическими называют твердые вещества, образованные из геометрически правильно расположенных в пространстве материальных частиц — ионов, атомов либо молекул. Упорядоченное, закономерное их расположение образует в пространстве кристаллическую решетку - бесконечное трехмерное периодическое образование. В ней выделяют узлы (отдельные точки, центры тяжести атомов и ионов), ряды (совокупность узлов, лежащих на одной прямой) и плоские сетки (плоскости, проходящие через любые три узла). Геометрически правильная форма кристаллов обусловлена в первую очередь их строго закономерным внутренним строением. Сетки кристаллической решетки соответствуют граням реального кристалла, места пересечения сеток - ряды - ребрам кристаллов, а места пересечения ребер - вершинам кристаллов. Большинство известных минералов и горных пород, в том числе и каменные строительные материалы, представляют собой кристаллические твердые тела.

Все кристаллы имеют ряд общих основных свойств .
Однородность строения - одинаковость узора взаимного расположения атомов во всех частях объема его кристаллической решетки.
Анизотропность - различие физических свойств кристаллов (теплопроводность, твердость, упругость и другие) по параллельным и непараллельным направлениям кристаллической решетки. Свойства кристаллов одинаковы по параллельным направлениям, но неодинаковы по непараллельным.
Способность самоограняться , т.е. принимать форму правильного многогранника при свободном росте кристаллов.
Симметричность - возможность совмещения кристалла или его частей определенными симметрическими преобразованиями, соответствующими симметрии их пространственных решеток.
Аморфными или минералоидами называют твердые тела, характеризующиеся беспорядоченным, хаотичным (как в жидкости) расположением слагающих его частиц (атомов, ионов, молекул), на-пример, стекла, смолы, пластмассы и пр. Аморфное вещество отличается изотропностью свойств, отсутствием четко выраженной температуры плавления и естественной геометрической формы.
Изучение кристаллических форм минералов показало, что мир кристаллов отличается симметрией, хорошо наблюдаемой в геометрической форме их огранки.
Симметричным считается объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами, отражениями в зеркальной плоскости, отражением в центре симметрии. Геометрические образы (вспомогательные плоскости, прямые линии, точки), с помощью которых достигается совмещение, называются элементами симметрии. К ним относятся оси симметрии, плоскости симметрии, центр симметрии (или центр инверсии).
Центром симметрии называется особая точка внутри фигуры, при проведении через которую любая прямая встретит на равном от нее расстоянии одинаковые и обратно расположенные части фигуры. Плоскостью симметрии называется воображаемая плоскость, которая делит фигуру на две равные части так, что одна из частей является зеркальным отражением другой. Осью симметрии называется воображаемая прямая линия, при повороте вокруг которой на некоторый определенный угол повторяются одинаковые части фигуры.

Минералы, характеризующиеся кристаллическим строением, имеют определенный тип кристаллической решетки, частицы в которых удерживаются химическими связями. Исходя из представлений о валентных электронах, выделяют четыре основных типа химической связи:

1) ионная или гетерополярная (минерал- галит),

2) ковалентная или гомеополярная (минерал-алмаз),

3) металлическая (минерал-золото),

4) молекулярная или ван-дер-ваальсовая. Характер связи влияет на свойства кристаллических веществ (хрупкость, твердость, ковкость, температуру плавления и пр.). В кристалле возможно присутствие одного типа связи (гомодесмическая структура), или несколько типов (гетеродесмическая структура).

Факт геометрически закономерного расположения материальных частиц в кристаллических структурах, окончательно установленный с помощью рентгеновых лучей, положен в основу всей современной кристаллографии. Но теория о решетчатом строении кристаллов была создана задолго до рентгеноанализа. Величайшие кристаллографы Огюст Бравэ, Л.Зонке, Е.С.Федоров, А.Шенфлис и др. дали математическую разработку этой теории. Применение рентгеновых лучей подтвердило опытным путем правильность их умозрительных построений.

Теория структуры кристаллов до 1912 г. базировалась на некоторых особенностях кристаллического состояния, улавливаемых опытным путем. К числу таких важнейших свойств кристаллов относятся:

1. Статичность.Это фиксированное расположение частиц друг по отношению к другу. В аморфном веществе есть фрагменты кристаллов, но со временем эти фрагменты разрушаются. За сотни лет в стёклах, например, происходят изменения и они «текут».

2.Однородность или гомогенность. Согласно опытным данным, однородным называется такое тело, которое во всем своем объеме обнаруживает одинаковые свойства. Однородность кристаллов устанавливается при изучении его свойств по параллельным направлениям. Кристаллическое тело, обладающее во всех своих участках одинаковым строением, должно отличаться однородностью. При этом не принимаются во внимание посторонние загрязнения, включения и несовершенства реальных кристаллов, связанные с внешними воздействиями.

3.Анизотропность - (в переводе «ан»-не, «изос»-равно, «строфос»-свойство, т.е. неравносвойственность) . Анизотропным называется такое однородное тело, которое при одинаковых свойствах по параллельным направлениям обладает в общем случае неодинаковыми свойствами по параллельным направлениям. В связи с решетчатостью структуры одинаковые атомы (ионы, молекулы) должны располагаться строго одинаково, образуя между собой одинаковые промежутки. Поэтому и свойства кристаллов должны быть по таким направлениям одинаковыми. По непараллельным направлениям частицы в общем случае отстоят друг от друга на разных расстояниях, вследствие чего и свойства по таким направлениям должны быть различными.

Например, слюда. Кристаллические пластины этого минерала легко расщепляются только по плоскостям, параллельным его пластинчатости. В поперечных направлениях расщепить слюдяные пластины значительно труднее.

Другим примером анизотропности является минерал дистен (Al 2 O), отличающийся резко различной твердостью по неодинаковым направлениям. Вдоль удлинения кристаллы дистена легко царапаются лезвием ножа, в направлении перпендикулярном удлинению, нож не оставляет никаких следов.

Рис.1.Кристалл дистена

Минерал кордиерит (Mg 2 Al 3 ). Кристалл кордиерита по трем различным направлениям представляется различно окрашенным. Если из такого кристалла вырезать куб с гранями. Перпендикулярными этим направлениям, то по диагонали куба (от вершины к вершине наблюдается серовато-синяя окраска, в направлении поперек куба - желтая, и в направлении вертикальном - индигово-синяя окраска.

Рис.2. Куб, вырезанный из кордиерита.

Кристалл поваренной соли, которая имеет форму куба. Из такого кристалла можно вырезать стерженьки по различным направлениям. Три из них перпендикулярно граням куба, параллельно диагонали. Выяснилось, что для разрыва этих стерженьков необходимы разные усилия: разрывающее усилие для первого стерженька (вертикального вдоль оси) выражается 570 г/мм 2 , для второго (по горизонтальной диагонали) - 1150 г/мм 2 и для третьего (диагональ от вершины к вершине) - 2150 г/мм 2 . (рис.3)

Приведённые примеры исключительны по своей характерности. Но путём точных исследований удалось прийти к выводу, что все кристаллы в том или ином отношении обладают анизотропностью.

Твёрдые аморфные образования также могут быть однородными и даже анизотропными (анизотропность, например, может наблюдаться при растягивании или сдавливании стёкол). Но ни при каких условиях аморфные тела не могут сами по себе принимать многогранную форму.

  • Последние материалы раздела:

    Кир II Великий - основатель Персидской империи
    Кир II Великий - основатель Персидской империи

    Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

    Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
    Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

    Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

    Николай Некрасов — Дедушка: Стих
    Николай Некрасов — Дедушка: Стих

    Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...