Химические свойства аморфных тел. Кристаллические и аморфные тела

В предыдущем параграфе мы узнали, что некоторые твёрдые тела (например, соль, кварц, металлы и другие) являются моно- или поликристаллами. Познакомимся теперь с аморфными телами . Они занимают промежуточное положение между кристаллами и жидкостями, поэтому их нельзя однозначно назвать твёрдыми.

Проделаем опыт. Нам понадобятся: кусок пластилина, стеариновая свеча и электрический обогреватель. Поставим пластилин и свечу на равных расстояниях от обогревателя. Вскоре часть свечи расплавится, часть останется в виде твёрдого тела, а пластилин «обмякнет». Некоторое время спустя весь стеарин расплавится, а пластилин постепенно «расплывётся», став совсем мягким.

Подобно стеарину, существуют и другие кристаллические вещества , которые при нагревании не размягчаются, и во время плавления всегда можно видеть как жидкость, так и ещё не расплавившуюся часть тела. Это, например, все металлы. Но существуют и аморфные вещества , которые при нагревании постепенно размягчаются, становятся всё более текучими, поэтому невозможно указать температуру, при которой тело превращается в жидкость (плавится).

Аморфные тела при любой температуре обладают текучестью . Подтвердим это опытом. В стеклянную воронку бросим кусок аморфного вещества и оставим в тёплой комнате (на рисунке – смола гудрон; из неё делают асфальт). Через несколько недель окажется, что смола приняла форму воронки и даже начала вытекать из неё наподобие «струи». То есть аморфное тело ведёт себя как очень густая и вязкая жидкость.

Строение аморфных тел. Исследования электронным микроскопом и рентгеновскими лучами показывают, что в аморфных телах не наблюдается строгого порядка в расположении их частиц. В отличие от кристаллов, где существует дальний порядок в расположении частиц, в строении аморфных тел наблюдается только ближний порядок – некая упорядоченность расположения частиц сохраняется лишь вблизи каждой отдельной частицы (см. рисунок). Сверху изображено расположение частиц в кристаллическом кварце, снизу – в аморфной форме кварца. Эти вещества состоят из одних и тех же частиц – молекул оксида кремния SiO 2 .

Как и частицы любых тел, частицы аморфных тел непрерывно и беспорядочно колеблются и чаще, чем частицы кристаллов, могут перескакивать с места на место. Этому способствует то, что частицы аморфных тел расположены неодинаково плотно, местами создавая сравнительно большие промежутки. Однако это не то же самое, что «вакансии» в кристаллах (см. § 7-е).

Кристаллизация аморфных тел. С течением времени (недели, месяцы) аморфные вещества самопроизвольно переходят в кристаллическое состояние. Например, сахарные леденцы или мёд, оставленные в покое на несколько месяцев, становятся непрозрачными. В этом случае говорят, что мёд и леденцы «засахарились». Разломив такой леденец или зачерпнув такой мёд ложкой, мы увидим образовавшиеся кристаллики сахара, прежде существовавшего в аморфном состоянии.

Самопроизвольная кристаллизация аморфных тел свидетельствует, что кристаллическое состояние вещества более устойчиво, чем аморфное. МКТ объясняет это так. Силы притяжения и отталкивания «соседок» перемещают частицы аморфного тела в такие положения, где потенциальная энергия минимальна (см. § 7-г). При этом возникает более упорядоченное расположение частиц, что и означает, что происходит самостоятельная кристаллизация.

Аморфные тела

Амо́рфные вещества́ (тела́) (от др.-греч. «не-» и μορφή «вид, форма») - конденсированное состояние вещества, атомарная структура которых имеет ближний порядок и не имеет дальнего порядка , характерного для кристаллических структур . В отличие от кристаллов стабильно-аморфные вещества не затвердевают с образованием кристаллических граней, и, (если не были под сильнейшим анизотропным воздействием - сжатием или электрическим полем , например) обладают изотропией свойств, то есть не обнаруживают различных свойств в разных направлениях. И не имеют определённой точки плавления : при повышении температуры стабильно-аморфные вещества постепенно размягчаются и выше температуры стеклования (T g) переходят в жидкое состояние . Вещества с высокой скоростью кристаллизации, обычно имеющие (поли-)кристаллических структуру , но сильно переохлаждённые при затвердевании в аморфное состояние, при последующем нагреве незадолго до плавления рекристаллизуются (в твёрдом состоянии с небольшим выделением тепла), а затем плавятся как обычные поликристаллические.

Получаются при высокой скорости затвердевания(остывания) жидкого расплава или конденсацией паров на охлаждённую заметно ниже температуры ПЛАВЛЕНИЯ(не кипения!) подложку (любой предмет). Соотношение реальной скорости охлаждения (dT/dt) и характеристической скорости кристаллизации определяет долю поликристаллов в аморфном объёме. Скорость кристаллизации - параметр вещества, слабо зависящий от давления и от температуры (около точки плавления - сильно). И сильно зависящий от сложности состава - для металлов порядка долей-десятков миллисекунд; а для стёкол при комнатной температуре - сотни и тысячи лет (старые стёкла и зеркала мутнеют).

Электрические и механические свойства аморфных веществ ближе к таковым для монокристаллов, чем для поликристаллов из-за отсутствия резких и сильно загрязнённых примесями межкристаллических переходов(границ) с зачастую абсолютно другим химическим составом.

Немеханические свойства полуаморфных состояний обычно являются промежуточными между аморфным и кристаллическим и изотропны . Однако отсутствие резких межкристаллических переходов заметно влияет на электрические и механические свойства, делая их похожими на аморфные.

При внешних воздействиях аморфные вещества обнаруживают одновременно упругие свойства, подобно кристаллическим твердым веществам, и текучесть , подобно жидкости. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые вещества и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии (например растяжении) аморфные вещества текут. Например, аморфным веществом также является смола (или гудрон , битум). Если раздробить её на мелкие части и получившейся массой заполнить сосуд, то через некоторое время смола сольётся в единое целое и примет форму сосуда.

В зависимости от электрических свойств, разделяют аморфные металлы , аморфные неметаллы, и аморфные полупроводники.

См. также

(устаревший термин)

Wikimedia Foundation . 2010 .

Смотреть что такое "Аморфные тела" в других словарях:

    Все, что признается реально существующим и занимающим часть пространства, носит название физического Т. Всякое физическое Т. образовано из вещества (см. Вещество) и представляет собой, согласно наиболее распространенному учению, совокупность… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Физика твёрдого тела раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики.… … Википедия

    Химия органического твердого тела (англ. organic sold state chemistry) – раздел химии твердого тела, изучающий всевозможные химические и физико химические аспекты органических твердых тел (ОТТ), в частности, – их синтез, строение, свойства,… … Википедия

    Физика кристаллов Кристалл кристаллография Кристаллическая решётка Типы кристаллических решёток Дифракция в кристаллах Обратная решётка Ячейка Вигнера Зейтца Зона Бриллюэна Структурный фактор базиса Атомный фактор рассеяния Типы связей в… … Википедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    - (химия твердого состояния), раздел физ. химии, изучающий строение, св ва и методы получения твердых в в. X. т. т. связана с физикой твердого тела, кристаллографией, минералогией, физ. хим. механикой, механохимией, радиационной химией, является… … Химическая энциклопедия

    Химия твёрдого тела раздел химии, изучающий разные аспекты твердофазных веществ, в частности, их синтез, структуру, свойства, применение и др.. Ее объектами исследования являются кристаллические и аморфные, неорганические и органические… … Википедия

    - (ИФТТ РАН) Международное название Institute of Solid State Physics, RAS Основан 1963 Директор чл. к. В. … Википедия

    Институт физики твёрдого тела РАН (ИФТТ РАН) Международное название Institute of Solid State Physics, RAS Основан 15 февраля 1963 Директор чл. корр. РАН В.В. Кведер … Википедия


В отличие от кристаллических твёрдых тел, в расположении частиц в аморфном теле нет строгого порядка.

Хотя аморфные твёрдые тела способны сохранять форму, кристаллической решётки у них нет. Некоторая закономерность наблюдается лишь для молекул и атомов, расположенных по соседству. Такой порядок называется ближним порядком . Он не повторяется по всем направлениям и не сохраняется на больших расстояниях, как у кристаллических тел.

Примеры аморфных тел - стекло, янтарь, искусственные смолы, воск, парафин, пластилин и др.

Особенности аморфных тел

Атомы в аморфных телах совершают колебания вокруг точек, которые расположены хаотично. Поэтому структура этих тел напоминает структуру жидкостей. Но частицы в них менее подвижны. Время их колебания вокруг положения равновесия больше, чем в жидкостях. Перескоки атомов в другое положение также происходят намного реже.

Как ведут себя при нагревании твёрдые кристаллические тела? Они начинают плавиться при определённой температуре плавления . И некоторое время одновременно находятся в твёрдом и жидком состоянии, пока не расплавится всё вещество.

У аморфных тел определённой температуры плавления нет . При нагревании они не плавятся, а постепенно размягчаются.

Положим кусок пластилина вблизи нагревательного прибора. Через какое-то время он станет мягким. Это происходит не мгновенно, а в течение некоторого интервала времени.

Так как свойства аморфных тел схожи со свойствами жидкостей, то их рассматривают как переохлаждённые жидкости с очень большой вязкостью (застывшие жидкости). При обычных условиях течь они не могут. Но при нагревании перескоки атомов в них происходят чаще, уменьшается вязкость, и аморфные тела постепенно размягчаются. Чем выше температура, тем меньше вязкость, и постепенно аморфное тело становится жидким.

Обычное стекло - твёрдое аморфное тело. Его получают, расплавляя оксид кремния, соду и известь. Нагрев смесь до 1400 о С, получают жидкую стекловидную массу. При охлаждении жидкое стекло не затвердевает, как кристаллические тела, а остаётся жидкостью, вязкость которой увеличивается, а текучесть уменьшается. При обычных условиях оно кажется нам твёрдым телом. Но на самом деле это жидкость, которая имеет огромную вязкость и текучесть, настолько малую, что она едва различается самыми сверхчувствительными приборами.

Аморфное состоянием вещества неустойчиво. Со временем из аморфного состояния оно постепенно переходит в кристаллическое. Этот процесс в разных веществах проходит с разной скоростью. Мы видим, как покрываются кристаллами сахара леденцы. Для этого нужно не очень много времени.

А для того чтобы кристаллы образовались в обычном стекле, времени должно пройти немало. При кристаллизации стекло теряет свою прочность, прозрачность, мутнеет, становится хрупким.

Изотропность аморфных тел

В кристаллических твёрдых телах физические свойства различаются в разных направлениях. А в аморфных телах они по всем направлениям одинаковы. Это явление называют изотропностью .

Аморфное тело одинаково проводит электричество и теплоту по всем направлениям, одинаково преломляет свет. Звук также одинаково распространяются в аморфных телах по всем направлениям.

Свойства аморфных веществ используются в современных технологиях. Особый интерес вызывают металлические сплавы, которые не имеют кристаллической структуры и относятся к твёрдым аморфным телам. Их называют металлическими стёклами . Их физические, механические, электрические и другие свойства отличаются от аналогичных свойств обычных металлов в лучшую сторону.

Так, в медицине используют аморфные сплавы, прочность которых превышает прочность титана. Из них делают винты или пластины, которыми соединяют сломанные кости. В отличие от титановых деталей крепления этот материал постепенно распадается и со временем заменяется костным материалом.

Применяют высокопрочные сплавы при изготовлении металлорежущих инструментов, арматуры, пружин, деталей механизмов.

В Японии разработан аморфный сплав, обладающий высокой магнитной проницаемостью. Применив его в сердечниках трансформаторов вместо текстурованных листов трансформаторной стали, можно снизить потери на вихревых токах в 20 раз.

Аморфные металлы обладают уникальными свойствами. Их называют материалом будущего.

Аморфные твердые тела по многим своим свойствам и главным образом по микроструктуре следует рассматривать как сильно переохлажденные жидкости с очень высоким коэффициентом вязкости. Структура таких тел характеризуется только ближним порядком в расположении частиц. Некоторые из таких веществ вообще не способны кристаллизоваться: воск, сургуч, смолы. Другие при определённом режиме охлаждения образуют кристаллические структуры, но в случае быстрого охлаждения рост вязкость препятствует упорядочению в расположении частиц. Вещество затвердевает раньше, чем реализуется процесс кристаллизации. Такие тела называются стеклообразными: стекло, лёд. Процесс кристаллизации в таком веществе может произойти и после затвердевания (помутнение стёкол). К аморфным относят и твёрдые органические вещества: резина, дерево, кожа, пластмассы, шерстяные, хлопковые и шёлковые волокна. Процесс перехода таких веществ из жидкой фазы в твёрдую представлен на рис. – кривая I.

Аморфные тела не имеют температуры затвердевания (плавления). На графике Т = f(t) имеется точка перегиба, которую называют температурой размягчения. Снижение температуры приводит к постепенному росту вязкости. Такой характер перехода в твёрдое состояние, обуславливает отсутствие у аморфных веществ удельной теплоты плавления. Обратный переход, когда теплота подводится, происходит плавное размягчение до состояния жидкости.

КРИСТАЛЛИЧЕСКИЕ ТВЕРДЫЕ ТЕЛА.

Характерной особенностью микроструктуры кристаллов является пространственная периодичность их внутренних электрических полей и повторяемость в расположении кристаллообразующих частиц – атомов, ионов и молекул (дальний порядок). Частицы чередуются в определенном порядке вдоль прямых линий, которые называются узловыми. В любом плоском сечении кристалла две пересекающихся системы таких линий образуют совокупность совершенно одинаковых параллелограммов, которые плотно, без зазоров покрывают плоскость сечения. В пространстве пересечение трех некомпланарных систем таких линий образует пространственную сетку, которая разбивает кристалл на совокупность совершенно одинаковых параллелепипедов. Точки пересечения линий, образующих кристаллическую решетку называются узлами. Расстояния между узлами вдоль какого-то направления называется трансляциями или периодами решетки. Параллелепипед, построенный на трех некомпланарных трансляциях называется элементарной ячейкой или параллелепипедом повторяемости решетки. Важнейшим геометрическим свойством кристаллических решеток является симметрия в расположении частиц по отношению к определенным направлениям и плоскостям. По этой причине, хотя и существует несколько способов выбора элементарной ячейки, для данной кристаллической структуры, выбирают ее так, чтобы она соответствовала симметрии решетки.

Кристаллические тела можно разделить на две группы: монокристаллы и поликристаллы. Для монокристаллов наблюдается единая кристаллическая решетка в объеме всего тела. И хотя внешняя форма монокристаллов одного вида может быть разной, углы между соответствующими гранями будут всегда одинаковыми. Характерной особенностью монокристаллов является анизотропия механических, тепловых, электрических, оптических и др. свойств.

Монокристаллы нередко встречаются в естественном состоянии в природе. Например, большинство минералов – хрусталь, изумруды, рубины. В настоящее время в производственных целях многие монокристаллы выращивают искусственно из растворов и расплавов - рубины, германий, кремний, арсенид галия.

Один и тот же химический элемент может образовать несколько, отличающихся по геометрии, кристаллических структур. Это явление получило название - полиморфизма. Например, углерод – графит и алмаз; лед пять модификаций и др.

Правильная внешняя огранка и анизотропия свойств, как правило, не проявляются для кристаллических тел. Это объясняется тем, что кристаллические твердые тела обычно состоят из множества беспорядочно ориентированных мелких кристалликов. Такие твердые тела называются поликристаллическими. Связано это с механизмом кристаллизации: при достижении необходимых для этого процесса условий, очаги кристаллизации одновременно возникают во множестве мест исходной фазы. Зародившиеся кристаллы расположены и ориентированы друг по отношению к другу совершенно произвольно. По этой причине по окончании процесса мы получаем твердое тело в виде конгломерата сросшихся мелких кристалликов – кристаллитов.

С энергетической точки зрения различие между кристаллическими и аморфными твердыми телами хорошо прослеживаются в процессе отвердевания и плавления. Кристаллические тела имеют точку плавления – температуру, когда вещество устойчиво существует в двух фазах – твёрдой и жидкой (рис. кривая 2). Переход молекулы твердого тела в жидкость означает, что она приобретает дополнительно три степени свободы поступательного движения. Т.о. единица массы вещества при Т пл. в жидкой фазе имеет большую внутреннюю энергию, чем такая же масса в твердой фазе. Кроме того, меняется расстояние между частицами. Поэтому в целом количество теплоты необходимое для превращения единицы массы кристаллического вещества в жидкость будет:

λ = (U ж -U кр) + P (V ж -V кр),

где λ – удельная теплота плавления (кристаллизации), (U ж -U кр) – разность внутренних энергий жидкой и кристаллической фаз, Р – внешнее давление, (V ж -V кр) – разность удельных объемов. Согласно уравнению Клапейрона - Клаузиуса температура плавления зависит от давления:

Видно, что если (V ж -V кр)> 0, то > 0, т.е. с ростом давления температура плавления повышается. Если же объем вещества при плавлении уменьшается (V ж -V кр)< 0 (вода, висмут), то рост давления приводит к понижению Т пл.

У аморфных тел теплота плавления отсутствует. Нагревание приводит к постепенному увеличению скорости теплового движения и уменьшению вязкости. На графике процесса имеется точка перегиба (рис.), которую условно называют температурой размягчения.

ТЕПЛОВЫЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ

Тепловое движение в кристаллах из-за сильного взаимодействия ограничивается только колебаниями частиц около узлов кристаллической решетки. Амплитуда этих колебаний обычно не превращает 10 -11 м, т.е. составляет всего 5-7% периода решетки вдоль соответствующего направления. Характер этих колебаний весьма непрост, так как определяется силами взаимодействия колеблющейся частицы со всеми своими соседями.

Рост температуры означает увеличение энергии движения частиц. Это в свою очередь, означает увеличение амплитуды колебаний частиц и объясняет расширение кристаллических твердых тел при нагревании.

l t = l 0 (1 + αt 0),

где l t иl 0 – линейные размеры тела при температурахt 0 и 0 0 С, α – коэффици-ент линейного расширения. Для твёрдых тел α имеет порядок 10 -5 – 10 -6 К -1 . В результате линейного расширения увеличивается и объём тела:

V t = V 0 (1 + βt 0),

здесь β – коэффициент объёмного расширения. β = 3α в случае изотропного расширения. Монокристаллические тела, будучи анизотропными, имеют три разных значения α.

Каждая частица, совершающая колебания, имеет три степени свободы колебательного движения. Учитывая, что, кроме кинетической, частицы обладают еще и потенциальной энергией, на одну степень свободы частиц твёрдых тел следует приписать энергию ε = кТ. Теперь для внутренней энергии моля будем иметь:

U μ = 3N A kT = 3RT,

а для молярной теплоемкости:

Т.е. молярная теплоемкость химически простых кристаллических тел одинакова и не зависит от температуры. Это закон Дюлонга-Пти.

Как показал эксперимент, этот закон достаточно хорошо выполняется, начиная с комнатных температур. Объяснения отклонениям от закона Дюлонга-Пти при низких температурах были даны Эйнштейном и Дебаем в квантовой теории теплоемкости. Было показано, что энергия, которая приходится на одну степень свободы не является постоянной величиной, а зависит от температуры и частоты колебаний.

РЕАЛЬНЫЕ КРИСТАЛЛЫ. ДЕФФЕКТЫ В КРИСТАЛАХ

Реальные кристаллы обладают рядом нарушений идеальной структуры, которые называются дефектами кристаллов:

а) точечные дефекты –

    дефекты Шотки (незанятые частицами узлы);

    дефекты Френкеля (смещение частиц из узлов в междуузлия);

    примеси (внедренные чужеродные атомы);

б) линейные – краевые и винтовые дислокации. Это локальные нерегулярно

сти в расположения частиц

    из-за недостроенности отдельных атомных плоскостей

    или из-за нарушений в последовательности их застройки;

в) плоскостные – границы между кристаллитами, ряды линейных дислокаций.

Нужно помнить, что не все тела, которые существуют на планете Земля, имеют кристаллическое строение. Исключения из правила получили название «аморфные тела». Чем же они отличаются? Исходя из перевода данного термина - аморфный - можно предположить о том, что такие вещества отличаются от других своей формой или видом. Речь идет об отсутствии так называемой кристаллической решетки. Процесс расщепления, при котором появляются грани, не происходит. Аморфные тела также отличаются тем, что не зависят от окружающей среды, и их свойства постоянны. Такие вещества называются изотропными.

Небольшая характеристика аморфных тел

Из школьного курса физики можно вспомнить то, что аморфные вещества имеют такое строение, при котором атомы в них расположены в хаотичном порядке. Определенное место могут иметь лишь структуры-соседи, где такое расположение является вынужденным. Но все же проводя аналогию с кристаллами, аморфные тела не обладают строгой упорядоченностью молекул и атомов (в физике такое свойство получило название «дальний порядок»). В результате исследований было выяснено, что по своей структуре данные вещества схожи с жидкостями.

Некоторые тела (в качестве примера можно взять диоксид кремния, чья формула SiO 2) могут одновременно находиться в аморфном состоянии и иметь кристаллическую структуру. Кварц в первом варианте обладает структурой неправильной решетки, во втором - правильного шестиугольника.

Свойство №1

Как уже говорилось выше, аморфные тела не обладают кристаллической решеткой. Их атомы и молекулы имеют ближний порядок размещения, что и будет первым отличительным свойством данных веществ.

Свойство №2

Текучестью данные тела обделены. Для того чтобы лучше объяснить второе свойство веществ, можно сделать это на примере воска. Ни для кого не секрет, что если налить воду в воронку, то она просто выльется из нее. То же самое будет и с любыми другими текучими веществами. А свойства аморфных тел не позволяют им проделывать такие «трюки». Если воск поместить в воронку, то он предварительно растечется по поверхности и лишь потом начнет стекать с нее. Это связано с тем, что молекулы в веществе перескакивают из одного положения равновесия в абсолютно другое, не имея основного местоположения.

Свойство №3

Пора поговорить о процессе плавления. Следует запомнить тот факт, что аморфные вещества не имеют определенной температуры, при которой начинается плавление. Во время поднятия градуса тело постепенно становится мягче и затем превращается в жидкость. Физики всегда делают упор не на температуре, при которой данный процесс начал происходить, а на соответствующем температурном интервале плавления.

Свойство №4

О нем уже было сказано выше. Аморфные тела изотропны. То есть их свойства в любом направлении неизменны, даже если условия пребывания в местах различны.

Свойство №5

Хоть раз каждый человек наблюдал, что с течением определенного промежутка времени стекла начинали мутнеть. Это свойство аморфных тел связно с повышенной внутренней энергией (она в разы больше, чем у кристаллов). Из-за этого данные вещества спокойно сами могут перейти в кристаллическое состояние.

Переход к кристаллическому состоянию

Спустя определенный промежуток времени любое аморфное тело переходит в кристаллическое состояние. Это можно наблюдать в привычной жизни человека. Например, если оставить леденец или мед на несколько месяцев, то можно заметить, что они оба потеряли свою прозрачность. Обычный человек скажет, что они просто засахарились. И правда, если разломать тело, то можно заметить наличие кристаллов сахара.

Итак, говоря об этом, необходимо уточнить, что самопроизвольное превращение в другое состояние связано с тем, что аморфные вещества неустойчивы. Сравнивая их с кристаллами, можно понять, что последние в разы «мощнее». Объяснить факт можно благодаря межмолекулярной теории. Согласно ей, молекулы постоянно перескакивают с одного места на другое, тем самым заполняя пустоты. Со временем образуется устойчивая кристаллическая решетка.

Плавление аморфных тел

Процессом плавления аморфных тел называется момент, когда с поднятием температуры все связи между атомами рушатся. Именно тогда вещество превращается в жидкость. Если условия плавления таковы, что давление одинаково на протяжении всего периода, то температура также должна быть фиксированной.

Жидкие кристаллы

В природе существуют тела, которые имеют жидкокристаллическую структуру. Как правило, они входят в перечень органических веществ, а их молекулы обладают нитевидной формой. Тела, о которых идет речь, обладают свойствами жидкостей и кристаллов, а именно текучестью и анизотропией.

В таких веществах молекулы располагаются параллельно друг другу, однако, между ними нефиксируемое расстояние. Они движутся постоянно, но ориентацию менять несклонны, поэтому постоянно находятся в одном положении.

Аморфные металлы

Аморфные металлы больше известны обычному человеку под названием металлические стекла.

Еще в 1940 году ученые заговорили о существовании данных тел. Уже тогда стало известно, что специально полученные вакуумным напылением металлы, не имели кристаллических решеток. И лишь через 20 лет было произведено первое стекло такого типа. Особого внимания у ученых оно не вызвало; и только спустя еще 10 лет о нем заговорили американские и японские профессионалы, а потом уже корейские и европейские.

Аморфные металлы отличаются вязкостью, достаточно высоким уровнем прочности и стойкостью к коррозии.

Последние материалы раздела:

Интересные факты о физике
Интересные факты о физике

Какая наука богата на интересные факты? Физика! 7 класс - это время, когда школьники начинают изучать её. Чтобы серьезный предмет не казался таким...

Дмитрий конюхов путешественник биография
Дмитрий конюхов путешественник биография

Личное дело Федор Филиппович Конюхов (64 года) родился на берегу Азовского моря в селе Чкалово Запорожской области Украины. Его родители были...

Ход войны Русско японская 1904 1905 карта военных действий
Ход войны Русско японская 1904 1905 карта военных действий

Одним из крупнейших военных конфликтов начала XX века является русско-японская война 1904-1905 гг. Ее результатом была первая, в новейшей истории,...