Когда начинает таять лед. Как происходит таяние льда

Если лед поместить в сосуд и поставить его над работающей горелкой, сосуд нагреется и лед начнет таять. Однако до тех пор, пока весь лед не превратится в жидкость, температура воды не поднимется выше 0°С (32°F), вне зависимости от степени разогрева плиты. Это происходит из-за того, что вся подводимая ко льду теплота идет на преодоление физических сил, связывающих между собой его молекулы.

У льда молекулы воды удерживаются вместе межмолекулярными связями, формирующимися между атомом водорода (показан синим цветом) одной молекулы и атомом кислорода (показан красным цветом) другой. Результирующая гексагональная кристаллическая структура имеет довольно высокую прочность. При 0°С молекулы движутся настолько быстро, что связи ослабевают. Часть межмолекулярных связей разрывается, позволяя молекулам воды покидать лед с образованием жидкости. Такой процесс называется фазовым переходом (вода переходит из твердой фазы в жидкую), а температура, при которой он протекает, называется точкой плавления.

Для разрушения связей, позволяющих воде находиться в твердом состоянии, необходима энергия, причем в очень большом количестве, поэтому вся теплота, выделяемая горелкой, идет на разрывание этих связей, а не на увеличение температуры льда. Теплота, необходимая для завершения описанного выше фазового превращения, называется скрытой теплотой плавления или теплотой фазового перехода, так как эта теплота не приводит к росту температуры. Только после того, как последние связи будут разрушены и весь лед расплавится, температура воды начнет увеличиваться и станет выше 0°С.

Как происходит таяние льда

  1. У льда молекулы воды движутся так медленно, что всегда сохраняют связь друг с другом, образуя твердое тело. Когда ко льду подводится теплота (на рисунке справа показана в виде желтых шариков), молекулы воды приобретают дополнительную энергию и движутся быстрее, однако все еще связанные вместе в виде льда.
  2. Если подвод теплоты продолжается, молекулы воды, находящиеся на поверхности льда, увеличивают скорость своих колебательных движений, разрывая межмолекулярные связи, удерживавшие их раньше на месте. Эти молекулы покидают лед и образуют жидкую фазу воды. Дальнейший подвод теплоты приводит к разрушению оставшихся межмолекулярных связей и постепенному таянию льда.
  3. Продолжающийся подвод теплоты в конце концов дает последним из молекул замерзшей воды достаточно энергии для преодоления межмолекулярных связей, удерживавших их вместе в виде льда. Вся вода теперь стала жидкостью.


Лед, вода и температура


При подводе ко льду теплоты (рисунок слева) сначала увеличивается его температура. Однако при 0°С (32°F) рост температуры прекращается и наступает фазовый переход: лед начинает таять. Как показывает голубая кривая на графике, дополнительный подвод теплоты приводит к дальнейшему таянию льда, не увеличивая температуру воды. Только после того как весь лед перейдет в жидкое состояние (рисунок над текстом), дополнительный подвод теплоты приводит к увеличению температуры воды.

Каждому известно, что вода может находиться в природе в трех агрегатных состояниях - твердом, жидком и газообразном. При плавлении происходит превращение твердого льда в жидкость, а при дальнейшем нагревании жидкость испаряется, образуя водяной пар. Каковы же условия плавления, кристаллизации, испарения и конденсации воды? При какой температуре тает лед или образуется пар? Об этом мы поговорим в данной статье.

Нельзя сказать, что водяной пар и лед редко встречаются в повседневной жизни. Однако наиболее распространенным является именно жидкое состояние - обычная вода. Специалисты выяснили, что на нашей планете находится более 1 млрд кубических километров воды. Однако не более 3 млн км 3 воды принадлежат пресным водоемам. Достаточно большое количество пресной воды «покоится» в ледниках (около 30 млн кубических километров). Однако растопить лед таких огромных глыб далеко не просто. Остальная же вода соленая, принадлежащая морям Мирового океана.

Вода окружает современного человека повсюду, во время большинства ежедневных процедур. Многие считают, что запасы воды неиссякаемы, и человечество сможет всегда использовать ресурсы гидросферы Земли. Однако это далеко не так. Водные ресурсы нашей планеты постепенно истощаются, и уже через несколько сотен лет пресной воды на Земле может не остаться вовсе. Поэтому абсолютно каждому человеку нужно бережно относиться к пресной воде и экономить ее. Ведь даже в наше время существуют государства, в которых запасы воды катастрофически малы.

Свойства воды

Прежде чем говорить о температуре таяния льда, стоит рассмотреть основные свойства этой уникальной жидкости.

Итак, воде присущи следующие свойства:

  • Отсутствие цвета.
  • Отсутствие запаха.
  • Отсутствие вкуса (однако качественная питьевая вода имеет приятный вкус).
  • Прозрачность.
  • Текучесть.
  • Способность растворять различные вещества (например, соли, щелочи и т. д.).
  • Вода не имеет собственной постоянной формы и способна принимать форму сосуда, в который попадает.
  • Способность очищаться посредством фильтрования.
  • При нагревании вода расширяется, а при охлаждении сжимается.
  • Вода может испаряться, превращаясь в пар, и замерзать, образуя кристаллический лед.

В этом списке представлены основные свойства воды. Теперь разберемся, каковы особенности твердого агрегатного состояния этого вещества, и при какой температуре тает лед.

Лед - это твердое кристаллическое вещество, которое имеет достаточно неустойчивую структуру. Он, как и вода, прозрачен, не имеет цвета и запаха. Также лед обладает такими свойствами, как хрупкость и скользкость; он холодный на ощупь.

Снег также представляет собой замерзшую воду, однако обладает рыхлой структурой и имеет белый цвет. Именно снег каждый год выпадает в большинстве стран мира.

Как снег, так и лед - крайне неустойчивые вещества. Чтобы растопить лед, не нужно прикладывать особых усилий. Когда же он начинает таять?

В природе твердый лед существует только при температуре 0 °C и ниже. Если же температура окружающей среды поднимается и становится больше 0 °C, лед начинает таять.

При температуре таяния льда, при 0 °C, происходит и другой процесс - замерзание, или кристаллизация, жидкой воды.

Данный процесс можно наблюдать всем жителям умеренно континентального климата. Зимой, когда температура на улице опускается ниже 0 °C, достаточно часто выпадает снег, который не тает. А жидкая вода, находившаяся на улицах, замерзает, превращаясь в твердый снег или лед. Весной же можно увидеть обратный процесс. Температура окружающей среды поднимается, поэтому лед и снег тают, образуя многочисленные лужи и грязь, которую можно считать единственным минусом весеннего потепления.

Таким образом, можно сделать вывод, что, при какой температуре начинает таять лед, при такой же температуре начинается и процесс замерзания воды.

Количество теплоты

В такой науке, как физика, часто используется понятие количества теплоты. Данная величина показывает количество энергии, необходимой для нагревания, плавления, кристаллизации, кипения, испарения или конденсации различных веществ. Причем каждый из перечисленных процессов имеет свои особенности. Поговорим о том, какое количество теплоты для нагревания льда требуется в обычных условиях.

Чтобы нагреть лед, нужно сначала его растопить. Для этого необходимо количество теплоты, нужное для плавления твердого вещества. Теплота равняется произведению массы льда на удельную теплоту его плавления (330-345 тысяч Джоулей/кг) и выражается в Джоулях. Допустим, что нам дано 2 кг твердого льда. Таким образом, чтобы его растопить, нам понадобится: 2 кг * 340 кДж/кг = 680 кДж.

После этого нам необходимо нагреть образовавшуюся воду. Количество теплоты для данного процесса рассчитать будет немного сложнее. Для этого нужно знать начальную и конечную температуру нагреваемой воды.

Итак, допустим, что нам требуется нагреть получившуюся в результате плавления льда воду на 50 °C. То есть разница начальной и конечной температуры = 50 °C (начальная температура воды - 0 °C). Тогда следует умножить разность температур на массу воды и на ее удельную теплоемкость, которая равняется 4 200 Дж*кг/°C. То есть количество теплоты, необходимое для нагревания воды, = 2 кг * 50 °C * 4 200 Дж*кг/°C = 420 кДж.

Тогда получаем, что для плавления льда и последующего нагревания получившейся воды нам потребуется: 680 000 Дж + 420 000 Дж = 1 100 000 Джоулей, или 1,1 Мегаджоуль.

Зная, при какой температуре тает лед, можно решить множество непростых задач по физике или химии.

В заключение

Итак, в данной статье мы узнали некоторые факты о воде и о двух ее агрегатных состояниях - твердом и жидком. Водяной пар, однако, представляет собой не менее интересный объект для изучения. Например, в нашей атмосфере содержится приблизительно 25*10 16 кубических метров водяного пара. К тому же, в отличие от замерзания, испарение воды происходит при любой температуре и ускоряется при ее нагревании или при наличии ветра.

Мы узнали, при какой температуре тает лед и замерзает жидкая вода. Такие факты всегда пригодятся нам в повседневной жизни, так как вода окружает нас повсюду. Важно всегда помнить о том, что вода, в особенности пресная, является иссякаемым ресурсом Земли и нуждается в бережном к ней отношении.

Пожалуй, нет на Земле более распространенного и в то же время более загадочного вещества, чем вода в жидком и твердом состояниях. Достаточно вспомнить, что все живое вышло из воды и состоит в основном из нее; почти три четверти поверхности Земли покрыты водой и льдом, а значительная часть северных территорий суши представляет собой вечную мерзлоту. Чтобы наглядно представить себе суммарное количество льда на нашей планете, заметим, что в случае его таяния вода в Мировом океане поднимется более чем на 50 м, что приведет к затоплению гигантских территорий суши на всем земном шаре. Во Вселенной, в том числе и в Солнечной системе, обнаружены огромные массы льда. Нет ни одного мало-мальски существенного производства, бытовой деятельности человека, в которых не использовалась бы вода. Тем не менее после многочисленных успехов физики и физико-химш воды последних лет вряд ли можно утверждать, что свойства этого простого вещества понятны и прогнозируемы до конца. Предлагаю познакомиться с современными представлениями о важнейших физических свойствах воды и льда в естественных условиях и их использовании на практике.

Вода - вероятно, наиболее изученное вещество. Основы современного понимания физики воды заложили около 200 лет назад Генри Кавен-диш и Антуан Лавуазье, обнаружившие, что вода - это не простой химический элемент, как считали средневековые алхимики, а соединение кислорода и водорода в определенном соотношении. Собственно, название свое водород - рождающий воду - получил только после этого открытия, и вода приобрела современное химическое обозначение, известное теперь каждому школьнику, - Н20. Итак, молекула Н20 построена из двух атомов водорода и одного атома кислорода. Мы не будем подробно описывать всю историю исследований, отметим лишь то, что устройство молекул воды в настоящее время известно очень точно. Атомы водорода и атом кислорода занимают положения в вершинах равнобедренного тре-. угольника с углом в вершине, занятой кислородом. Известны размеры и углы этой конструкции. Поскольку атомы состоят из положительных и отрицательных частиц (ядер и электронов), такое расположение атомов и существенно большее количество электронов у кислорода (и больший положительный заряд его ядра) приводят к тому, что молекула воды становится похожа на маленький "магнит". Поскольку таких "магнитов" даже в капле воды очень много, то оказывается, что многие из них притягиваются разноименными концами. При этом следует учесть, что, поскольку атомов водорода два, а атом кислорода оттягивает на себя заряд с каждого из водородных атомов, молекула воды способна образовать четыре связи с соседними аналогичными молекулами. Такая связь между молекулами называется водородной. Она встречается в природе очень часто: например, в спиртах и водно-спиртовых растворах, в любой биологической системе. Попробуем разобраться, что происходит, когда скапливается много молекул воды в одном месте..

Представим, что мы поместили рядом с одной молекулой другую, потом еще одну - постепенно мы получим аккуратную пространственную структуру, как будто собранную из детского конструктора. Получается, что каждая молекула воды окружена четырьмя другими, а симметрия такого пространственного расположения такая же, как у правильного шестиугольника. При этом хорошо видно, что расположение молекул не очень плотное - много пустого места. Молекулы воды, расположенные таким образом, и есть хорошо знакомый каждому лед. Отметим, что фиксированные положения в структуре льда занимают только атомы кислорода.

Два атома водорода могут занимать различные положения на четырех связях молекулы воды с другими соседями. Отмеченная выше симметрия решетки приводит к тому, что кристаллики, растущие свободно (например, снежинки), имеют шестилуче-вую форму. Итак, получилась ажурная конструкция из молекул воды, соединенных водородными связями. Давайте разберемся, что будет происходить, если мы станем нагревать ее. Сразу стоит понять, что такое нагревать? Ведь сейчас мы рассуждаем о поведении микроскопических частиц - а к ним общепринятое понятие температуры (тепла) применить не получится. Оказывается, что тепло - это такие же электромагнитные колебания, как свет или радиоволны, но просто другой частоты. Начинаем нагревать "Лего-лед", то есть периодически воздействовать на заряды молекул, например, поместив конструкцию в ведро и потряхивая его. Если сила колебаний не очень велика, то ничего не происходит. При ее увеличении крайние (находящиеся у стенок молекулы) отламываются от общей решетки (ведь у них не четыре, а две-три связи). В такой ситуации большая конструкция болтается в ведре, и у стенок имеется небольшой слой свободных молекул. Если трясти еще сильнее, в некоторый момент вся решетка развалится на куски поменьше, при этом, поскольку начальная конструкция была весьма пустотелой, объем занимаемый "обломками" будет меньше (сравните рисунки).

Несмотря на то, что разрушено всего чуть более десятой части водородных связей, обломки начальной решетки ведут себя уже не как твердое тело, а как жидкость, мы даже можем "вылить" их из ведра. Попробуем потрясти еще сильнее. Из-за того что молекулы и "обломки" решетки двигаются все быстрее, расстояния между ними в среднем увеличиваются - уровень "жидкости" в ведре чуть-чуть повышается. Если трясти ведро еще сильнее, отдельные молекулы начнут вылетать из него, а, продолжив это нелегкое физическое упражнение, можно добиться того, что в ведре не останется ни одной молекулы, А теперь вернемся в начало нашей забавы с конструктором и вспомним, что в реальности молекул воды очень много и они крайне малы по величине. Проследив всю цепочку рассуждений, мы поймем, что описали процесс нагревания и таяния льда, а затем нагревания и испарения воды.

А при какой температуре замерзает вода? Казалось бы, ответ очевиден - конечно, при той же, при которой тает лед. Однако не все так просто. Вода в основном тает при 0°С, но в зависимости от чистоты воды точка замерзания может оказаться и ниже. Хорошо очищенную воду В"лабораторных условиях можно Переохладить (то есть охладить ниже точки таяния льда, и она при этом не замерзнет) почти до -40°С. Хотя, справедливости ради, стоит отметить, что подобная ситуация очень редко встречается в природе. При охлаждении воды кое-где образуются мельчайшие островки льда, которые быстро исчезают, если температура выше точки замерзания. Когда достигнута температура замерзания, такие островки увеличиваются и неуклонно продолжают расти, так как дальнейшее замораживание приводит к понижению свободной энергии системы. В чистой воде размер стровков достигает критического значения при -40°С. Наличие примесей уменьшает величину критического размера ледяных островков, поэтому вода замерзает при более высоких температурах (но ниже 0°С).

Используя это, хотя и сильно приближенное, но весьма наглядное рассуждение, можно объяснить многие удивительные (аномальные) свойства льда и воды.
Плотность воды больше плотности льда, поэтому лед плавает в воде. Максимальную плотность вода имеет при температуре ч-4°С, в результате осенью при замерзании водоема, как только вся толща воды в озере остужается до такой температуры, верхний слой, продолжающий охлаждаться, становится легче, чем вода нижних слоев. Холодная и легкая "верхняя" вода плавает над более теплой, а следовательно, более тяжелой, глубинной. Перемешивание слоев происходит очень медленно, поэтому верхний слой воды, а затем и лед не дают озеру промерзнуть, и зимой температура в глубине озера держится в пределах от +1° до н-4°. До дна же промерзают лишь мелкие озера, да и то в очень сильный мороз. Если же происходит интенсивное перемешивание больших масс воды, то водоем может вообще не замерзать (что наблюдается, например, на Енисее, не замерзающем даже в 30-градусные морозы на десятки километров ниже по течению от Красноярской ГЭС). Осенью первыми покрываются льдом мелкие озерки, затем - прибрежные воды и неглубокие заливы озер. Замерзание водоемов происходит от берегов. Глубокие места могут оставаться свободными ото льда еще не один месяц после того, как прибрежные участки уже покрылись им, поскольку охлаждение нижних слоев идет очень медленно, а если они интенсивно перемешиваются глубинным течением (например, водосбросом искусственной или естественной плотины), то поверхность водоема в этой части может совсем не замерзнуть даже в сильный мороз.
Скорость увеличения толщины поверхностного льда можно очень приближенно оценить в 2 мм на 1 градус мороза в сутки, однако следует помнить, что подобный расчет применим только к неглубоким, спокойным озерам в тихую, безветренную погоду и при чистой, незаснеженной поверхности льда. Таким образом, первый чистый лед на прудах за одну морозную (~10°С) ночь (12 часов) нарастает примерно на 1 см.

В крупных озерах и реках большая масса воды на глубоких участках замедляет, а иногда вообще делает невозможным замерзание. Поэтому нужно быть очень осторожным при оценке несущей способности льда, когда делают ее на основании наблюдений около берега. Особенно внимательным следует быть при довольно обычной погодной ситуации, когда молодой прозрачный лед толщиной около 1 см укрывается неглубоким снегом. Даже небольшой снежный покров замедляет нарастание льда, прекращает его полностью, а иногда приводит к уменьшению толщины в местах течения воды, несмотря на устойчивую морозную погоду, Если же снегопад достаточно силен и сопровождается ветром, то неравномерный толстый снежный покров давит на поверхность льда и растрескивает его снизу, что приводит к появлению вертикальных трещин, в которые проникает переохлажденная вода, и если она просачивается наверх, под снег, то лед может местами подтаять, а под снегом вы этого не увидите. Такая ситуация возможна около береговых обрывов, в местах, где есть подводные источники. Весной это обернется другой опасностью - вода, которая вытекла на лед и пропитала снег, замерзая, образует рыхлый лед, несущая способность которого вдвое-втрое меньше, несмотря на значительную толщину. Еще неприятней может оказаться ситуация на заболоченных водоемах - растения и их корни, задерживая снег и теплоизолируя поверхность, могут привести к тому, что надежное ледяное покрытие при приближении к берегу окажется слишком тонким и проломится.

Какова же безопасная толщина льда? Однозначного достоверного ответа на этот вопрос, к сожалению, нет. Считается, что прозрачный озерный лед толщиной более 5 см надежно выдерживает человека. Но это в идеальных условиях. В межсезонье, когда ночные морозы сменяются солнечным теплым днем, растрескавшийся лед, пронизанный вертикальными трещинами и пропитанный водой, может подвести даже при вчетверо большей толщине. Особенно внимательно нужно относиться к местам, укрытым сугробами, и участкам рек с резко меняющимся профилем дна и берегов. Часто течение истончает ледяной покров у мысов каменных островов, опор мостов (где заметное влияние оказывает еще и нагревание солнцем бетонных и металлических конструкций).

Не за горами новый сезон зимней рыбалки со льда. Стремление рыболовов как можно раньше попасть на лед понятно, — это всегда море эмоций, азарта и высокая активность рыбы. Однако, прежде чем ступить на неокрепший лед, необходимо знать и соблюдать элементарные , и , если случилась неприятность.

Кто хоть раз испытывал счастье проложить первую в сезоне тропку по молодому хрусткому ледку, едва прикрытому девственно чистой порошей, тот с неизменным душевным трепетом ожидает этого события вновь и вновь, с затаенной надеждой пробуя ломкую корочку на лужах после осеннего утренника…

Но рано или поздно томительное ожидание заканчивается, праздник наступает, и тогда тысячи рыболовов устремляются к своим заветным местам, ориентируясь в белом безмолвии по хранящимся в памяти приметам. Но всегда ли надежна дорога над таинственным сумраком глубокой воды, где жизнь, не нарушаемая плеском волн, впала в дремотное состояние?

Безопасная рыбалка на льду

Безопасность движения по льду зависит от целого набора факторов, которые необходимо учитывать рыболову-зимнику, и связаны они с характером эволюции ледового покрытия, типом водоема, климатическими условиями, сложившимися данной зимой.

Сегодня мы поговорим о том, каковы глобальные предпосылки образования льда того или иного типа, поскольку именно они и определяют тактику безопасного поведения на нем.

Прежде всего, период ледостава можно условно разделить на три основные стадии: перволедье, матерый лед и последний лед .

Часто (даже в средней полосе России, не говоря уж о более южных регионах) бывает так, что наблюдается по нескольку коротких периодов образования временного ледового покрытия, которое, не достигнув достаточной прочности, размывается затем дождями, ослабляется сырыми туманами и разбивается ветром.

В такие моменты наиболее часты трагические случаи, происходящие с безрассудными рыболовами, у которых не хватает выдержки потерпеть неделю-другую. В подобной ситуации лучше не спешить, поумерить душевный пыл и посвятить время выдавшегося межсезонья тщательной подготовке зимних рыболовных принадлежностей или продлить весьма эффективную позднее-осеннюю спиннинговую охоту на больших реках, где нет еще и закраин.

Перволедье

Этот период может быть и очень коротким (одна-две морозные тихие ночи), и достаточно продолжительным и, как сказано выше, временами прерывающимся. Перволедье также условно разделяется на некие фазы: перволедок (тонкий, но уже не разрушающийся ледок), крепкий хотя бы местами лед и надежный лед (сплошь покрывший некоторые водоемы и везде пригодный для рыбалки). Ясно, что не только на разных водоемах, но даже на одном и том же эти фазы разнятся по времени и по акватории, причем порой значительно, поэтому, планируя первые ледовые походы, вы должны хорошо представлять, что происходит на том или ином водоеме. Такие знания даются только благодаря ежегодным наблюдениям, тщательно заносимым в рыболовный дневник.

Все сказанное при первом прочтении может показаться вам излишней перестраховкой, но автор этих строк многократно оказывался свидетелем превращения чрезмерно самоуверенных рыболовов в некое подобие ледоколов, ломавших руками лед до самого берега, а помочь им было нельзя, поскольку на тонкий лед выбраться, да еще в тяжелой намокшей одежде, практически невозможно.

И хорошее знание водоема, избранного для рыбалки по первому льду, необходимо хотя бы для того, чтобы помнить, где на нем глубина не выше роста человека или где с глубокого места соискатель звания «моржа» может быстро выйти на отмель, идущую к берегу…

Образование льда

Как же возникает такое чудесное явление природы - образование на поверхности воды льда? Если кратко, то благодаря конвективному теплообмену между двумя средами, водой и воздухом, происходящему на границе раздела. А подробнее это выглядит примерно так: вода, являясь весьма емким аккумулятором тепла, к концу летнего сезона оказывается гораздо более нагретой, чем атмосфера вблизи поверхности земли. Воздух как менее плотный, а потому не такой энергоемкий, быстро остывает из-за ставших длинными ночей и удаления планеты от светила с изменением интенсивности и наклона солнечных лучей к поверхности. И чем ниже опускается температура воздуха, тем быстрее происходит теплообмен с водой.

Когда поверхностный слой воды охладится до температуры +4°, при которой эта жидкость скачком становится максимально плотной, она, практически не перемешиваясь, опустится вниз, вытесняя вверх теплую и более легкую воду. Таким образом происходит вертикальная циркуляция и очень медленное перемешивание всей толщи воды.

Этот процесс конвекции постепенно затухает по мере приближения температуры к 4°, но совсем никогда не прекращается — донные слои постоянно получают тепло от ложа водоема, которое зимой всегда несколько теплее воды (иначе бы водоемы промерзли до дна, и лед бы нарастал и сверху, и снизу, что обычно происходит в зонах с вечной мерзлотой).

Когда основная масса воды примет температуру 4°, начинается ее дальнейшее охлаждение до 0° — это точка перехода дистиллированной воды в кристаллическое состояние, то есть точка замерзания. Переохлаждение ниже 0° приводит к образованию льда.

В реальности в различных водоемах вода представляет собой некий раствор из солей и микро-взвесей, отличающийся по составу, что обычно снижает температуру льдообразования, и для разных водоемов эта температура неодинаковая.

Опять же, идеальной картины замерзания воды в природе не бывает, и лед каждый год встает по-разному — это зависит от погоды, которой этот процесс сопровождается, а также от типа водоема: большой он или маленький, глубокий или мелкий, с течением или стоячий.

На характер льдообразования влияют также колебания уровня воды в этот период и продолжающееся кое-где судоходство.

Если ледостав происходит в тихую морозную погоду, то лед практически равномерно покрывает весь водоем, нарастая от берегов, и прежде всего в местах мелководий.

Когда процесс становления льда сопровождается сильным ветром, то образование ледяного покрова на открытых пространствах больших водоемов задерживается надолго — крутые волны ломают и уносят непрочный, тонкий перволедок и сбивают его к подветренному берегу, где при достаточно сильном морозе, быстро схватывающем этот хрупкий строительный материал, может образоваться весьма толстая, но менее прочная, чем сплошной лед, широкая закраина.

Другая закраина из монолитного льда будет расти от наветренного берега, и чем круче, выше этот берег, тем шире прозрачный отмосток ляжет на воду.

При стихании ветра, если не случится внезапной оттепели, эти две закраины быстро соединятся, так как хорошо перемешанная и охлажденная вода будет готова к замерзанию. Однако рыболову еще долго следует помнить: где лед встал вначале — там он толще и прочнее.

Понятно, что над большими глубинами, где масса воды велика, охлаждаться она будет дольше, и образование льда наступит позже, чем на мелких местах. Такая же закономерность существует при ледоставе на обширных или небольших водоемах.

На реках свои особенности льдообразования: из-за течения вода постоянно перемешивается по всему объему, и переохлаждение наступает для всей движущейся массы, на что нужно дополнительное время, поэтому лед на реке встает несколько позже, чем на водоемах со стоячей водой. Однако вода в реках подо льдом в целом холоднее, чем на озерах и водохранилищах, и как это ни парадоксально, дальнейший прирост льда на реке идет быстрее.

Показательным примером того, что вода в реке зимой холоднее, чем в стоячем водоеме, будет следующий простой эксперимент: окунув несколько раз грузило в воду и наморозив на нем ледяную «рубашку», опустите его затем, допустим, на глубину 5 метров в озере — лед растет через минуту-другую. На реке тот же опыт покажет, что грузило останется оледеневшим до часа и более, — это говорит о том, что температура всей толщи воды на течении близка к 0°.

Разумеется, на сильном течении лед встает позже, чем на слабом. К тому же в начале зимы на реках бывают ощутимые и достаточно резкие колебания уровня воды. Обычно наблюдается его падение, связанное с уменьшением стока притоков из-за замерзания поверхностных грунтовых вод.

Например, на Оке это ведет к тому, что тонкий лед обламывается по берегам и течение уносит всю массу перволедка. Движущиеся льдины скапливаются в местах с обратным течением за мысами и на стрелках сбоя струй, а также на границе, где быстрый поток вливается в медленно текущий плес.

Во всех таких характерных местах образуются затем торосы, достигающие порой толщины до 3 метров, — они всю зиму служат хорошим ориентиром для рыболовов при поиске рыбьих стоянок, поскольку подводные обитатели скапливаются вблизи подобных «особенностей» поведения речного потока.

Прочность льда

Важнейшей характеристикой льда является его прочность, которую в реальных условиях нельзя считать константой, поскольку этот показатель сильно зависит от вида и структуры льда, его температуры и толщины.

Бывает, начало зимы сопровождается частым прохождением циклонов, выпадают осадки в виде дождя или мокрого снега, и лед намерзает в несколько этапов в короткие морозные просветы между погодными фронтами. При этом его толща нарастает как снизу, так и сверху за счет смерзания выпавшего снега или находящейся на его поверхности воды.

Такой лед получается мутным, многослойным, и следует иметь в виду, что он примерно в два раза слабее прозрачного, как стекло, льда, поэтому выходить на него надо, когда он достигнет двойной безопасной толщины, то есть около 10 см.

Это важно знать по той причине, что рыболовы, как правило, стремятся на участки с подобным ледовым покрытием, так как здесь обычно скапливается рыба и клюет она в таких местах гораздо лучше.

Как уже отмечалось, наиболее прочен чистый прозрачный лед, образовавшийся от замерзания поверхностного слоя воды, но рыбачить с него имеет смысл лишь над большой глубиной, где низка освещенность и рыба не пуглива. Поэтому безопасным он будет при достижении толщины не менее 5 см — тогда он надежно выдерживает одного человека.

Прочность ледяного покрова линейно увеличивается с ростом толщины льда и с понижением его температуры, однако температура льда по толщине различна: вверху она равна атмосферной, а внизу — соответствует точке замерзания воды, то есть около 0°. А поскольку температурный коэффициент линейного расширения льда огромен (например, в пять раз больше, чем у железа) и всем известно, как разрываются прочные сосуды с замерзшей водой, то становится понятно, что аналогичные процессы сопровождают ледяной покров по мере роста его толщины: имеющие разную температуру слои испытывают расширяющие нагрузки как поперечного, так и продольного направления.

Именно поэтому при значительных морозах лед лопается с оглушительным, «пушечным» грохотом, и по нему разбегаются длинные трещины, имеющие замысловатую форму (рис.1).

Однако хаотичность трещин на поверхности льда только кажущаяся, если помнить о механизме льдообразования: прежде всего в начале зимы, когда лед еще не везде одинаков по толщине, напряжения проявляются по границам стыковки толстого и тонкого ледового покрова, то есть там, где мелководье резко переходит в глубину. Опытные рыболовы-зимники давно знают, что бровки, где держится рыба, следует искать по старым и широким, идущим обычно параллельно основному руслу трещинам (рис.2).

При этом глубокая сторона водоема будет определяться по близко располагающейся к обычно крутому берегу трещине, и наоборот.

Думается, практический интерес для рыболовов будет представлять примерный суточный ход прироста льда в зависимости от температуры воздуха и уже имеющейся его толщины.

Такие данные сведены в таблицу, они позволяют прогнозировать состояние льда накануне выхода на рыбалку. Это, конечно, идеальная картина, не учитывающая снежного покрова на поверхности льда.

Известно, что теплопроводность (в данном случае — холодопроводность) снега до 30 раз меньше, чем у льда (все зависит от рыхлости снега), поэтому при снегопадах надо вносить в расчеты соответствующую поправку.

Температура
воздуха, °С
Толщина
льда, см
<10 10-20 20-40
Прирост
льда за сутки, см
-5° 4 1,5 0,5
-10° 6 3 1,5
-15° 8 4 2
-20° 9 6 3

Важно научиться понимать по виду первого, еще непрочного льда, как он реагирует на нагрузку. Знающие рыболовы говорят, что первый лед не обманет, не предаст, а вовремя подскажет об опасности звуком и рисунком трещин, надо только уметь видеть и слышать .

Приложенная к тонкому льду точечная нагрузка вызывает его деформацию в форме чаши, объем которой гипотетически соответствует объему воды, по весу равному массе, вызвавшей прогиб нагрузки (рис.3).

При малом грузе происходит упругая деформация льда и чаша прогиба расширяется по периметру. Если нагрузка будет выше предела упругости, то начнется пластическая деформация льда, и «чаша» станет быстрее увеличиваться в глубину, чем в ширину, — это начало разрушения (нарушение сплошности) льда.

Прогиб льда под нагрузкой: mн — масса нагрузки; mв — масса вытесненной воды.

Об упругих свойствах льда говорят следующие количественные данные. Если рассматривать прозрачный, наиболее прочный лед, то при центральном прогибе его в 5 см трещин на нем не образуется; прогиб в 9 см ведет к усиленному образованию трещин, прогиб в 12 см вызывает сквозное растрескивание, при 15 см лед проваливается. Трещины под действием нагрузок возникают двух типов: радиальные (рис.4,а) и концентрические (рис.4,б).

Типы растрескиваний льда под нагрузкой: а — радиальные трещины, не ведущие к провалу груза; б — радиальные трещины, сопровождаемые концентрическими разрушениями, ведут к быстрому провалу груза.

При движении по непрочному льду необходимо обращать особое внимание вот на что: если возникают концентрические трещины, сопровождаемые характерным скрипящим звуком, нужно немедленно скользящим шагом покинуть опасный участок, в особо критической ситуации лучше лечь на лед и отползти в обратном направлении.

Также нелишне вспомнить и другие правила поведения на тонком льду:

  • ни в коем случае не ходить по нему гуськом, иначе радиальные трещины на «дороге» быстро прирастут концентрическими;
  • не выходить на лед в одиночку;
  • проверять каждый шаг на льду остроконечной пешней, но не бить ею лед перед собой — лучше сбоку;
  • не подходить к другим рыболовам ближе чем на 3 метра;
  • не приближаться к тем местам, где во льду имеются вмерзшие коряги, водоросли, воздушные пузыри;
  • не следует ходить рядом с трещиной или по участку льда, отделенному от основного массива несколькими трещинами;
  • необходимо быстро покинуть опасное место, если из пробитой лунки начинает бить фонтаном вода;
  • не передвигаться по тонкому льду на коньках;
  • обязательно иметь с собой средства спасения: шнур с грузом на конце, длинную жердь, широкую доску;
  • ни в коем случае не совмещать рыбалку по первому льду с возлияниями: только теплое «море по колено», в ледяной воде долго не продержаться.

Матерый лед

Зима берет свое и, несмотря на погодные коллизии, вскоре все водоемы покрываются льдом, толщина которого в малоснежные и морозные зимы в средней полосе России достигает 1 метра и более. Это самый спокойный (в смысле безопасности) период зимней рыбалки, хотя и здесь рыболова могут подстерегать весьма неприятные неожиданности.

Прежде всего, ухо востро надо держать на реках, когда лед покроется толстым слоем снега, перекрыв доступ холода ко льду, а текущая вода медленно, но верно, начнет истачивать его снизу. Быстрее всего промоины образуются там, где струи, завихряясь над преградами, бьют вверх, над выходом родниковых вод или в местах впадения теплых бытовых стоков.

Обычно расположение подобных участков каждый год неизменно и их просто следует хорошо помнить. На незнакомой реке лучше ходить по торным тропкам, а нехоженые участки проверять частым сверлением пробных лунок — хотя это и утомительно, но оправданно.

Однажды в середине зимы и после сильных морозов я быстро шел по реке, приближаясь к участку с быстрым течением. Ледобур был разложен, но уверенность в прочности льда преобладала над осторожностью. В ледяной воде оказался мгновенно, не ощутив никакого сопротивления. А разорванная (через толстую рукавицу) кожа между большим и указательным пальцем и слегка погнутый шнек красноречиво свидетельствовали о том, что спас меня ледобур, вставший поперек манны с бурлящей черной водой. Оказывается, промоину прикрывала лишь смерзшаяся снизу непрочная корка из снега…

При рыбалке на стоячих водоемах, особенно на водохранилищах, где идет постоянный сброс воды, следует помнить, что лед здесь время от времени обламывается около берегов. Если на мелководье он ложится на грунт, то у крутых берегов могут возникнуть участки незамерзшей воды, лишь прикрытой наметенным снегом (рис.5), куда вы можете совсем неожиданно попасть, испортив себе рыбалку.

Неприятна также ситуация, когда вы оказываетесь на просторах большого водоема в районе с водяной ванной, скрытой толстым слоем мокрого снега. Образуются такие ванны как раз в тех местах, где лед тонок: после затяжных снегопадов он не выдерживает массы снега, лопается с образованием сквозных трещин, в которые поступает вода в количестве, равном весу нагрузки (рис.6). И без того тонкий и пропитанный теперь водой лед перестает намерзать и становится весьма опасным, особенно ближе к весне.

Образование водяных линз на льду в снежные зимы: mc — масса снега; mb — масса вышедшей на лед воды.

Также следует помнить, что на водохранилищах, особенно Волжского каскада, уже к середине зимы из-за сброса воды настолько усиливается течение, что возникают огромные промоины, первое время прикрытые тонким, еще не размытым льдом. Пешня в этой ситуации должна дополнять ледобур, а обратную дорогу нужно проверять несколько раз за день.

Последний лед

Этот период в эволюции льда наступает, когда весной среднесуточная температура воздуха становится близкой к 0°, то есть начинается таяние снега и появляются талые воды. В первое время лед становится опасным у берегов, где снег сходит быстрее, чем на льду. Ручейки талой воды, стекая в водоем, подмывают край льда, а тепло, исходящее от нагретой земли, еще больше способствует процессу разрушения ледовой кромки.

Кажущаяся прочность прибрежного льда после утреннего заморозка обманчива — с солнечным обогревом он может не отпустить рыболовов обратно, поэтому выход на берег надо приготовить заранее, прихватив на лед длинные жерди или доски. Желательно, чтобы выход был на мелководье, и лучше на той стороне, где лед во второй половине дня окажется в тени от леса или высокого берега. Пройдет еще некоторое время, и у берега образуются широкие разводья, причиной которых будут разрушение припая и прибыль воды в водоеме. Хотя основной лед останется еще достаточно надежным, но выбираться на него без лодки неразумно.

Основной массив льда разрушается поэтапно: когда среднесуточная температура воздуха перевалит за плюсовую отметку, то на поверхности ледового покрытия начнет интенсивно таять снег, и этот процесс будет ускоряться ветрами, сырыми туманами и дождями. Поверхностная вода впитывается в лед, нарушая его монолитную структуру, вызывая распадение льда на отдельные, стоящие вертикально кристаллы (игольчатая структура), и связь между этими элементами постепенно ослабевает. Одновременно лед подтаивает и снизу. По этим причинам весенний лед коварен: утратив упругие свойства монолита, он не затрещит предупреждающе, как в перволедье, а с предательским шипящим звуком вдруг неожиданно распадется под ногами неосторожного рыболова.

Особенно опасен лед там, где всю зиму под снегом стояла вода, — эти лужи видны и на последнем, бесснежном льду, и такие места надо обходить стороной. Лучше по последнему льду передвигаться по старым зимним тропкам (они выделяются на его поверхности) и рыбачить на «насиженных» местах — здесь лед толще и лучше проморожен за зиму.

Ни в коем случае нельзя собираться большими группами, в кучи, «обрубая» удачливого собрата, — коллективные купели, как правило, заканчиваются трагически.

Спасать провалившегося на весеннем льду надо осмысленно, ни в коем случае не подходя близко к образовавшейся майне: следует подбираться к ней ползком, надвигая впереди себя длинный шест или доску, или бросить утопающему с безопасного расстояния конец толстой веревки с широкой петлей, которую тот набросит на себя. Впрочем, все зависит от состояния «купающегося», замерзнув, он может впасть в шоковое состояние, но еще держаться на плаву. Тогда надо действовать предельно быстро, и без надувной лодки тут не обойтись.

Физически сильному человеку, попавшему в неприятную ситуацию, помогут специальные «спасалки» — устройства, похожие на толстое шило и висящие на шнурах на рыболовной одежде. Воткнув их в край льда, можно подтянуться и выбраться из воды. Однако эти хорошие средства спасения малопригодны на слишком рыхлом весеннем и на молодом тонком льду.

Чтобы неприятность не случилась, надо всегда трезво оценивать, когда рыбалку со льда лучше оставить до следующего сезона и перейти к ужению в проводку на малых реках.

На реках, еще скованных ледовым панцирем, на лед не следует выходить, когда обозначилась заметная прибыль воды, а рыбалку лучше продолжить на стоячих водоемах, притом больших, медленно реагирующих на подъем уровня. Здесь сигналом к окончательному уходу на берег станет прилет чибисов и чаек, а иногда и трясогузок.

В народе говорят: «Трясогузка хвостом лед разбивает». После прилета этой шустрой птички, деловито бегающей по льду и собирающей первых весенних насекомых, можно с уверенностью сказать, что до распадения льда осталось не более недели.

Хочется верить, что читатели не посчитают эту статью всего лишь предупреждением, что лед может быть опасен на всех этапах его становления. Надеюсь, что она добавила им знаний об этом замечательном феномене и помогла стать ледяному помосту надежным другом для всех увлеченных рыбалкой.

А. Маилков «Рыболов — Elite № 06 — 1999 г.»

Край промоины влечет к себе рыболова-подледника, хотя опасность того, что вблизи открытой воды лед окажется явно непрочным, присутствует всегда. Условиями безопасного передвижения по льду являются знание рисков и надлежащее снаряжение. Приведенные здесь сведения обязательно помогут обеспечить Вашу безопасность.

Осенью первыми покрываются льдом мелкие озерки, а затем – прибрежные воды и неглубокие заливы озер. Замерзание водоемов происходит от берегов к плесам. Наиболее глубокие места могут оставаться не замерзшими еще месяц-два после того, как прибрежные участки уже покрылись льдом, поскольку большая водная масса остывает медленнее.

В море затягивание льдом архипелагов и открытых морских участков зависит как от продолжительности морозных периодов, так и от ветра и течений. В открытом море ледовый покров «живет» на протяжении всей зимы. Вследствие перемещения и растрескивания ледяных полей, между льдинами могут возникать коридоры практически лишенные льда, в которые рыболов – блеснильщик и рискует провалиться.

Факторы влияющие на прочность льда

Сначала лед образуется неравномерно, но по мере дальнейшего остывания воды он нарастает в спокойную погоду со скоростью 2,5 мм в сутки на один градус мороза. Если, например, температура воздуха составляет – 4 градуса, то можно сказать, что за сутки может образоваться лед толщиной в сантиметр.

Приведем для наглядности таблицу прироста льда, в зависимости от температуры окружающей среды.

Температура воздуха < 10 см 10-20 см 20-40 см
Прирост за сутки, см Прирост за сутки, см Прирост за сутки, см
-5 4 1,5 0,5
-10 6 3 1,5
-15 8 4 2
-20 9 6 3

Мнение эксперта

Александр Петрович

участник Чемпионата России по ловле на поплавочную удочку

Стоит учесть, что мутная или солоноватая вода замерзает хуже чистой и пресной, и, соответственно, прирост толщины льда происходит медленнее.

Большое влияние оказывают и другие факторы:

  • глубина водоема;
  • сила течения;
  • толщина снежного покрова;
  • сила ветра и т.п.

Мощность ледяного покрова обычно увеличивается со столь прямой зависимостью на небольших мелких озерках. В крупных озерах, не говоря уж о море, большая масса воды на глубоких участках замедляет замерзание и скорость нарастания мощности льда невозможно определить с берега.

Снег, ложащийся на прозрачный, толщиной один – два сантиметра ледок – это еще одна опасность для рыболова – блеснильщика. Уже небольшой слой снега замедляет нарастание льда или даже прекращает его полностью.

Если же снега наметет на первый лед как следует, то мощный снежный покров прижимает лед к поверхности воды. Через трещины на поверхность льда вытекает вода. Передвижение по льду при этом становится трудным и весьма опасным, поскольку лед может проломиться или даже растаять в воде под снегом.

Вода, вытекшая на лед, впитывается в снег, образуя слякоть. На этих слякотных участках после их замерзания возникают наледи. Несущая способность ноздреватого и хрупкого льда на участках наледи наполовину меньше, чем у обычного.

Разница температур между верхней и нижней поверхностью льда в особенности при резком похолодании обусловливает неравномерное увеличение ледяного покрова и образование полыней. Вода поднимается через полыньи на лед и замерзает. При потеплении замерзшая в полыньях вода препятствует расширению льдин до их исходного размера. В ледовом покрове возникают внутренние напряжения, которые выталкивают лёд на берег, вследствие чего создаются нагромождения льда, торосы.

Последние материалы раздела:

Кир II Великий - основатель Персидской империи
Кир II Великий - основатель Персидской империи

Основателем Персидской державы признается Кир II, которого за его деяния называют также Киром Великим. Приход к власти Кир II происходил из...

Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах
Длины световых волн. Длина волны. Красный цвет – нижняя граница видимого спектра Видимое излучение диапазон длин волн в метрах

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения...

Николай Некрасов — Дедушка: Стих
Николай Некрасов — Дедушка: Стих

Николай Алексеевич НекрасовГод написания: 1870Жанр произведения: поэмаГлавные герои: мальчик Саша и его дед-декабрист Очень коротко основную...